

Iranian Journal of Fuzzy Systems

Volume 18, Number 6, (2021), pp. 1-12

Original paper

End-point linear functions

A. Stupňanová¹, Y. Su² and R. Mesiar³

^{1,3}Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Bratislava, Slovak Republic
 ²School of Mathematics Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
 ³Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, CE IT4Innovations, Czech Republic

andrea.stupnanova@stuba.sk, yongsu88@163.com, radko.mesiar@stuba.sk

Abstract

Positive homogeneity is represented as a constraint 0-homogeneity and generalized into z-homogeneity, called also z-end point linearity. Several special z-homogeneous aggregation functions are studied, in particular semicopulas, quasi-copulas, copulas, overlap functions, etc.

Keywords: Aggregation function, copula, end-point linear function.

1 Introduction

Linearity of functions defined on a segment is a most applied approach in modelling of dependences between variables in physics or engineering. Recall that a function $f: D \to \mathbb{R}$ defined on a convex subset D of a vector space $(\mathbb{X}, +, \cdot)$ is linear if

$$f(a\mathbf{x} + b\mathbf{y}) = a f(\mathbf{x}) + b f(\mathbf{y}),$$

for any real constants $a, b \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in D$ such that $a\mathbf{x} + b\mathbf{y} \in D$. Equivalently, f is linear if and only if for any $\lambda \in [0, 1]$ and $\mathbf{x}, \mathbf{y} \in D$ it holds

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}).$$

Note that in this case, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in D$ due to the convexity of D.

A weaker form of linearity is related to a fixed point $\mathbf{z} \in D$.

We tell that f is end-point linear in z whenever for any $\mathbf{x} \in D$ and $\lambda \in [0, 1]$ it holds

$$f(\lambda \mathbf{z} + (1 - \lambda)\mathbf{x}) = \lambda f(\mathbf{z}) + (1 - \lambda)f(\mathbf{x}).$$

Clearly, then, for any $\mathbf{x} \in D$, f is linear on the segment $\langle \mathbf{z}, \mathbf{x} \rangle$. Also, f is linear if and only if it is \mathbf{z} -end point linear for any $\mathbf{z} \in D$.

In particular, if $\mathbf{0} \in D$ then f is **0**-end point linear whenever

$$f(\lambda \mathbf{x}) = \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{0}),$$

for any $\mathbf{x} \in D$ and any $\lambda \in [0, 1]$. If $\mathbf{0} \in D$, then $f : D \to \mathbb{R}$ is called positively homogeneous if

 $f(a\mathbf{x}) = a f(\mathbf{x})$ for any $a \in [0, \infty)$ and any $\mathbf{x} \in D$ such that $a\mathbf{x} \in D$.

Obviously, then $f(\mathbf{0}) = 0$ and, equivalently, for any $\mathbf{x} \in D$ and $\lambda \in [0, 1]$, $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$. Observe that the positive homogeneity of the function f means that $f(\mathbf{0}) = 0$ and, for any $\mathbf{x} \in D$, the restriction of f to the segment $\langle \mathbf{0}, \mathbf{x} \rangle$ is a linear function, i.e., f is **0**-end point linear. The aim of this paper is a generalization of the positive homogeneity of functions vanishing in **0** seen as linearity on $\langle \mathbf{0}, \mathbf{x} \rangle$ for any $\mathbf{x} \in D$ by \mathbf{z} -homogeneity, where \mathbf{z} is a fixed point in D.

Corresponding Author: A. Stupňanová

Received: November 2020; Revised: February 2021; Accepted: May 2021.

Definition 1.1. Let $f : D \to \mathbb{R}$ and $\mathbf{z} \in D$. Then f is \mathbf{z} -homogeneous if, for any $\mathbf{x} \in D$, f is linear on the segment $\langle \mathbf{z}, \mathbf{x} \rangle$.

Clearly, the standard positive homogeneity implies the **0**-homogeneity, but not vice-versa. Moreover, **z**-homogeneity can be seen as an end-point linearity, as the **z**-homogeneous f is linear on any segment in D with an end point **z**. Our main aim is the study of end-point linear functions acting on the domain $[0,1]^n \subseteq \mathbb{R}^n$ (i.e., we consider the vector space $(\mathbb{R}^n, +, \cdot))$, with a special stress on the case $[0,1]^2$. Considering some additional properties, we study and characterise some particular subclasses of end-point linear functions.

The paper is organized as follows. In the next section, we discuss and exemplify some particular **z**-homogeneous functions $f : [0,1]^n \to [0,1]$. In Section 3, we focus on functions $f : [0,1]^2 \to [0,1]$ and characterize end-point linear semicopulas (quasi-copulas, copulas, t-norms, t-conorms), overlap and grouping functions, quasi-arithmetic means, etc. Finally, some concluding remarks are added.

2 End-point linear fusion functions, general case

For $n \ge 2$, we will consider functions $f : [0,1]^n \to [0,1]$. Note that these functions assign to *n*-tuples of inputs from the unit interval [0,1] an output value from the same interval [0,1]. To stress this property, they are also called *fusion functions*, see, e.g., [3]. Some particular subclasses of fusion functions we will deal with are:

- semi-aggregation functions, i.e., fusion functions satisfying two boundary conditions $f(\mathbf{0}) = 0$ and $f(\mathbf{1}) = 1$;
- aggregation functions, i.e., semi-aggregation functions which are directionally increasing for any direction $\vec{r} \in [0,1]^n \setminus \{\mathbf{0}\};$

Recall that $f: [0,1]^n \to [0,1]$ is \vec{r} -directionally increasing whenever $f(\mathbf{x} + c\vec{r}) \ge f(\mathbf{x})$ for any $\mathbf{x} \in [0,1]^n$ and c > 0 such that $\mathbf{x} + c\vec{r} \in [0,1]^n$. For more details we recommend [4, 8]. Note also that aggregation functions can be equivalently characterized by two boundary conditions and increasingness in each coordinate, i.e., by $\mathbf{e_i}$ -directional increasingness for any unit vector $\mathbf{e_i} = (0, \ldots, \underbrace{1}, \ldots, 0), i = 1, 2, \ldots, n$.

As already mentioned, positively homogeneous functions are a particular case of end-point linear functions, namely, they are **0**-homogeneous and vanishing in **0**. As an example of **0**-homogeneous fusion function which is not positively homogeneous consider, for example $f(\mathbf{x}) = \frac{2 - \min(\mathbf{x})}{3}$. It is not difficult to check that from any fusion function $g: [0, 1]^n \to [0, 1]$ one can construct a **0**-homogeneous function.

Proposition 2.1. Let $g: [0,1]^n \to [0,1]$ be a fusion function. Let $f = g_0: [0,1]^n \to [0,1]$ be given by

$$f(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{0}, \\ \max(\mathbf{x}) \cdot g\left(\frac{\mathbf{x}}{\max(\mathbf{x})}\right) & \text{otherwise.} \end{cases}$$
(1)

Then f is a **0**-homogeneous fusion function. If g is also semi-aggregation function, then also f is a semi-aggregation function.

The proof is obvious and therefore omitted.

Note that we can replace max in formula (1) by any other **0**-homogeneous fusion function $h: [0,1]^n \to [0,1]$, and then $f: [0,1]^n \to [0,1]$ is given by

$$f(\mathbf{x}) = \begin{cases} 0 & \text{if } h(\mathbf{x}) = 0, \\ h(\mathbf{x}) \cdot g\left(\frac{\mathbf{x}}{h(\mathbf{x})}\right) & \text{otherwise.} \end{cases}$$
(2)

Then again f is a **0**-homogeneous fusion function. To see the correctness of (2), observe that for any **0**-homogeneous fusion function h it holds, for $\mathbf{x} \neq \mathbf{0}$, $h(\mathbf{x}) = \max(\mathbf{x}) \cdot h\left(\frac{\mathbf{x}}{\max(\mathbf{x})}\right) \leq \max(\mathbf{x})$ and thus $\frac{\mathbf{x}}{h(\mathbf{x})} \in [0,1]^n$ whenever $h(\mathbf{x}) > 0$. For constructing the **0**-homogeneous aggregation function, some stronger constraints are necessary. The next result

For constructing the **0**-homogeneous aggregation function, some stronger constraints are necessary. The next result can be found in [7], see also [10].

Theorem 2.2. Let $g: [0,1]^n \to [0,1]$ be an aggregation function such that, for any $\mathbf{x}, \mathbf{y} \in [0,1]^n, \mathbf{x} \leq \mathbf{y}$, it holds

$$\frac{g(\mathbf{x})}{g(\mathbf{y})} \ge \min\left(\frac{x_1}{y_1}, \dots, \frac{x_n}{y_n}\right),\tag{3}$$

with the convention $\frac{0}{0} = 1$. Then the function $f = g_0$ given by (1) is a **0**-homogeneous aggregation function.

Observe also that for any **0**-homogenous aggregation function $f: [0,1]^n \to [0,1]$, necessarily $\frac{f(\mathbf{x})}{f(\mathbf{y})} \ge \min\left(\frac{x_1}{y_1}, \ldots, \frac{x_n}{y_n}\right)$ for any $\mathbf{0} \le \mathbf{x} \le \mathbf{y} \le \mathbf{1}$.

Recall that for any fusion function (semi-aggregation function, aggregation function) $f : [0,1]^n \to [0,1]$ its dual $f^d : [0,1]^n \to [0,1]$ given by

$$f^d(\mathbf{x}) = 1 - f(\mathbf{1} - \mathbf{x})$$

is a fusion function (semi-aggregation function, aggregation function).

Proposition 2.3. Let a fusion function (semi-aggregation function, aggregation function) $f : [0,1]^n \to [0,1]$ be **z**-homogeneous for some $\mathbf{z} \in [0,1]^n$. Then its dual f^d is $(1-\mathbf{z})$ -homogeneous.

Proof. For any $\mathbf{x} \in [0, 1]$ and $\lambda \in [0, 1]$, $\mathbf{y} = \lambda \mathbf{x} + (1 - \lambda)(\mathbf{1} - \mathbf{z}) \in \langle \mathbf{1} - \mathbf{z}, \mathbf{x} \rangle$ and thus

$$\mathbf{1} - \mathbf{y} = \mathbf{1} - (\lambda \mathbf{x} + (1 - \lambda)\mathbf{1} - (1 - \lambda)\mathbf{z}) = \lambda(1 - \mathbf{x}) + (1 - \lambda)\mathbf{z}.$$

Due to the **z**-homogeneity of f it holds

$$\begin{aligned} f^{d}(\mathbf{y}) &= 1 - f(\mathbf{1} - \mathbf{y}) = 1 - f(\lambda(\mathbf{1} - \mathbf{x}) + (1 - \lambda)\mathbf{z}) \\ &= 1 - \lambda f(\mathbf{1} - \mathbf{x}) - (1 - \lambda)f(\mathbf{z}) \\ &= 1 - \lambda(1 - f^{d}(\mathbf{x})) - (1 - \lambda)(1 - f^{d}(\mathbf{1} - \mathbf{z})) \\ &= \lambda f^{d}(\mathbf{x}) + (1 - \lambda)f^{d}(\mathbf{1} - \mathbf{z}), \end{aligned}$$

proving the linearity of f^d on the segment $\langle \mathbf{1} - \mathbf{z}, \mathbf{x} \rangle$. Thus f^d is $(\mathbf{1} - \mathbf{z})$ -homogeneous.

Due to Proposition 2.3, one can consider 1-homogeneity of functions satisfying f(1) = 1 as a dual positive homogeneity, and this implies also the next results.

Corollary 2.4. Let $g: [0,1]^n \to [0,1]$ be a fusion function (semi-aggregation function). Then the function $f = g_1 : [0,1]^n \to [0,1]$ given by

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{1}, \\ \min(\mathbf{x}) + (1 - \min(\mathbf{x})) \cdot g\left(\frac{\mathbf{x} - \min(\mathbf{x}) \cdot \mathbf{1}}{1 - \min(\mathbf{x})}\right) & \text{otherwise.} \end{cases}$$
(4)

is a 1-homogeneous fusion function (semi-aggregation function). The function f is an aggregation function whenever g is an aggregation function satisfying, for all \mathbf{x} and \mathbf{y} with $\mathbf{0} \leq \mathbf{y} \leq \mathbf{x} \leq \mathbf{1}$,

$$\frac{1-g(\mathbf{x})}{1-g(\mathbf{y})} \ge \min\left(\frac{1-x_1}{1-y_1}, \dots, \frac{1-x_n}{1-y_n}\right),\tag{5}$$

with the convention $\frac{0}{0} = 1$.

Similarly as in Proposition 2.3, one can show the next result.

Proposition 2.5. Let $f : [0,1]^n \to [0,1]$ be **z**-homogeneous fusion function (semi-aggregation function, aggregation function) and let $\sigma : \{1,\ldots,n\} \to \{1,\ldots,n\}$ be a permutation. Then the function $f_{\sigma} : [0,1]^n \to [0,1]$,

$$f_{\sigma}(\mathbf{x}) = f(\mathbf{x}_{\sigma}) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}),$$

is a \mathbf{z}_{σ} -homogenous fusion function (semi-aggregation function, aggregation function).

Due to Proposition 2.5, each symmetric fusion function f which is \mathbf{z} -homogeneous is also \mathbf{z}_{σ} -homogeneous for any permutation σ . Moreover, due to the symmetry of f, $f(\mathbf{z}_{\sigma}) = f(\mathbf{z}) = c$ for any permutation σ . Therefore, for all permutations σ and τ such that $\mathbf{z}_{\sigma} \neq \mathbf{z}_{\tau}$, the function f is constant (attaining the value c) on the segment which is the intersection of the domain $[0, 1]^n$ and the straight line determined by points \mathbf{z}_{σ} and \mathbf{z}_{τ} .

Total end-point linearity can be seen as **z**-homogeneity valid for any end-point $\mathbf{z} \in [0, 1]^n$.

Theorem 2.6. A fusion function $f : [0,1]^n \to [0,1]$ is total end-point linear if and only if it is linear, i.e., $f(\mathbf{x}) = a + \sum_{i=1}^{n} b_i x_i$ for some real constants a, b_1, \ldots, b_n such that $a + \sum_{b_i < 0} b_i \ge 0$ and $a + \sum_{b_i > 0} b_i \le 1$. This f is a semi-aggregation function if and only if a = 0 and $\sum_{i=1}^{n} b_i = 1$ and then f is also an aggregation function.

Proof. The sufficiency of both claims is obvious.

To see the necessity, denote $a = f(\mathbf{0}), b = f(1, 0, ..., 0), c = f(0, 1, 0, ..., 0)$, and d = f(1, 1, 0, ..., 0). Observe that for any $x_1 \in [0, 1], (x_1, 0, ..., 0) = (1 - x_1) \mathbf{0} + x_1 (1, 0, ..., 0)$.

• Due to $\mathbf{0}$ -homogeneity of f, it holds

$$f(x_1, 0, \dots, 0) = (1 - x_1) f(0) + x_1 f(1, 0, \dots, 0) = (1 - x_1) a + x_1 b = a + (b - a) x_1$$

Similarly $f(0, x_2, 0, \dots, 0) = a + (c - a) x_2$. Next

- (1, 0, ..., 0)-homogeneity ensures $f(1, x_2, 0, ..., 0) = b + (d b) x_2$, and
- $(0, 1, 0, \dots, 0)$ -homogeneity forces $f(x_1, 1, 0, \dots, 0) = c + (d c) x_1$.
- Also, $(0, x_2, 0, \ldots, 0)$ -homogeneity and the equality

$$(x_1, x_2, 0, \dots, 0) = x_1 (1, x_2, 0, \dots, 0) + (1 - x_1) (0, x_2, 0, \dots, 0) \text{ implies},$$

$$f(x_1, x_2, 0, \dots, 0) = a + (b - a) x_1 + (c - a) x_2 + (d - c - b + a) x_1 x_2.$$

• Due to

$$\left(\frac{1}{2},\frac{1}{2},0,\ldots,0\right) = \frac{1}{2}(\mathbf{0}+(1,1,0\ldots,0)) = \frac{1}{2}((1,0,\ldots,0)+(0,1,0,\ldots,0)),$$

it holds $f(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0) = \frac{a+d}{2} = \frac{b+c}{2}$, and, finally

$$f(x_1, x_2, 0, \dots, 0) = a + (b - a)x_1 + (c - a)x_2.$$

Denoting $b - a = b_1$ and $c - a = b_2$, we see that $f(x_1, x_2, 0, \dots, 0) = a + b_1 x_1 + b_2 x_2$.

In similar way, one can prove that $f(x_1, 0, x_3, 0, \dots, 0) = a + b_1 x_1 + b_3 x_3$. Now, denote

$$\alpha = f(x_1, 0, \dots, 0) = a + b_1 x_1$$

$$\beta = f(x_1, 1, 0, \dots, 0) = a + b_1 x_1 + b_2$$

$$\gamma = f(x_1, 0, 1, 0, \dots, 0) = a + b_1 x_1 + b_3 \text{ and }$$

$$\delta = f(x_1, 1, 1, 0, \dots, 0)$$

Similarly as in the case of $f(x_1, x_2, 0, ..., 0)$, we can show that

$$f(x_1, x_2, x_3, 0, \dots, 0) = \alpha + (\beta - \alpha) x_2 + (\gamma - \alpha) x_3 + (\delta - \gamma - \beta + \alpha) x_2 x_3$$

and $f(x_1, \frac{1}{2}, \frac{1}{2}, 0, ..., 0) = \frac{\alpha + \delta}{2} = \frac{\beta + \gamma}{2}$. Then

$$f(x_1, x_2, x_3, 0, \dots, 0) = a + b_1 x_1 + b_2 x_2 + b_3 x_3$$

By induction we get $f(x_1, \ldots, x_n) = a + \sum_{i=1}^n b_i x_i$, i.e., f is a linear function. Its extremal values on $[0, 1]^n$ are $a + \sum_{b_i < 0} b_i$ and $a + \sum_{b_i > 0} b_i$, and thus f is a fusion function only if $a + \sum_{b_i < 0} b_i \ge 0$ and $a + \sum_{b_i > 0} b_i \le 1$. Clearly, if f is semi-aggregation function then $f(\mathbf{0}) = a = 0$ and $f(\mathbf{1}) = a + \sum_{i=1}^n b_i = \sum_{i=1}^n b_i = 1$ and $a + \sum_{b_i < 0} b_i \ge 0$ ensures there is no negative b_i , i.e., each $b_i \ge 0$. Obviously, then f is an aggregation function.

Based on Theorem 2.6 we see that the only total end-point linear (semi-) aggregation functions are just weighted arithmetic means.

Example 2.7. The functions max and min are **c**-homogeneous aggregation functions for any $\mathbf{c} = (c, \ldots, c), c \in [0, 1]$, but not **z**-homogeneous whenever **z** is non-constant. Consider, e.g., $n = 2, \mathbf{z} = (1, 0)$ and suppose max (min) is **z**homogeneous. Then, knowing that $\max(1, 0) = \max(0, 1) = 1 \pmod{(1, 0)} = \min(0, 1) = 0$, from the **z**-homogeneity it follows $\max(x, 1 - x) = 1 \pmod{(x, 1 - x)} = 0$ for each $x \in [0, 1]$, which is a contradiction.

Observe that **c**-homogeneity, $c \in [0, 1]$, holds for any Choquet integral [5, 6, 9].

Remark 2.8. Observe that if $\mathbf{z} \in [0,1[^n]$, then any \mathbf{z} -homogeneous fusion function f is determined by the value $f(\mathbf{z})$ and values of f on the boundary points, i.e., on $[0,1]^n \setminus [0,1[^n]$. If $\mathbf{z} \notin [0,1[^n]$, then even a proper subset of $[0,1]^n \setminus [0,1[^n]$ is enough to be considered. For example, consider $\mathbf{z} = (\frac{1}{2}, \ldots, \frac{1}{2})$ and $f(\mathbf{z}) = \alpha$, $f(\mathbf{u}) = \beta$ for any $\mathbf{u} \in [0,1]^n \setminus [0,1[^n], \alpha, \beta \in [0,1]$. Then the related \mathbf{z} -homogeneous fusion function $f : [0,1]^n \to [0,1]$ is given by

$$f(\mathbf{x}) = \alpha + (\beta - \alpha) \max(|2x_1 - 1|, \dots, |2x_n - 1|).$$

For n = 2, we continue in Remark 2.8 and show the link between the values of a **z**-homogenous fusion functions and the values of f on the boundary $[0,1]^2 \setminus [0,1]^2$ and in **z**. For $\mathbf{z} \in [0,1]^2$, **z**-homogeneous binary functions f are fully determined by $f(\mathbf{z})$ and its four boundaries that is, $f(0,\cdot), f(\cdot,0), f(1,\cdot)$ and $f(\cdot,1)$.

Proposition 2.9. Let $\mathbf{z} = (z_1, z_2) \in [0, 1]^2$ and $f : [0, 1]^2 \to [0, 1]$ be \mathbf{z} -homogeneous. Then, if $(x_1, x_2) \neq \mathbf{z}$, f is such that, it holds

(i) for (x_1, x_2) from the triangle $\langle \mathbf{0}, \mathbf{z}, (1, 0) \rangle$,

$$f(x_1, x_2) = \frac{x_2}{z_2} f(\mathbf{z}) + \frac{z_2 - x_2}{z_2} f\left(\frac{x_1 z_2 - x_2 z_1}{z_2 - x_2}, 0\right);$$

(*ii*) for (x_1, x_2) from the triangle $\langle \mathbf{0}, \mathbf{z}, (0, 1) \rangle$,

$$f(x_1, x_2) = \frac{x_1}{z_1} f(\mathbf{z}) + \frac{z_1 - x_1}{z_1} f\left(0, \frac{x_2 z_1 - x_1 z_2}{z_1 - x_1}\right);$$

(iii) for (x_1, x_2) from the triangle $\langle (0, 1), \mathbf{z}, \mathbf{1} \rangle$,

$$f(x_1, x_2) = \frac{1 - x_2}{1 - z_2} f(\mathbf{z}) + \frac{x_2 - z_2}{1 - z_2} f\left(\frac{x_1 - z_1 - x_1 z_2 + x_2 z_1}{x_2 - z_2}, 1\right);$$

(iv) for (x_1, x_2) from the triangle $\langle (1, 0), \mathbf{z}, \mathbf{1} \rangle$,

$$f(x_1, x_2) = \frac{1 - x_1}{1 - z_1} f(\mathbf{z}) + \frac{x_1 - z_1}{1 - z_1} f\left(1, \frac{x_2 - z_2 - x_2 z_1 + x_1 z_2}{x_1 - z_1}\right).$$

The proof is a matter of simple linear interpolation and therefore omitted.

3 2-dimensional end-point linear aggregation functions

Now, we focus on binary semi-aggregation functions with linear boundaries, i.e., functions $f: [0,1]^2 \rightarrow [0,1]$ which are linear on segments $\langle \mathbf{0}, (0,1) \rangle, \langle \mathbf{0}, (1,0) \rangle, \langle \mathbf{1}, (0,1) \rangle$ and $\langle \mathbf{1}, (1,0) \rangle$. Clearly, then $f(\mathbf{0}) = 0$ and $f(\mathbf{1}) = 1$, and f(1,0) = a, f(0,1) = b for some constants $a, b \in [0,1]$. Due to the linearity on boundaries, $f(x_1,0) = ax_1, f(0,x_2) = bx_2, f(x_1,1) = b + (1-b)x_1$ and $f(1,x_2) = a + (1-a)x_2$, see Figure 1. For the sake of brevity, f will be then called $\langle a, b \rangle$ -boundary linear function.

As a particular $\langle a, b \rangle$ -boundary linear function we recall the Choquet integral [5]. Note that the Choquet integral \mathcal{C}_m with respect to a capacity m such that $m(\{1\}) = a$ and $m(\{2\}) = b$, is a function $\mathcal{C}_m : [0,1]^2 \to [0,1]$ given by

$$\mathcal{C}_m(x_1, x_2) = \begin{cases} ax_1 + (1-a)x_2 & \text{if } x_1 \ge x_2, \\ (1-b)x_1 + bx_2 & \text{otherwise.} \end{cases}$$

The next result relates the Choquet integrals and **0**-homogeneous (**1**-homogeneous) $\langle a, b \rangle$ -boundary linear functions.

Proposition 3.1. The semi-aggregation function $f : [0,1]^2 \to [0,1]$ is $\langle a, b \rangle$ -boundary linear for some $a, b \in [0,1]$ and **0**-homogeneous (or **1**-homogeneous) if and only if $f = C_m$ is the Choquet integral with respect to a capacity m such that $m(\{1\}) = a$ and $m(\{2\}) = b$.

Figure 1: The $\langle a, b \rangle$ -boundary linear function

Proof. Obviously, C_m is linear on triangles determined by points (0,0), (1,1), (1,0), and (0,0), (1,1), (0,1), which ensures the $\langle a, b \rangle$ -boundary linearity, **0**-homogeneity and **1**-homogeneity of $f = C_m$.

On the other hand, suppose that f is $\langle a, b \rangle$ -boundary linear function which is **0**-homogeneous (i.e., positively homogeneous).

Then $(x_1, x_2) \in [0, 1]^2$ such that $x_1 \ge x_2 > 0$. Then $(x_1, x_2) \in \left\langle (0, 0), \left(1, \frac{x_2}{x_1}\right) \right\rangle, (x_1, x_2) = (1 - x_1) (0, 0) + x_1 \left(1, \frac{x_2}{x_1}\right)$, and thus

$$f(x_1, x_2) = x_1 f\left(1, \frac{x_2}{x_1}\right) = x_1 \left(a + (1-a)\frac{x_2}{x_1}\right) = ax_1 + (1-a)x_2 = \mathcal{C}_m(x_1, x_2).$$

Similarly, if $0 < x_1 \leq x_2$ then

$$f(x_1, x_2) = (1 - b)x_1 + bx_2 = \mathcal{C}_m(x_1, x_2)$$

Summarizing, we have $f = \mathcal{C}_m$.

Proposition 3.1 can be modified replacing the $\langle a, b \rangle$ -boundary linearity and **0**-homogeneity by **z**-homogeneity for any $\mathbf{z} = (z, z), z \in [0, 1]$.

When considering **z**-homogeneous $\langle a, b \rangle$ -boundary linear functions on $[0, 1]^2$, then each such f is linear on (possibly degenerated) triangles determined by point **z** and two neighbouring vertices of $[0, 1]^2$ square. In general, denote $f(\mathbf{z}) = c$ (clearly, f(0, 1) = b, similarly f(1, 0) = a.) Then f is univocally determined by **z** and parameters a, b, c but it need not be, in general, increasing and thus not aggregation function.

Theorem 3.2. Let $f : [0,1]^2 \to [0,1]$ be an $\langle a,b \rangle$ -boundary linear function which is **z**-homogeneous and $f(\mathbf{z}) = c$. Then f is a semi-aggregation function such that

(i) for (x_1, x_2) from the triangle $\langle \mathbf{0}, \mathbf{z}, (1, 0) \rangle$,

$$f(x_1, x_2) = ax_1 + \frac{x_2(c - az_1)}{z_2}$$

(if $z_2 = 0$, the degenerated triangle $\langle \mathbf{0}, \mathbf{z}, (1,0) \rangle$ coincides with the segment $\langle \mathbf{0}, (1,0) \rangle$ and then $f(x_1,0) = ax_1$); (ii) for (x_1, x_2) from the triangle $\langle \mathbf{0}, \mathbf{z}, (0,1) \rangle$,

$$f(x_1, x_2) = \frac{x_1(c - bz_2)}{z_1} + bx_2$$

(if $z_1 = 0$, the degenerated triangle $\langle \mathbf{0}, \mathbf{z}, (1,0) \rangle \equiv \langle \mathbf{0}, (0,1) \rangle$ and then $f(0, x_2) = bx_2$);

(*iii*) for (x_1, x_2) from the triangle $\langle (0, 1), \mathbf{z}, \mathbf{1} \rangle$,

$$f(x_1, x_2) = (1 - b)x_1 + \frac{(x_2 - 1)(b + (1 - b)z_1 - c)}{1 - z_2} + b,$$

(if $z_2 = 1$, the degenerated triangle $\langle (0,1), \mathbf{z}, \mathbf{1} \rangle \equiv \langle (0,1), \mathbf{1} \rangle$ and then $f(x_1, 1) = b + (1-b)x_1$);

(iv) for (x_1, x_2) from the triangle $\langle (1, 0), \mathbf{z}, \mathbf{1} \rangle$,

$$f(x_1, x_2) = \frac{(x_1 - 1)(a + (1 - a)z_2 - c)}{1 - z_1} + (1 - a)x_2 + a,$$

(if $z_1 = 1$, the degenerated triangle $\langle (1,0), \mathbf{z}, \mathbf{1} \rangle \equiv \langle (1,0), \mathbf{1} \rangle$ and then $f(1, x_2) = a + (1-a)x_2$).

See, Figure 2.

Proof. The function f is linear on each of 4 discussed triangles and thus to determine $f(x_1, x_2)$ it is enough to find the triangle containing (x_1, x_2) . Then $f(x_1, x_2)$ is a convex combination of values of f on the related triangle vertices corresponding to the convex combination of related vertices resulting into (x_1, x_2) . As all 4 vertices of the square $[0, 1]^2$ have value from the set $\{0, 1, a, b\} \subset [0, 1]$, f is a fusion function. More, due to $f(\mathbf{0}) = 0$ and $f(\mathbf{1}) = 1$ we see that f is a semi-aggregation function.

Figure 2: The semi-aggregation function

Based on Theorem 3.2, it is not difficult to see when the discussed f is an aggregation function.

Corollary 3.3. Under the constraints of Theorem 3.2, f is an aggregation function if and only if

$$c \ge az_1$$
 and $c \ge bz_2$ and $c \le a + z_2 - az_2$ and $c \le b + z_1 - bz_1$.

Considering some particular subclasses of aggregation functions, note that the only boundary linear (weighted) quasi-arithmetic means are weighted arithmetic means $W_{(w,1-w)}$ given by

 $W_{(w,1-w)}(x_1, x_2) = wx_1 + (1-w)x_2, \qquad w \in [0,1],$

which are $\langle w, 1-w \rangle$ -boundary linear and **z**-homogeneous for an arbitrary $\mathbf{z} \in [0,1]^2$ and $c = f(\mathbf{z}) = wz_1 + (1-w)z_2$.

Next we focus on semicopulas and their subclasses quasi-copulas, copulas and triangular norms. Recall that an aggregation function $f : [0,1]^2 \to [0,1]$ is a semicopula whenever 1 is its neutral element, f(x,1) = f(1,x) for all $x \in [0,1]$. Obviously, semicopulas are just $\langle 0, 0 \rangle$ - boundary linear aggregation functions. Next, a semicopula $f : [0,1]^2 \to [0,1]$ is a quasi-copula if it is 1-Lipschitz, i.e.,

$$|f(x_1, x_2) - f(y_1, y_2)| \le |x_1 - y_1| + |x_2 - y_2|$$
 for all $(x_1, x_2), (y_1, y_2) \in [0, 1]^2$.

A quasi-copula $f: [0,1]^2 \to [0,1]$ is a copula if it is supermodular, i.e.

 $f((x_1, x_2) \lor (y_1, y_2)) + f((x_1, x_2) \land (y_1, y_2)) \ge f(x_1, x_2) + f(y_1, y_2),$

for all $(x_1, x_2), (y_1, y_2) \in [0, 1]^2$. Finally, a semicopula f is a triangular norm if it is symmetric (commutative) and associative. For more details we recommend [7].

Proposition 3.4. A (0,0)-boundary linear **z**-homogeneous function $f: [0,1]^2 \to [0,1], f(\mathbf{z}) = c$, is a semicopula if and only if $c \leq \min(z_1, z_2)$.

Proof. For any semicopula f and $(x_1, x_2) \in [0, 1]^2$, it holds $f(x_1, x_2) \leq \min(x_1, x_2)$, and thus $f(\mathbf{z}) = c \leq \min(z_1, z_2)$, showing the necessity. To see the sufficiency, note that due to Corollary 3.3, the above considered f is an aggregation function if and only if $c \leq \min(z_1, z_2)$. Also, due to a = 0 we have f(1, y) = y for all $y \in [0, 1]$. Similarly, due to b = 0, it holds f(x, 1) = x for all $x \in [0, 1]$, and thus 1 is a neutral element of f. Hence, f is a semicopula.

Example 3.5. Consider (0,0)-boundary linear (k,k)-homogeneous semicopula $f_{k,c}$, where $c \in [0,k]$. Then, for the greatest c = k,

$$f_{k,k}(x_1, x_2) = \min(x_1, x_2)$$

i.e., $f_{k,k}$ is also a quasi-copula, a copula and a t-norm. On the other hand, for the smallest c = 0, it holds

$$f_{k,0}(x_1, x_2) = \begin{cases} 0 & \text{if } x_2 \le \min\left(1 + \frac{k-1}{k}x_1, \frac{k}{k-1}x_1 - \frac{k}{k-1}\right) \\ \min(x_1, x_2) + \frac{k}{1-k}\max(x_1, x_2) - \frac{k}{1-k} & \text{otherwise.} \end{cases}$$

Then $f_{k,0}$ is a semicopula for each $k \in [0,1[$, it is quasicopula and copula for each $k \in [0,\frac{1}{2}]$ and it is a t-norm only for $k \in \{0,\frac{1}{2}\}$. Note that $f_{0,0} = \min$ and $f_{\frac{1}{2},0} = T_L$ is the Lukasziewicz t-norm given by

$$T_L(x_1, x_2) = \max(x_1 + x_2 - 1, 0)$$

Theorem 3.6. For a (0,0)-boundary linear **z**-homogeneous function $f : [0,1]^2 \to [0,1], f(\mathbf{z}) = c$, the following are equivalent:

- (i) f is a quasi-copula;
- (ii) f is a copula;
- (*iii*) $\max(z_1 + z_2 1, 0) \le c \le \min(z_1, z_2).$

Proof. Recall that f is a semicopula if and only if $c \leq \min(z_1, z_2)$, see Proposition 3.4. Then f is a quasi-copula only if it is 1-Lipschitz on each of 4 triangles determined by \mathbf{z} considered in Theorem 3.2. As on each of these triangles f is linear (and increasing in both coordinates), it is 1-Lipschitz if and only if the coefficients by z_1 and by z_2 are bounded from above by 1. Hence, f is a quasi-copula if and only if

$$c \le \min(z_1, z_2)$$
 and $\frac{z_2 - c}{1 - z_1} \le 1$, (i.e., $c \ge z_1 + z_2 - 1$) and $\frac{z_1 - c}{1 - z_2} \le 1$, (i.e., $c \ge z_1 + z_2 - 1$).

Summarizing, we see that (i) and (iii) are equivalent. Next, each copula is also a quasi-copula, hence (ii) implies (i) and (iii).

On the other hand suppose that (iii) holds. Recall that the supermodularity of a function $f : [0,1]^2 \to [0,1]$ trivially holds if (x_1, x_2) and (y_1, y_2) are comparable, and hence we need to discuss the case when (x_1, x_2) and (y_1, y_2) are incomparable only. Suppose $x_1 < y_1$ and $x_2 > y_2$. Then f is supermodular only if

$$f(y_1, x_2) + f(x_1, y_2) \ge f(x_1, x_2) + f(y_1, y_2),$$

i.e., if $V_f(R) \ge 0$, where R is the rectangle $[x_1, y_2] \times [y_1, x_2]$ and $V_f(R)$ is its volume given by

$$V_f(R) = f(y_1, x_2) + f(x_1, y_2) - f(x_1, x_2) - f(y_1, y_2).$$

Note that if f is linear on some domain D, then $V_f(R) = 0$ for any $R \subseteq D$. Also, if $R = R_1 \cup R_2$ for some nonoverlapping rectangles R_1 and R_2 (i.e., $R_1 \cap R_2$ has Lebesque measure 0), then $V_f(R) = V_f(R_1) + V_f(R_2)$. These facts allow to restrict our considerations to special rectangles only, namely to $R = [x_1, y_2] \times [y_1, x_2]$ with diagonal segment $\langle (x_1, y_2), (y_1, x_2) \rangle$ which is a subset of segment $\langle \mathbf{z}, \mathbf{u} \rangle$, where $\mathbf{u} \in \{(0, 0), (1, 0), (0, 1), (1, 1)\}$. It is not difficult to check the next 4 cases:

i) if $\langle (x_1, y_2), (y_1, x_2) \rangle \subseteq \langle \mathbf{z}, \mathbf{0} \rangle$ then

$$V_f(R) = \frac{c(x_2 - y_2)}{z_2} = \frac{c(y_1 - x_1)}{z_1} \ge 0$$

ii) if $\langle (x_1, y_2), (y_1, x_2) \rangle \subseteq \langle \mathbf{z}, (1, 0) \rangle$ then

$$V_f(R) = (z_2 - c) \frac{x_2 - y_2}{z_2} \ge 0$$
, (note that $c \le z_2$).

iii) if $\langle (x_1, y_2), (y_1, x_2) \rangle \subseteq \langle \mathbf{z}, (0, 1) \rangle$ then

$$V_f(R) = (z_1 - c) \frac{y_1 - x_1}{z_1} \ge 0$$
, (note that $c \le z_1$).

iv) if $\langle (x_1, y_2), (y_1, x_2) \rangle \subseteq \langle \mathbf{z}, \mathbf{1} \rangle$ then

$$V_f(R) = (1 - z_1 - z_2 + c)\frac{x_2 - y_2}{1 - z_2} = (1 - z_1 - z_2 + c)\frac{y_1 - x_1}{1 - z_1} \ge 0,$$

(note that $c \ge \max(z_1 + z_2 - 1, 0)$ and thus $1 - z_1 - z_2 + c \ge 0$).

Summarizing, we see that $V_f(R) \ge 0$ for any rectangle $R \subseteq [0,1]^2$, and thus f is a copula.

Remark 3.7. Due to Theorem 3.6, each (0, 0)-boundary linear **z**-homogeneous function $f : [0, 1]^2 \rightarrow [0, 1]$, $f(\mathbf{z}) = c \in [T_L(z_1, z_2), \min(z_1, z_2)]$ is a copula. This copula is singular and its support with the corresponding masses is formed by 4 segments (possibly degenerated):

- $\langle \mathbf{0}, \mathbf{z} \rangle$ with mass c uniformly distributed over this segment;
- $\langle \mathbf{z}, (0,1) \rangle$ with mass $z_1 c$ uniformly distributed over this segment;
- $\langle \mathbf{z}, (1,0) \rangle$ with mass $z_2 c$ uniformly distributed over this segment;
- $\langle \mathbf{z}, \mathbf{1} \rangle$ with mass $1 z_1 z_2 + c$ uniformly distributed over this segment.

As we have seen, the class of $\langle a, b \rangle$ -boundary linear **z**-homogeneous copulas is quite rich. This is not the case of triangular norms as shown in the next theorem.

Theorem 3.8. An $\langle a, b \rangle$ -boundary linear function f which is \mathbf{z} -homogeneous for some $\mathbf{z} \in [0,1]^2$ is a t-norm if and only if $f \in \{T_L, \min\}$.

Proof. The sufficiency is obvious. Indeed, the Łukasiewicz t-norm T_L is (0,0)-boundary linear and $\mathbf{z} = (z, 1 - z)$ -homogeneous for any $z \in [0,1]$ and $f(\mathbf{z}) = 0$. Similarly, the strongest t-norm, min, is (0,0)-boundary linear and $\mathbf{z} = (z,z)$ -homogeneous with $c = z, z \in [0,1]$.

The necessity is more tricky. Obviously, each t-norm f is (0, 0)-boundary linear. Suppose it is **z**-homogeneous and $f(\mathbf{z}) = c$. Clearly, $c \in [0, \min(z_1, z_2)]$. Suppose first $z_1 \leq z_2$.

If $z_2 = 1$ then necessarily $f(\mathbf{z}) = z_1 = c$ and f is symmetric and t-norm only if $z_1 = c = 1$ (then $f = \min$).

If $z_2 < 1$, we will consider x sufficiently large, close to 1. Then

$$x^{(2)} = f(x, x) = u = x \frac{1 - z_1 + z_2 - c}{1 - z_1} - \frac{z_2 - c}{1 - z_1}$$

and

$$x^{(4)} = u^{(2)} = f(u, u) = u \frac{1 - z_1 + z_2 - c}{1 - z_1} - \frac{z_2 - c}{1 - z_1} = x \left(\frac{1 - z_1 + z_2 - c}{1 - z_1}\right)^2 - \left(\frac{z_2 - c}{1 - z_1}\right) \left(2 + \frac{z_2 - c}{1 - z_1}\right)$$

On the other hand,

$$x^{(3)} = f(x, x^{(2)}) = f(x, u) = u + \frac{(x-1)(z_2 - c)}{1 - z_1} = x \left(1 + 2\frac{z_2 - c}{1 - z_1}\right) - 2\frac{z_2 - c}{1 - z_1}$$

and, due to the associativity of t-norms,

$$x^{(4)} = f(x, x^{(3)}) = x^{(3)} + \frac{(x-1)(z_2 - c)}{1 - z_1} = x \left(1 + 3 \frac{z_2 - c}{1 - z_1} \right) - 3 \frac{z_2 - c}{1 - z_1}.$$

This two expressions for $x^{(4)}$ result into the next two equalities:

$$\left(\frac{1-z_1+z_2-c}{1-z_1}\right)^2 = 1+3\frac{z_2-c}{1-z_1} \text{ and } 3\frac{z_2-c}{1-z_1} = 2\frac{z_2-c}{1-z_1} = \left(\frac{z_2-c}{1-z_1}\right)^2.$$

Hence $\left(\frac{z_2-c}{1-z_1}\right)^2 = \frac{z_2-c}{1-z_1}$ which implies either $c = z_2$ (and then necessarily $z_1 = z_2 = c$) or $c = z_1 + z_2 - 1$.

On the other hand, if $z_1 = 0$, then necessarily c = 0 and $f = \min$ if $z_2 = 0$. If $z_2 > 0$ in this case, then f is not symmetric and thus not a t-norm.

Suppose $z_1 > 0$. For any $x \in [0, z_1]$ it holds

$$x^{(2)} = u = \frac{xc}{z_2}, \ x^{(4)} = u^{(2)} = \frac{uc}{z_2} = x\left(\frac{c}{z_2}\right)^2$$

More,

$$x^{(3)} = f(x,u) = \frac{uc}{z_2} = x\left(\frac{c}{z_2}\right)^2$$
 and $x^{(4)} = f(x,x^{(3)}) = \frac{x^{(3)}c}{z_2} = x\left(\frac{c}{z_2}\right)^3$

Thus $\left(\frac{c}{z_2}\right)^2 = \left(\frac{c}{z_2}\right)^3$, which implies either c = 0 or $c = z_2$ (and hence $z_1 = z_2 = c$). Summarizing, we see that

 $c = z_1 = z_2$ or $c = z_1 + z_2 - 1$, and c = 0 or $c = z_2 = z_1$.

Then either $c = z_1 = z_2$ and the resulting $f = \min$, or $c = 0 = z_1 + z_2 - 1$, and then $\mathbf{z} = (z_1, 1 - z_1)$, $z_1 \in [0, \frac{1}{2}], f(\mathbf{z}) = 0$ and $f = T_L$.

Similar results are obtained if we suppose $z_1 \ge z_2$ (then we have the case $\mathbf{z} = (z_1, 1 - z_1)$ for $z_1 \in \left[\frac{1}{2}, 1\right]$). In all possible situations, the only possibilities are $f = \min$ or $f = T_L$.

Remark 3.9. Recall that if f is a t-norm then its dual f^d is a t-conorm. Due to Theorem 3.8 we see that an $\langle a, b \rangle$ boundary linear z-homogeneous function $f : [0,1]^2 \rightarrow [0,1]$ is a t-conorm if and only if $f \in \{S_L, \max\}$, $(S_L$ is the Lukasziewicz t-conorm given by $S_L(x_1, x_2) = \min(x_1 + x_2, 1))$. Note that the t-conorm max is $\langle 1, 1 \rangle$ -boundary linear and (z, z)-homogeneous with $c = z, z \in [0, 1]$. Similarly, S_L is $\langle 1, 1 \rangle$ -boundary linear and (z, 1 - z)-homogeneous with $c = 1, z \in [0, 1]$.

Recently, overlap and grouping functions were introduced, especially for applications in image processing [2].

Definition 3.10. A fusion function $f: [0,1]^2 \rightarrow [0,1]$ is called an overlap function whenever

- (i) f is continuous and symmetric;
- (*ii*) f is increasing in both coordinates;
- (iii) f(x, y) = 0 if and only if x = 0 or y = 0;
- (iv) f(x,y) = 1 if and only if x = y = 1.

Dual function $f^d: [0,1]^2 \to [0,1]$ to an overlap function f is called a grouping function.

Obviously, for any overlap function f it holds f(1,0) = f(0,1) = 0, and thus the particular subclass of overlap functions belong to the class of (0,0)-boundary linear aggregation functions. Clearly, these overlap functions are symmetric semicopulas, too. Thus, based on Proposition 3.4, we have the next result.

Corollary 3.11. A $\langle 0, 0 \rangle$ -boundary linear **z**-homogeneous function $f : [0,1]^2 \rightarrow [0,1]$, is an overlap function if and only if $\mathbf{z} = (z, z), z \in [0,1]$ and c = z if $z \in \{0,1\}$, and $c \in [0,z]$ if $z \in [0,1]$. Then $f = f_z$, where

$$f_z(x,y) = \begin{cases} \min(x,y) & \text{if } c = z\\ \max\left(\frac{c}{z} \cdot \min(x,y), \min(x,y) + \frac{z-c}{1-z} \cdot \max(y-1,x-1)\right) & \text{else,} \end{cases}$$

see Figure 3.

Figure 3: The **z**-homogeneous overlap function

Proof. The result that $f = \min$ in the case when $\mathbf{z} = (z, z)$ and c = z is trivial. Suppose that f is (z_1, z_2) -homogeneous, $f(\mathbf{z}) = c$. Due to the symmetry, f is also (z_2, z_1) -homogeneous, and $f(z_2, z_1) = c$. Due to properties of overlap functions, $\mathbf{z} \in [0, 1]^2$ or $\mathbf{z} \in \{\mathbf{0}, \mathbf{1}\}$. Consider $\mathbf{z} \in [0, 1]^2$. Clearly, $f(\mathbf{z}) = c > 0$.

As our f is (0, 0)-boundary linear semicopula, we have 4 possibilities how to evaluate $f(z_2, z_1)$, depending on the triangle with vertex **z** considered in Theorem 3.2 where (z_2, z_1) belongs. Thus either

- i) $\frac{z_2 c}{z_1} = c$ implying $z_1 = z_2 = z;$
- ii) $\frac{z_1 c}{z_2} = c$ implying $z_1 = z_2;$
- iii) $z_2 + \frac{(z_1 1)(z_1 c)}{1 z_2} = c$ implying $z_1 = z_2$ or $c = z_1 + z_2 1$, and thus also $z_1 + z_2 > 1$ (else the axiom (iii) from Definition 3.10 of overlap functions will be violated);
- iv) $z_1 + \frac{(z_2 1)(z_2 c)}{1 z_1} = c$, leading to the same conclusions as in the case iii).

Suppose $z_1 + z_2 > 1$ and $f(z_1, z_2) = f(z_2, z_1) = c = z_1 + z_2 - 1 > 0$. Due to **z**-homogeneity of f, $f\left(\frac{z_1}{2}, \frac{z_2}{2}\right) = \frac{c}{2}$. On the other hand, f is also (z_2, z_1) -homogeneous and then $f\left(\frac{z_1}{2}, \frac{z_2}{2}\right) = c \frac{z_1}{2z_2}$, implying $z_1 = z_2$. Summarizing necessity $\mathbf{z} = (z, z)$ for $z \in [0, 1]$ and c = 0 if z = 0 (then $f = \min$), c = 1 if z = 1 (then also $f = \min$) and $c \in [0, z]$ if $z \in [0, 1[$.

Corollary 3.11 has introduced a 2-parametric family (f_z, c) of overlap functions, where $(z, c) \in \{(0, 0), (1, 1), (u, v) | u \in [0, 1[, v \in]0, u]\}$. Due to duality of overlap and grouping functions, one can characterize all $\langle 1, 1 \rangle$ -boundary linear **z**-homogenous grouping functions, with $\mathbf{z} = (z, z), z \in [0, 1]$, where z = c if $z \in \{0, 1\}$, and else $c \in [z, 1[$.

4 Concluding remarks

We have introduced and discussed **z**-homogeneous fusion functions, in particular aggregation functions and semiaggregation functions. Our approach generalizes the positive homogeneity of functions, which in our terminology, for functions vanishing in **0** (i.e., $f(\mathbf{0}) = 0$), is just the **0**-homogeneity. We expect applications of our results in several engineering domains and physics where the end-point linearity related to one fixed end-point **z** is considered. Then the **z**-homogeneity, possibly with some other given properties, allows to build consistent models of real world dependencies, requiring few accurate measurements only. This fact was exemplified in the case of binary (semi-)aggregation functions $f: [0,1]^2 \rightarrow [0,1]$ supposing the boundary linearity. We have completely characterized several particular classes of binary aggregation functions which are boundary linear and **z**-homogenous, such as semicopulas, quasi-copulas, copulas, triangular norms, overlap functions. Then also dual aggregation functions are completely characterized what was exemplified on t-conorms and grouping functions. Our approach can be helpful also when constructing some other types of fusion functions, such as fuzzy implications, co-implications, restricted dissimilarity functions, etc. For example, consider boundary linear z-homogenous fuzzy implication functions $I : [0,1]^2 \rightarrow [0,1]$ (for more details see [1]). Recall that I is a fuzzy implication if it extends the classical Boolean implication, i.e., I(0,0) = I(0,1) = I(1,1) = 0 and I(1,0) = 0, and it is decreasing in the first coordinate and increasing in the second coordinate. Clearly, if I is boundary linear, then I(0,y) = I(x,1) = 1, I(x,0) = 1-x and I(1,y) = y for all $x, y \in [0,1]$. Then the function $f : [0,1]^2 \rightarrow [0,1]$ given by

$$f(x,y) = 1 - I(x,1-y),$$

is a semicopula. If I is also **z**-homogeneous, $\mathbf{z} = (z_1, z_2), I(\mathbf{z}) = c$, then f is $(z_1, 1 - z_2)$ -homogeneous and $f(z_1, 1 - z_2) = 1 - c$. Based on Proposition 3.4, $1 - c \leq \min(z_1, 1 - z_2)$, i.e., $c \geq \max(1 - z_1, z_2)$.

For example, consider $z_1 = z_2 = c = \frac{1}{2}$. Then the corresponding fuzzy implication I which is **z**-homogeneous and $I(\mathbf{z}) = \frac{1}{2}$ is just the Kleene-Dienes implication I_{KD} given by $I_{KD}(x, y) = \max(1 - x, y)$.

Similarly, for any $\mathbf{z} = (z, z), z \in [0, 1]$, and $I(\mathbf{z}) = 1$, the corresponding \mathbf{z} -homogeneous implication I_L is given by $I_L(x, y) = \min(1, 1 - x + y)$.

Acknowledgement

The support of the grants APVV-17-0066 and VEGA 1/0468/20 is kindly announced.

References

- M. Baczynski, B. Jayaram, *Fuzzy implications*, Part of the Studies in Fuzziness and Soft Computing Book Series, 231, Springer, Berlin, Heidelberg, 2008.
- [2] H. Bustince, J. Fernández, A. Kolesárová, R. Mesiar, Fusion functions and directional monotonicity, In: A. Laurent, O. Strauss, B. Bouchon-Meunier, R. R. Yager, (eds.) IPMU 2014, CCIS, 444, Springer, Cham, (2014), 262-268.
- [3] H. Bustince, J. Fernández, A. Kolesárová, R. Mesiar, Directional monotonicity of fusion functions, European Journal of Operational Research, 244(1) (2015), 300-308.
- [4] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Analysis, 72 (2010), 1488-1499.
- [5] G. Choquet, Theory of capacities, Annales de l'Institut Fourier, 5 (1953), 131-295.
- [6] D. Denneberg, Non-additive measure and integral, Kluwer Academic Publishers, Dordrecht, 1994.
- [7] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions, Cambridge University Press, Cambridge, 2009.
- [8] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, H. Bustince, Pre-aggregation functions: Construction and an application, IEEE Transactions on Fuzzy Systems, 24(2) (2016), 260-272.
- [9] E. Pap, Null-additive set functions, 337 of Mathematics and Its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995.
- [10] Y. Su, W. Zong, R. Mesiar, Characterization of homogeneous and quasi-homogeneous binary aggregation functions, Fuzzy Sets and Systems, 2021, In Press, Doi: 10.1016/j.fss.2021.04.020.

Volume 18, Number 6 (2021), pp. 201

End-point linear functions

A. Stupňanová, Y. Su and R. Mesiar

توابع خطي نقطه-پايان

چکیده. همگنی مثبت به عنوان یک ۰۰ همگنی محدود نشان داده شده است و به Z- همگنی تعمیم داده می شود که خطی بودن نقطه Z- پایان نیز نامیده می شود. چندین تابع خاص تجمع Z- همگن مورد مطالعه قرار گرفته است، به طور خاص نیمرابط ها، رابط ها، توابع همپوشانی و غیره.