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Abstract

In this paper, pretopological and topological operators are introduced based on partially continuous linear transforma-
tions of the membership and non-membership functions for intuitionistic fuzzy sets. They turn out to be a generalization
of the topological operators for intuitionistic fuzzy sets. On the other hand it is a generalization of the fuzzy set pre-
topological operators introduced by Wenzhong and Kimfung.
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1 Introduction

Three main notions will be discussed in the presented paper - intuitionistic fuzzy sets, pretopological and topological
spaces. We employ linear maps to introduce specific pretopological closure and interior operators for intuitionistic fuzzy
sets (IFS) (see [2, 3, 4]) and α-cuts for their topological counterparts. As shown in [38], such operators can be applied
to Geographic Information Systems. The results from this work will be further extended in a next research in the
framework of interval valued intuitionistic fuzzy sets (IVIFS) (see [6, 7]) and a software implementation will be also
proposed.

In 1968, Chang [13] introduced the notion of fuzzy topological space and examined its properties. Gayyar, Kerre,
Ramadan [18] and Demirci [16, 17] introduced the concepts of fuzzy closure and fuzzy interior in the fuzzy topological
space, and obtained some properties of them. We are going to state the axioms of fuzzy (pre)topological spaces,
extended by Çoker [12] to intuitionistic fuzzy topological spaces. He gave concrete examples of such spaces, which can
be applied to modeling real world problems.

There has been extensive research about intuitionistic fuzzy topology since its introduction by Çoker. Several M.Sc.
and Ph.D. theses, and many papers by researchers have been published in this domain. For example, there are at least
three books discussing topics related to topological metric spaces for IFSs [5, 10, 35, 36].

Singh and Srivastava [34] examined the separation axioms. In 2003, Lupiañez [25] defined new notions of Haus-
dorffness in the intuitionistic fuzzy sense, and obtained some new properties, in particular on convergence, whereas in
Lupiañez [26], he introduced normality and regularity in the intuitionistic fuzzy sense and obtained relations between
these concepts and also with the fuzzy notion. Again Lupiañez [24] introduced a new concept of compactness and a
definition of paracompactness for intuitionistic fuzzy topological spaces, and obtained several preservation properties.
Park [32, 30] introduced intuitionistic fuzzy metric spaces and Saadati [33] made extensive research on the topologically
complete intuitionistic fuzzy metrizable and normed spaces; Kutlu et al. [22], Kutlu [23] made extensive research of
temporal intuitionistic fuzzy S̆ostak topology. In 2002, Mondal and Samanta introduced the concept of intuitionistic gra-
dations of openness [31] which is a generalization of the concept of gradation of openness defined by Chattopadyay [14].
Jin and Seok [21] investigated the categorical aspects of intuitionistic fuzzy topology and more precisely they obtained
two types of adjoint functors between the category of intuitionistic fuzzy topological spaces in Mondal and Samanta’s
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sense, and the category of intuitionistic fuzzy topological spaces in S̆ostak’s sense; Cong-hua and Xiao-ke [15] introduced
the concept of intuitionistic I-fuzzy quasi-coincident neighbourhood systems of intuitionistic fuzzy points and studied
the relation between the category of intuitionistic I-fuzzy topological spaces and the category of intuitionistic I-fuzzy
quasi-coincident neighborhood spaces; Thakur and Rekha [37] introduced and studied the concept of intuitionistic fuzzy
g-continuous mappings in intuitionistic fuzzy topological spaces.

Many authors extend the topological notions and theorems into the framework of IFSs but our goal in this paper is
to introduce pretopological and topological operators in a more constructive way, allowing the application of computer
programs, and simultaneously showing many properties and their mathematical correctness.

The notion fuzzy set (FS) was introduced by Lotfi Zadeh in 1965 (cf. Zadeh [39]). A fuzzy set is an object whose
element’s membership degree is not precisely defined. Fuzzy sets provide a better representation of reality than the
classical mathematical binary representation of whether an element does or does not belong to a set. The membership
in fuzzy sets is gradual, taking values in the range between “no” (0) and “yes” (1).

Since the introduction of fuzzy sets there have been some generalizations. Most of them consist of replacing the
range [0, 1] by more general algebraic structures satisfying the axioms for a lattice (cf. Birkhoff [11]) - they are called
L-fuzzy sets (cf. Goguen [19]). An extension of fuzzy sets is the intuitionistic fuzzy set (IFS), introduced in 1983
[3, 4], where the corresponding lattice takes a natural form of triangular representation (described in the next section).
In addition to the membership function of a FS, there is another function, expressing the notion of non-membership
degree with the same domain X and range [0, 1], so that the sum of the membership and non-membership degrees may
not exceed 1. That is, in the framework of IFSs we have an additional degree of information, expressing the lack of
knowledge/information, that makes the theory invaluable to extend the uncertainty of the limited level of crisp and
even fuzzy precision in real world situations and preferences.

The operations of inclusion, union, intersection, complement are extended from the ordinary to the intuitionistic
fuzzy sets. These operations are actually needed the notion of pretopological and topological spaces to be introduced
(Arkhangelskii and Fedorchuk [1]). Many mathematicians and scientists actively employ concepts of topology to model
and understand real-world structures and problems. A rich variety of results also has emerged in other areas of applied
mathematics stemming from pure topological investigations. As topology originally grew up from geometry, it is often
described as a rubber-sheet geometry - that means, literally, the study of position or location of points (elements)
belonging to a given set called topological space. Distances are not always relevant in the framework of topology but
the notion of proximity is a very important concept, which is established by specifying a collection of subsets of the
considered topological space called open sets. Open sets and their counterparts - closed sets in a topological space are
often defined by interior and closure operators. What a topologist can do is to identify and use the properties of objects
that different shapes have in common. Often, the properties that are significant are those that are preserved when we
treat objects as deformable, as opposed when we treat them as rigid bodies. Such specific situations emerge in many
areas of applied mathematics, physics, biology, geographic information systems and system theory.

In systems described mainly by logic and algebra, topological axioms are too restrictive. In 1967 Hammer [20]
showed that by some extensions of the principles of general topology it is possible to model almost any formal system.
He introduces the isotonic spaces which are later called pretopogical spaces [1, Ch. 2.5]. In 1981, Robert Badard [9]
introduced the fuzzy pretopological spaces and showed many of their properties.

2 Introduction to intuitionistic fuzzy sets

A fuzzy set (FS) in X (cf. Zadeh [39]) is given by

A = {〈x, µA(x)〉|x ∈ X} (1)

where µA(x) ∈ [0, 1] is the membership function of the FS A. The intuitionistic fuzzy sets (IFSs, cf. [2, 3, 4]), are
extensions of FSs with the form

A = {〈x, µA(x), νA(x)〉|x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that 0 ≤ µA(x) + νA(x) ≤ 1 and µA(x), νA(x) ∈ [0, 1] denote a
degree of membership and a degree of non-membership of x ∈ A, respectively. An additional concept for each IFS in
X, πA(x) = 1− µA(x)− νA(x), a degree of uncertainty of x ∈ A. It expresses a lack of knowledge of whether x belongs
to A or not (cf. [3]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X. Uncertainty degree turns out to be relevant for
both - applications and the development of theory of IFSs.

Talking about partial ordering in IFSs, we will by default mean (IFS(X),≤) where ≤ stands for the standard partial
ordering in IFS(X). The partially ordered set is called poset. For any two A and B ∈ IFS(X) : A ≤ B is satisfied if
and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for any x ∈ X. On Fig. 1 one may see the triangular representation of
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the two chosen A and B in a particular point x ∈ X, where fA(x) stands for the point on the plane with coordinates
(µA(x), νA(x)). The poset (IFS(X),≤) is actually a lattice (cf. [29]), which means that for every subset S ⊆ IFS(X)
there are inf(S), sup(S) ∈ IFS(X) such that A0(S) is the greatest lower bound (infimum) and A1(S) is the least upper
bound (supremum) of S ∈ IFS(X).

Definition 2.1. In the framework of the above notions, if we take S = IFS(X), then for this paper let us define

O∗X( or O∗(X)) := inf(IFS(X)) = {〈x, 0, 1〉 | x ∈ X},

corresponding to the point 〈0, 1〉 on Fig. 1 and

E∗X( or E∗(X)) = sup(IFS(X)) = {〈x, 1, 0〉 | x ∈ X},

corresponding to the point 〈1, 0〉 on Fig. 1.

Figure 1: Triangular representation of the the intuitionistic fuzzy sets A and B ∈ IFS(X) in a particular point x ∈ X,
where fA(x) stands for the point on the plane with coordinates (µA(x), νA(x)).

Let us recall the definitions and some properties of the modal operators on intuitionistic fuzzy sets as introduced
originally in [2]. For more detailed descriptions and properties the reader may refer to [4], Ch. 4.1., although we
introduce now some new statements and consider from various points of view. “Necessity” and “possibility” operators
(denoted � and ♦, respectively) applied to an intuitionistic fuzzy set A ∈ IFS(X) have been defined as:

�A = {〈x, µA(x), 1− µA(x)〉|x ∈ X},
♦A = {〈x, 1− ν(x), νA(x)〉|x ∈ X}

From the above definition it is evident that

? : IFS(X) −→ FS(X) (3)

where ? is the prefix operator ? ∈ {�,♦}, operating on the class of intuitionistic fuzzy sets. Let us take any A,B ∈
IFS(X) and define A ≤� B iff µA ≤ µB on X, respectively A ≤♦ B iff νA ≥ νB on X. Obviously both ≤� and ≤♦
are reflexive and transitive. That is, they are both quasi-orderings in IFS(X) which will be called quasi �-ordering
and quasi ♦-ordering, respectively. For more information and examples of quasi-orderings, the reader may consult the
book of Birkhoff [11], Ch. II.1. and such orderings concerning IFSs, [29].

Let us remind the first topological operators introduced in [4, Ch. 4.2.], For every A ∈ IFS(X),

C(A) = {〈x,KA, LA〉|x ∈ X} (4)

where
KA := sup

y∈X
µA(y), LA := inf

y∈X
νA(y) (5)

and
I(A) = {〈x, kA, lA〉|x ∈ X} (6)

where
kA = inf

y∈X
µA(y), lA = sup

y∈X
νA(y) (7)
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The following operators are defined in [8], as extensions of the two topological operators C and I:

Cµ(A) = {〈x,KA,min(1−KA, νA(x))〉|x ∈ X} (8)

Cν(A) = {〈x, µA(x), LA〉|x ∈ X} (9)

Iµ(A) = {〈x, kA, νA(x)〉|x ∈ X} (10)

Iν(A) = {〈x,min(1− lA, µA(x)), lA〉|x ∈ X} (11)

The geometrical interpretations of these operators applied on the IFS A are shown in [4, Figs. 4.8-4.11].

3 Pretopological, topological operators and their fuzzy representatives

Let us define first the preclosure and preinterior operators. We consider the universe X. X is a pretopological space
in respect to the preclosure operator c : X → X , where X can be P(X), FS(X) or IFS(X) iff for any A,B ∈ X the
following axioms are satisfied (cf [1, Ch. 2.5], and [9]):

1. c(∅) = ∅

2. A ⊆ c(A)

3. c(A ∪B) = c(A) ∪ c(B)

If in addition to the above stated axioms the operator c is idempotent, that is c(A) = c(c(A)), then c is called closure
operator in X .

Definition 3.1 (Fixed point). Let f : Z −→ Z be a function, where Z is an arbitrary set. Then z0 ∈ Z is called fixed
point if f(z0) = z0.

Remark 3.2. The preclosure operator c is idempotent iff for every A ∈ X : c(A) is a fixed point for c, i.e. c(c(A)) = c(A).

An example of (idempotent) closure operator is given in [4] and [3, Ch. 1.6] in the case of IFSs, defined by

C(A) = {〈x, sup
y∈X

µA(y), inf
y∈X

νA(y)〉 | x ∈ X}.

Proposition 3.3. The preclosure operator c is non-decreasing in respect to the partial ordering ⊆ in X . That is, for
all A,B ∈ X , A ⊆ B ⇒ c(A) ⊆ c(B).

Proof. Since B = A ∪ B and from the second axiom for preclosure c(A ∪ B) = c(A) ∪ c(B), then c(B) = c(A ∪ B) =
c(A) ∪ c(B) ⊇ c(A).

Definition 3.4 (see [1, Ch. 2.5]). For the preclosure c defined on X we say that a set A ∈ X is closed iff c(A) = A. That
is, the closed sets are exactly the fixed points of c and τ c = {A | A ∈ X & c(A) = A}, is the topology generated by the
preclosure operator c. If X is P(X), FS(X) or IFS(X), then τ is called crisp topology, fuzzy topology or intuitionistic
fuzzy topology, respectively.

There is a very important property for the notion of closed sets, namely,

Theorem 3.5 (see [1, Ch. 2.5]). For the preclosure operator c defined on X and every family of closed sets Bj ∈ τ c, j ∈ J
their intersection is also a closed set. That is, (

⋂
j∈J Bj) ∈ τ c.

For every preclosure operator on X , and any B ⊆ X we define the closure of B,

Clc(B) =
⋂
{B1 | B1 ⊇ B & c(B1) = B1}. (12)

But Theorem 3.5 implies that Clc(B) is closed set for every B ⊆ X . And obviously Clc(B) is the smallest closed set
containing B.
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Remark 3.6. For every B ⊆ X and every preclosure operator c in X ,

B = c0(B) ⊆ c1(B) ⊆ c2(B) ⊆ · · · ⊆ Clc(B)

and Clc(B) is the smallest closed set containing cm(B), for all m ∈ N.

Analogically to c, we define i, the preinterior and interior operators in X . i is preinterior operator if the following
axioms are satisfied (see [1, Ch. 2.5]),

1. i(X ) = X

2. i(A) ⊆ A

3. i(A ∩B) = i(A) ∩ i(B)

If in addition to the above stated axioms the operator i is idempotent, that is i(A) = i(i(A)), then i is called interior
operator in X and X equipped with this operator has a topological structure.

An example of (idempotent) interior operator is given in [4] and [3, Ch. 1.6] in the case of IFSs, defined by

I(A) = {〈x, inf
y∈X

µA(y), sup
y∈X

νA(y)〉 | x ∈ X}.

The proof of the next proposition is analogical to Proposition 3.3.

Proposition 3.7 (see [1, Ch. 2.5]). The preinterior operator i is non-decreasing in respect to the partial ordering ⊆ in
X . That is, for all A,B ∈ X , A ⊆ B ⇒ i(A) ⊆ i(B).

Definition 3.8 ([1, see Ch. 2.5]). For the preinterior i defined on X we say that a set A ∈ X is open iff i(A) = A.
That is, the open sets are exactly the fixed points of i and τi = {A | A ∈ X & i(A) = A}, is the topology generated by
the preinterior operator i. If X is P(X) or FS(X), then τ is called crisp topology or fuzzy topology, respectively.

Now, similarly to Theorem 1, we can prove

Theorem 3.9 (see [1, Ch. 2.5]). For the preinterior i defined on X and every family of open sets Aj ∈ τi, j ∈ J their
union is also an open set. That is,

⋃
j∈J Aj ∈ τi.

For every preinterior operator on X , and any A ⊆ X we define the interior of A,

Inti(A) =
⋃
{A0 | A0 ⊆ A & i(A0) = A0}. (13)

But Theorem 3.9 implies that Inti(A) is an open set for every A ⊆ X . And obviously Inti(A) is the largest open set
contained in A.

Remark 3.10. For every A ⊆ X and preinterior operator i in X ,

A ⊇ i0(A) ⊇ i1(A) ⊇ i2(A) ⊇ · · · ⊇ Inti(A).

and Inti(A) is the largest open set contained in im(A) for all m ∈ N.

Every (pre)closure operator has its correspondent (pre)interior operator and vice versa. Let c be a preclosure
operator in X and let us define δ(A) := ¬c(¬A). Then δ is a preinterior operator in X , i.e. the axioms for preinterior
are satisfied:

1. δ(X) = ¬c(¬X) = ¬c(∅) = ¬∅ = X;

2. c(¬A) ⊇ ¬A and therefore A ⊇ ¬c(¬A) = δ(A);

3. δ(A ∩B) = δ(A) ∩ δ(B).

Indeed, for the last axiom δ(A ∩B) = ¬c(¬(A ∩B)) = ¬c(¬A ∪ ¬B). But c(¬A ∪ ¬B) = c(¬A) ∪ c(¬B) and therefore,

δ(A ∩B) = ¬c(¬A) ∩ ¬c(¬B) = δ(A) ∩ δ(B).

Moreover, if c is a topological closure, i.e. c(A) = c2(A) for every A ∈ X , then δ is also idempotent.
Analogically, if i is a (pre)interior operator, then c(A) := ¬i(¬A) is its corresponding (pre)closure. It is clear now

that the family of open sets is composed exactly of the complements of the above defined closed sets if we consider the
pair (pre)closure - (pre)interior operators as conjugate pair operators. Obviously, we have shown the validity of the
following proposition.
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Proposition 3.11 (see [1, Ch. 2.5]). If i and c is a conjugate pair of preinterior and preclosure operators in X , then

τ c = {¬A | A ∈ τi} and τi = {¬B | B ∈ τ c}.

In [28] are introduced some examples of fuzzy pretopological and topological spaces. Let us remind the definitions
from [28] and then, in the next section we state generalizations in the framework of IFSs.
For every α ∈ [0, 1] we have the closure operator:

Cα : FS(X) −→ FS(X),

such that

µCα(A)(x) =

{
µA(x) if µA(x) ≤ α
1 if α < µA(x)

(14)

Moreover, the equality sign should really be in the first case in (14). Otherwise, if it were in the second case, if α = 0
and µA ≡ 0 (A = ∅), we would get that C0(∅) = X 6= ∅. For every α ∈ [0, 1] (cf. [28])we define the interior operator:

Iα : FS(X) −→ FS(X),

such that

µIα(A)(x) =

{
0 if µA(x) < α

µA(x) if α ≤ µA(x)
(15)

It is clear now that Cα(A) = ¬I1−α(¬A). Therefore, the pair (Cα, I1−α) is a conjugate pair of closure-interior operators
defining the same topological structure in FS(X).

Let us remind also the generalizations of the above operators. For every α, β, γ ∈ [0, 1] we define the preclosure and
preinterior operators:

Iγα, C
γ
β (A) : FS(X) −→ FS(X),

such that (see Figure 2)

µCγβ (A)(x) =


µA(x) if µA(x) ≤ β

1
1−γ (µA(x)− β) + β if β < µA(x) ≤ 1− γ(1− β)

1 if 1− γ(1− β) < µA(x) ≤ 1

(16)

µIγα(A)(x) =


0 if 0 ≤ µA(x) < γ.α,

1
1−γ (µA(x)− α) + α if γ.α ≤ µA(x) < α,

µA(x) if α ≤ µA(x) ≤ 1.

(17)

The above definition is well defined even for γ = 1 (although 1
1−γ (µA(x)− α) + α is not defined) since in this case

the condition in the second expression will become α ≤ µA(x) < α. And therefore it will not be satisfied for any value
of µA(x), x ∈ X.

Theorem 3.12 (see [1, Ch. 2.5]). (Cγ1−α, Iγα) is a pair of conjugate preclosure-preinterior operators, which define the
same topology

τIγα = {¬B | B ∈ τC
γ
1−α} (18)

in FS(X).
Moreover, from the definition of τIγα if follows that

τIγα = {A | A ∈ FS(A) & µA(x) ∈ {0} ∪ [α, 1]} (19)

τC
γ
β = {B | B ∈ FS(B) & µA(B) ∈ {1} ∪ [0, β]}. (20)
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Figure 2: The first graphic represents the partially continuous map corresponding to the definition of the interior
operator Iγα (17). The second graphic represents the map corresponding to the definition of the closure operator Cγα
(16).

4 Partially linear IF (pre)topological operators

In this section we generalize the notion of (pre)interior and (pre)closure operators from [28] and show that in the
intuitionistic fuzzy sense they are much richer source for research and versatile results. That is, i : IFS(X) −→ IFS(X),
is a preinterior operator if for all A,B ∈ IFS(X),

1. i(E∗X) = E∗X

2. i(A) ⊆ A

3. i(A ∩B) = i(A) ∩ i(B)

We introduce now a new form of topological operators for IFSs, which are analogical to Iγα (17) and Cγα (16).

Iγα,γβµ;α,β : IFS(X) −→ IFS(X),

shown in Fig. 3 such that for every

0 ≤ α, β ≤ 1, α+ β ≤ 1 and 0 ≤ γα, γβ ≤ 1, (21)

µI
γα,γβ
µ;α,β (A)

(x) =


0 if 0 ≤ µA(x) < γα.α

1
1−γα (µA(x)− α) + α if γα.α ≤ µA(x) < α

µA(x) if α ≤ µA(x) ≤ 1

(22)

νI
γα,γβ
µ;α,β (A)

(x) =

{
min((1− γβ)νA(x) + βγβ , 1− µIγα,γβµ;α,β (A)

(x)) if 0 ≤ νA(x) ≤ β

νA(x) if β < νA(x) ≤ 1
(23)
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Let us note that (22) is well defined even if γα = 1. In case γα = 1 the condition γα.α ≤ µA(x) < α is never satisfied.
If we define the following auxiliary functions

fγαα (t) =


0 if 0 ≤ t < γα.α,

1
1−γα (t− α) + α if γα.α ≤ t < α,

t if α ≤ t < 1.

(24)

g
γβ
β (t) =

{
(1− γβ)t+ βγβ if 0 ≤ t ≤ β,
t if β < t ≤ 1.

(25)

then the preinterior operator Iγα,γβµ;α,β can be defined in a more compact form as

µI
γα,γβ
µ;α,β (A)

(x) = fγαα (µA(x)) (26)

νI
γα,γβ
µ;α,β (A)

(x) = min(g
γβ
β (νA(x)), 1− µIγα,γβµ;α,β (A)

(x)) (27)

Figure 3: Example of a triangular representation of the the intuitionistic fuzzy sets A with a universum of 13 elements
and corresponding topological parameters α, β, γα, γβ and the result of the application of the preinterior operator Iγα,γβµ;α,β

on A ∈ IFS(X)

Remark 4.1. The equations (23) and (27) are equivalent representations of νI
γα,γβ
µ;α,β (A)

.

Proof. For x ∈ X such that 0 ≤ νIγα,γβµ;α,β (A)
(x) ≤ β, the above remark is obvious. Let us suppose that β < νI

γα,γβ
µ;α,β (A)

(x) ≤
1. Taking into account that µI

γα,γβ
µ;α,β (A)

(x) ≤ µA(x) and 1−µA(x) ≥ νA(x), then 1−µIγα,γβµ;α,β (A)
(x) ≥ 1−µA(x) ≥ νA(x).

And therefore, min(g
γβ
β (νA(x)), 1 − µIγα,γβµ;α,β (A)

(x)) = min(νA(x), 1 − µIγα,γβµ;α,β (A)
(x)) = νA(x) for β < νI

γα,γβ
µ;α,β (A)

(x) ≤ 1.

The remark is proved.

On Figure 4 are plotted the graphs corresponding to the definitions of µI
γα,γβ
µ;α,β

and νI
γα,γβ
µ;α,β

and we have the following

Proposition 4.2. For every A ∈ IFS(X), the above defined Iγα,γβµ;α,β (A) through the membership degree µI
γα,γβ
µ;α,β (A)

and

non-membership degree νI
γα,γβ
µ;α,β (A)

, is indeed a valid element of IFS(X).

Proof. An easy check shows that µI
γα,γβ
µ;α,β (A)

(x), νI
γα,γβ
µ;α,β (A)

(x) ∈ [0, 1] for all x ∈ X. It is enough to check that

µI
γα,γβ
µ;α,β (A)

(x) + νI
γα,γβ
µ;α,β (A)

(x) ≤ 1

for all x ∈ X. Suppose that νA(x) ≤ β, then µI
γα,γβ
µ;α,β (A)

(x) + νI
γα,γβ
µ;α,β (A)

(x) = µI
γα,γβ
µ;α,β (A)

(x) + min((1 − γβ)νA(x) +

βγβ , 1− µIγα,γβµ;α,β (A)
(x)) ≤ µIγα,γβµ;α,β (A)

(x) + 1− µIγα,γβµ;α,β (A)
(x) = 1 by the definition of νI

γα,γβ
µ;α,β (A)

. And if νA(x) > β, then

νI
γα,γβ
µ;α,β (A)

(x) = νA(x) and since µI
γα,γβ
µ;α,β (A)

(x) ≤ µA(x), we have that

νI
γα,γβ
µ;α,β (A)

(x) + µI
γα,γβ
µ;α,β (A)

(x) ≤ νA(x) + µA(x) ≤ 1.

The proposition is proved.
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Proposition 4.3. The operator Iγα,γβµ;α,β is a valid preinterior operator in IFS(X), i.e. it satisfies the three corresponding
axioms.

Proof. Let us suppose that A = X∗ ∈ IFS(X). Then from the definition of (22), µI
γα,γβ
µ;α,β (A)

≡ 1 and therefore from

(23),
νI

γα,γβ
ν;α,β (A)

= min((1− γβ)0 + βγβ , 1− 1) = 0.

Hence, Iγα,γβµ;α,β (X∗) = X∗ and the first axiom is satisfied. The second axiom follows from the fact that µI
γα,γβ
µ;α,β (A)

≤ µA
and νI

γα,γβ
µ;α,β (A)

≥ νA. The third axiom is a trivial check. The proposition is proved.

From the definition of Iγα,γβµ;α,β and more intuitively from Fig. 4 and Fig. 3, we obtain almost directly the following
remark.

Figure 4: Auxiliary functions for the membership fγαα (µ) ∼ I(µ) and the non-membership g
γβ
β (ν) ∼ I(ν) functions of

the family of preinterior operators depending on the parameters α, β, γα, γβ .

Remark 4.4. The family of open IFSs of the pretopological space (IFS(X), τI
γα,γβ
µ;α,β

), i.e. the fixed points of the operator

Iγα,γβµ;α,β , consists of A ∈ IFS(X) such that for all x ∈ X, Iγα,γβµ;α,β (A) = A iff (α ≤ µA(x) ≤ 1 − β and β ≤ νA(x) ≤
1− α) or (µA(x) = 0 and νA(x) ≥ β).

Proposition 4.5. For any α, β ∈ [0, 1] and γα, γβ ∈ (0, 1] we have that lim
n→∞

(Iγα,γβµ;α,β )n = I1,1
µ;α,β and hence τI

γα,γβ
µ;α,β

=
τI1,1
µ;α,β

.

Proof. We have to show that for every A ∈ IFS(X) and x ∈ X:

lim
n→∞

µ
(I
γα,γβ
µ;α,β )n(A)

(x) = µI1,1
µ;α,β(A)(x)

lim
n→∞

ν
(I
γα,γβ
µ;α,β )n(A)

(x) = νI1,1
µ;α,β(A)(x).

The above expressions follow geometrically from Fig 4 but let us write them out analytically too.
Let us first show the first equality. It is enough to check it for µA(x) < α since for µA(x) ≥ α it is trivial by the
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definition of Iγα,γβµ;α,β . If µA(x) ≤ γα.α, then µI
γα,γβ
µ;α,β (A)

(x) = 0 = µI1,1
µ;α,β(A)(x). Thereby, suppose that γα.α < µA(x) < α.

Then since

µ
(I
γα,γβ
µ;α,β )n(A)

=
1

(1− γα)n
(µA(x)− α) + α,

we are looking for n ∈ N such that the above expression is less or equal than γα.α. That is,

1

(1− γα)n
(µA(x)− α) + α ≤ γα.α

or

α(1− γα) ≤ 1

(1− γα)n
(α− µA(x)) ≡ (1− γα)n+1 ≤ α− µA(x)

α
.

But since 0 < α−µA(x)
α < 1 and 0 < 1−γα < 1, taking the natural logarithm on both sides of the above inequality we get:

(n+ 1) ln(1−γα) ≤ ln α−µA(x)
α . And since both sides are negative numbers, it is equivalent to, n+ 1 ≥ ln

α−µA(x)

α

ln(1−γα) . Then

for n ≥ ln
α−µA(x)

α

ln(1−γα) − 1 we have that µ
(I
γα,γβ
µ;α,β )n(A)

(x) = µI1,1
µ;α,β(A)(x). The equality lim

n→∞
ν

(I
γα,γβ
µ;α,β )n(A)

(x) = νI1,1
µ;α,β(A)(x)

can be analogically checked taking into account that ν
(I
γα,γβ
µ;α,β )n(A)

(x) ≥ νA(x) for every A ∈ IFS(X) and every x ∈ X
and applying analogical equivalent inequality chains. The proposition is proved.

Since I1,1
µ;α,β is very important let us write it down separately:

µI1,1
µ;α,β(A)(x) =

{
0 if 0 ≤ µA(x) < α

µA(x) if α ≤ µA(x) ≤ 1
(28)

νI1,1
µ;α,β(A)(x) =

{
min(β, 1− µI1,1

µ;α,β(A)(x)) if 0 ≤ νA(x) ≤ β
νA(x) if β < νA(x)

(29)

Proposition 4.6. I1,1
µ;α,β is idempotent, i.e. for all A in IFS(X), I1,1

µ;α,β(A) is a fixed point of I1,1
µ;α,β, which means that

it is a preinterior operator satisfying the condition for interior operator.

Proof. It is enough to show that for every A ∈ IFS(X) and x ∈ X the functions µ(I1,1
µ;α,β)n(A) and ν(I1,1

µ;α,β)n(A) are

constant on X for all natural numbers n > 1. More specifically,

µ(I1,1
µ;α,β)n(A) = µI1,1

µ;α,β(A) and ν(I1,1
µ;α,β)n(A) = νI1,1

µ;α,β(A).

Let us take any x ∈ X. If µA(x) ≤ α then

µI1,1
µ;α,β(A)(x) = 0 and {µI1,1

µ;α,β(A)}
n(x) = 0

for every n ≥ 1. If µA(x) > α then

µI1,1
µ;α,β(A)(x) = µA(a) and {µI1,1

µ;α,β(A)}
n(x) = µA(x)

for every n ≥ 1. Therefore, µI1,1
µ;α,β(A) is idempotent.

Analogically, νI1,1
µ;α,β(A)(x) is idempotent too. And therefore, I1,1

µ;α,β is an interior operator.

Let us define the axioms for a (pre)clusure for IFS(X). As in Section 3 c : IFS(X) −→ IFS(X), is an intuitionistic
fuzzy preclosure operator if for all A ∈ IFS(X),

1. c(O∗X) = O∗X

2. A ⊆ c(A)

3. c(A ∪B) = c(A) ∪ c(B)



Partially continuous pretopological and topological operators for intuitionistic fuzzy sets 11

And in addition, if c is idempotent then it is an intuitionistic fuzzy closure operator.
Let us define

Cγα,γβν;α,β : IFS(X) −→ IFS(X),

such that (21) is satisfied and

νC
γα,γβ
ν;α,β (A)

(x) =


0 if 0 ≤ νA(x) < γα.α

1
1−γα (νA(x)− α) + α if γα.α ≤ νA(x) < α

νA(x) if α ≤ νA(x) ≤ 1

(30)

µC
γα,γβ
ν;α,β (A)

(x) ={
min((1− γβ)µA(x) + βγβ , 1− νCγα,γβν;α,β (A)

(x)) if 0 ≤ µA(x) ≤ β

µA(x) if β < µA(x) ≤ 1

(31)

We also remark the following corresponding representations of the above defined functions by the auxiliary functions
fγαα and g

γβ
β , introduced in (24)

νC
γα,γβ
ν;α,β (A)

(x) = fγαα (νA(x)) (32)

µC
γα,γβ
ν;α,β (A)

(x) = min(g
γβ
β (νA(x)), 1− νCγα,γβν;α,β (A)

(x)) (33)

The above defined operation is a preclosure operator and analogically to Proposition 4.3, Proposition 4.5 and
Proposition 4.6, let us state the following three propositions without proofs.

The action of the preclosure operator Cγα,γβν;α,β is plotted on Fig. 5.

Figure 5: Example of the action of the preclosure operator Cγα,γβν;α,β on A ∈ IFS(X) from Fig. 3
.

Proposition 4.7. The operator Cγα,γβν;α,β is a valid preclosure operator in IFS(X), i.e. it satisfies the three corresponding
axioms.

Proposition 4.8. For any α, β ∈ [0, 1] and γα, γβ ∈ (0, 1] we have that lim
n→∞

(Cγα,γβν;α,β )n = C1,1
ν;α,β and hence τC

γα,γβ
ν;α,β =

τC
1,1
ν;α,β .

Proposition 4.9. C1,1
ν;α,β is idempotent, i.e. for all A in IFS(X), C1,1

ν;α,β(A) is a fixed point of C1,1
ν;α,β, which means that

it is a preclosure operator satisfying the condition for closure operator.

Analogically to Theorem 3.12, let us state the following,

Theorem 4.10. For any A ∈ IFS(X) we have that Cγβ ,γαν;β,α (A) = ¬Iγα,γβµ;α,β (¬A), i.e. (Cγβ ,γαν;β,α , I
γα,γβ
µ;α,β ) is a pair of

conjugate preclosure-preinterior operators,
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which define the same topology τI
γα,γβ
µ;α,β

= {¬B | B ∈ τC
γβ,γα

ν;β,α } in IFS(X). Moreover, from the definition of τI
γα,γβ
µ;α,β

if follows that

τI
γα,γβ
µ;α,β

= {A | A ∈ IFS(X) & (µA, νA)(x) ∈ (α, 1− β]× [β, 1− α] ∪ {0} × [β, 1]} (34)

τC
γα,γβ
ν;α,β = {B | B ∈ IFS(X) & (µB , νB)(x) ∈ [α, 1− β]× (β, 1− α] ∪ [α, 1]× {0}}. (35)

From the above theorem and Remark 4.4 we have the following remark.

Remark 4.11. The family of closed IFSs of the pretopological space (IFS(X), τC
γα,γβ
µ;α,β ), i.e. the fixed points of the

operator Cγα,γβµ;α,β , consists of A ∈ IFS(X) such that for all x ∈ X, Cγα,γβµ;α,β (A) = A iff (α ≤ νB(x) ≤ 1 − β and β ≤
µB(x) ≤ 1− α) or (µA(x) ≥ α and νA(x) = 0).

5 Generalization of the IF (pre)topological operators

In this section we provide some generalization of the already mentioned topological operators in Section 2. Let us denote
ᾱ = (α0, α1) and β̄ = (β0, β1), where αi, βi ∈ [0, 1] for i ∈ {0, 1} and α0 ≤ α1, β0 ≤ β1. We also take γᾱ, γβ̄ ∈ [0, 1] and

based on an arbitrary A ∈ IFS(X), let us define the operator, Iγᾱ,γβ̄
µ;ᾱ,β̄

: IFS(X) −→ IFS(X), by the introduction of

the following auxiliary functions, similarly to (24) and (25).

fγᾱᾱ (t) =


t if 0 ≤ t < α0

α0 if α0 ≤ t < α0 + γᾱ(α1 − α0)
1

1−γᾱ (t− α1) + α1 if α0 + γᾱ(α1 − α0) ≤ t < α1

t if α1 ≤ t ≤ 1

(36)

g
γβ̄
β̄

(t) =


t if 0 ≤ t < β0,

(1− γβ̄)t+ β1γβ̄ if β0 ≤ t < β1,

t if β1 ≤ t ≤ 1.

(37)

then the preinterior operator Iγᾱ,γβ̄
µ;ᾱ,β̄

can be defined in a more compact form as

µI
γᾱ,γβ̄

µ;ᾱ,β̄

(A)(x) = fγᾱᾱ (µA(x)) (38)

νI
γᾱ,γβ̄

µ;ᾱ,β̄
(A)

(x) = min(g
γβ̄
β̄

(νA(x)), 1− µIγᾱ,γβ̄
µ;ᾱ,β̄

(A)
(x)) (39)

Analogically to (32) and (33), we define the membership and non-membership functions of the preclosure operator

Cγβ̄ ,γᾱ
ν;β̄,ᾱ

: IFS(X) −→ IFS(X),

and for any A ∈ IFS(X) we have that Cγβ̄ ,γᾱ
ν;β̄,ᾱ

(A) = ¬Iγᾱ,γβ̄
µ;ᾱ,β̄

(¬A), i.e. (Cγβ̄ ,γᾱ
ν;β̄,ᾱ

, Iγᾱ,γβ̄
µ;ᾱ,β̄

) is a pair of conjugate preclosure-

preinterior operators, which define the same topology τI
γᾱ,γβ̄

µ;ᾱ,β̄

= {¬B | B ∈ τC
γ
β̄
,γᾱ

ν;β̄,ᾱ } in IFS(X).

Proposition 5.1. The operators Iγᾱ,γβ̄
µ;ᾱ,β̄

and Cγβ̄ ,γᾱ
ν;β̄,ᾱ

are generalizations of the corresponding operators Iγα,γβµ;α,β and Cγβ ,γαν;β,α .

Proof. It is enough to take ᾱ = (0, α), β̄ = (0, β), γᾱ = γα, γβ̄ = γβ and the validity of the proposition follows directly
from the definition of the corresponding operators.

Let us now show that the operators defined in this section also generalize the operators from [4], Ch. 4.2, stated in
Section 2.

Proposition 5.2. The operators Iγᾱ,γβ̄
µ;ᾱ,β̄

and Cγβ̄ ,γᾱ
ν;β̄,ᾱ

are generalizations of the corresponding operators I from (6) and

C from (4).
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Proof. Let us take an arbitrary set A ∈ IFS(X). To show the validity of the interior operators generalization it is
enough to take ᾱ = (kA, 1), γᾱ = 1 and β̄ = (0, lA), γβ̄ = 1, i.e. I = I1,1

µ;(kA,1),(0,lA). To show the validity of the closure

operators generalization it is enough to take ᾱ = (0,KA), γᾱ = 1 and β̄ = (LA, 1), γβ̄ = 1, i.e. C = C1,1
ν;(0,KA),(LA,1).

Proposition 5.3. The operator Iγᾱ,γβ̄
µ;ᾱ,β̄

is a generalization of the operators Iµ from (10) and Iν from (11).

Proof. Let us take an arbitrary set A ∈ IFS(X). From the definition of the corresponding operators it follows that
Iµ = I1,1

µ;(kA,1),(0,0) and Iν = I1,1
µ;(1−lA,1),(0,lA).

Proposition 5.4. The operator Cγᾱ,γβ̄
ν;ᾱ,β̄

is a generalization of the operators Cµ from (8) and Cν from (9).

Proof. Let us take an arbitrary set A ∈ IFS(X). From the definition of the corresponding operators it follows that
Cµ = C1,1

µ;(0,KA),(1−KA,1) and Cν = C1,1
µ;(0,0),(LA,1).

The operators discussed in the paper can be applied for the estimation of different geometrical and real world
objects. For example, area of forest, lake, sea and many others. In particular, these operators will give the results
discussed in the papers [27] and [38]. One specific case is the area affected by a forest fire that is usually uncertain
(fuzzy or intuitionistic fuzzy). Let us take X to be the area of the fire region and its surroundings to be the universe
for A ∈ IFS(X), where A stands for the region of the fire. During the fire because of the smoke screen there may be
regions that can not be clearly specified as belonging or not the the fire region and that would be the regions with high
degree of uncertainty (π). If we take any of the (pre)closure operators (let us denote it by C) described in this paper,
A ∈ IFS(X) (where X stands for the whole area of the considered map) and compute its boundary ∂A = C(A)∩C(Ā),
that can be considered as an IF estimation of the uncertain boundary (it is shown in [38] how it can be applied in the
fuzzy case). In a next research we are going to investigate the results of the uncertain IF boundary in a real study case
for forest fire.

6 Conclusion

In this paper we introduced pretopological and topological operators based on partially continuous linear transformations
of the membership and non-membership functions for intuitionistic fuzzy sets. They turn out to be a generalization
of the topological operators for intuitionistic fuzzy sets, introduced in the book [4] and generalization of the fuzzy set
pretopological and topological operators from [28]. The mathematical correctness of the operators has also been proved
and we showed that these operators are conjugate. Although there has been extensive research about intuitionistic
fuzzy topologies and their properties, the goal of our paper is the introduction of (pre)topological operators in a more
constructive way, allowing application of computer programs. As shown in [38] such kind of operators can be applied to
Geographical Information Systems. We will just mention that possible applications of the operators introduced in the
paper are, e.g., processing of GIS data and in particular, evaluations of forest fire regions (see, e.g., [27]), of artificial
satellite trajectories and others; processing of intercriteria analysis results (see, e.g. [4]), etc. that will be object of
particular authors research in near future. In a further research, we are going to extend the results from this paper for
(pre)topologies in the framework of interval valued intuitionistic fuzzy sets (IVIFS) and give a software implementation
for interactive manipulation of the proposed operators.
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