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Abstract

Positive homogeneity is represented as a constraint 0-homogeneity and generalized into z-homogeneity, called also
z-end point linearity. Several special z-homogeneous aggregation functions are studied, in particular semicopulas,
quasi-copulas, copulas, overlap functions, etc.

Keywords: Aggregation function, copula, end-point linear function.

1 Introduction

Linearity of functions defined on a segment is a most applied approach in modelling of dependences between variables
in physics or engineering. Recall that a function f : D → R defined on a convex subset D of a vector space (X,+, ·) is
linear if

f(ax + by) = a f(x) + b f(y),

for any real constants a, b ∈ R and x,y ∈ D such that ax + by ∈ D. Equivalently, f is linear if and only if for any
λ ∈ [0, 1] and x,y ∈ D it holds

f(λx + (1 − λ)y) = λ f(x) + (1 − λ) f(y).

Note that in this case, λx + (1 − λ)y ∈ D due to the convexity of D.
A weaker form of linearity is related to a fixed point z ∈ D.
We tell that f is end-point linear in z whenever for any x ∈ D and λ ∈ [0, 1] it holds

f(λz + (1 − λ)x) = λf(z) + (1 − λ)f(x).

Clearly, then, for any x ∈ D, f is linear on the segment ⟨z,x⟩. Also, f is linear if and only if it is z-end point linear for
any z ∈ D.
In particular, if 0 ∈ D then f is 0-end point linear whenever

f(λx) = λf(x) + (1 − λ)f(0),

for any x ∈ D and any λ ∈ [0, 1].
If 0 ∈ D, then f : D → R is called positively homogeneous if

f(ax) = a f(x) for any a ∈ [0,∞ [ and any x ∈ D such that ax ∈ D.

Obviously, then f(0) = 0 and, equivalently, for any x ∈ D and λ ∈ [0, 1], f(λx) = λf(x). Observe that the positive
homogeneity of the function f means that f(0) = 0 and, for any x ∈ D, the restriction of f to the segment ⟨0,x⟩ is a
linear function, i.e., f is 0-end point linear. The aim of this paper is a generalization of the positive homogeneity of
functions vanishing in 0 seen as linearity on ⟨0,x⟩ for any x ∈ D by z-homogeneity, where z is a fixed point in D.
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Definition 1.1. Let f : D → R and z ∈ D. Then f is z-homogeneous if, for any x ∈ D, f is linear on the segment
⟨z,x⟩.

Clearly, the standard positive homogeneity implies the 0-homogeneity, but not vice-versa. Moreover, z-homogeneity
can be seen as an end-point linearity, as the z-homogeneous f is linear on any segment in D with an end point z. Our
main aim is the study of end-point linear functions acting on the domain [0, 1]

n ⊆ Rn (i.e., we consider the vector space

(Rn,+, ·)), with a special stress on the case [0, 1]
2
. Considering some additional properties, we study and characterise

some particular subclasses of end-point linear functions.
The paper is organized as follows. In the next section, we discuss and exemplify some particular z-homogeneous

functions f : [0, 1]
n → [0, 1]. In Section 3, we focus on functions f : [0, 1]

2 → [0, 1] and characterize end-point linear
semicopulas (quasi-copulas, copulas, t-norms, t-conorms), overlap and grouping functions, quasi-arithmetic means, etc.
Finally, some concluding remarks are added.

2 End-point linear fusion functions, general case

For n ≥ 2, we will consider functions f : [0, 1]
n → [0, 1]. Note that these functions assign to n-tuples of inputs from

the unit interval [0, 1] an output value from the same interval [0, 1]. To stress this property, they are also called fusion
functions, see, e.g., [3]. Some particular subclasses of fusion functions we will deal with are:

• semi-aggregation functions, i.e., fusion functions satisfying two boundary conditions f(0) = 0 and f(1) = 1;

• aggregation functions, i.e., semi-aggregation functions which are directionally increasing for any direction r⃗ ∈
[0, 1]

n \ {0};

Recall that f : [0, 1]
n → [0, 1] is r⃗-directionally increasing whenever f(x+ cr⃗) ≥ f(x) for any x ∈ [0, 1]

n
and c > 0 such

that x + cr⃗ ∈ [0, 1]
n
. For more details we recommend [4, 8]. Note also that aggregation functions can be equivalently

characterized by two boundary conditions and increasingness in each coordinate, i.e., by ei-directional increasingness
for any unit vector ei = (0, . . . , 1︸︷︷︸

i-th coordinate

, . . . , 0), i = 1, 2, . . . , n.

As already mentioned, positively homogeneous functions are a particular case of end-point linear functions, namely,
they are 0-homogeneous and vanishing in 0. As an example of 0-homogeneous fusion function which is not positively

homogeneous consider, for example f(x) =
2 − min(x)

3
. It is not difficult to check that from any fusion function

g : [0, 1]
n → [0, 1] one can construct a 0-homogeneous function.

Proposition 2.1. Let g : [0, 1]
n → [0, 1] be a fusion function. Let f = g0 : [0, 1]

n → [0, 1] be given by

f(x) =

{
0 if x = 0,

max(x) · g
(

x
max(x)

)
otherwise.

(1)

Then f is a 0-homogeneous fusion function. If g is also semi-aggregation function, then also f is a semi-aggregation
function.

The proof is obvious and therefore omitted.
Note that we can replace max in formula (1) by any other 0-homogeneous fusion function h : [0, 1]

n → [0, 1], and then
f : [0, 1]

n → [0, 1] is given by

f(x) =

{
0 if h(x) = 0,

h(x) · g
(

x
h(x)

)
otherwise.

(2)

Then again f is a 0-homogeneous fusion function. To see the correctness of (2), observe that for any 0-homogeneous

fusion function h it holds, for x ̸= 0, h(x) = max(x) · h
(

x
max(x)

)
≤ max(x) and thus x

h(x) ∈ [0, 1]
n

whenever h(x) > 0.

For constructing the 0-homogeneous aggregation function, some stronger constraints are necessary. The next result
can be found in [7], see also [10].

Theorem 2.2. Let g : [0, 1]
n → [0, 1] be an aggregation function such that, for any x,y ∈ [0, 1]

n
,x ≤ y, it holds

g(x)

g(y)
≥ min

(
x1

y1
, . . . ,

xn

yn

)
, (3)

with the convention 0
0 = 1. Then the function f = g0 given by (1) is a 0-homogeneous aggregation function.
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Observe also that for any 0-homogenous aggregation function f : [0, 1]
n → [0, 1], necessarily f(x)

f(y) ≥ min
(

x1

y1
, . . . , xn

yn

)
for any 0 ≤ x ≤ y ≤ 1.
Recall that for any fusion function (semi-aggregation function, aggregation function) f : [0, 1]

n → [0, 1] its dual fd :
[0, 1]

n → [0, 1] given by
fd(x) = 1 − f(1− x),

is a fusion function (semi-aggregation function, aggregation function).

Proposition 2.3. Let a fusion function (semi-aggregation function, aggregation function) f : [0, 1]
n → [0, 1] be z-

homogeneous for some z ∈ [0, 1]
n

. Then its dual fd is (1− z)-homogeneous.

Proof. For any x ∈ [0, 1] and λ ∈ [0, 1], y = λx + (1 − λ)(1− z) ∈ ⟨1− z,x⟩ and thus

1− y = 1− (λx + (1 − λ)1− (1 − λ)z) = λ(1 − x) + (1 − λ)z.

Due to the z-homogeneity of f it holds

fd(y) =1 − f(1− y) = 1 − f(λ(1− x) + (1 − λ)z)

=1 − λf(1− x) − (1 − λ)f(z)

=1 − λ(1 − fd(x)) − (1 − λ)(1 − fd(1− z))

=λfd(x) + (1 − λ)fd(1− z),

proving the linearity of fd on the segment ⟨1− z,x⟩. Thus fd is (1− z)-homogeneous.

Due to Proposition 2.3, one can consider 1-homogeneity of functions satisfying f(1) = 1 as a dual positive homo-
geneity, and this implies also the next results.

Corollary 2.4. Let g : [0, 1]
n → [0, 1] be a fusion function (semi-aggregation function). Then the function f = g1 :

[0, 1]
n → [0, 1] given by

f(x) =

{
1 if x = 1,

min(x) + (1 − min(x)) · g
(

x−min(x)·1
1−min(x)

)
otherwise.

(4)

is a 1-homogeneous fusion function (semi-aggregation function). The function f is an aggregation function whenever g
is an aggregation function satisfying, for all x and y with 0 ≤ y ≤ x ≤ 1,

1 − g(x)

1 − g(y)
≥ min

(
1 − x1

1 − y1
, . . . ,

1 − xn

1 − yn

)
, (5)

with the convention 0
0 = 1.

Similarly as in Proposition 2.3, one can show the next result.

Proposition 2.5. Let f : [0, 1]
n → [0, 1] be z-homogeneous fusion function (semi-aggregation function, aggregation

function) and let σ : {1, . . . , n} → {1, . . . , n} be a permutation. Then the function fσ : [0, 1]
n → [0, 1],

fσ(x) = f(xσ) = f(xσ(1). . . . , xσ(n)),

is a zσ-homogenous fusion function (semi-aggregation function, aggregation function).

Due to Proposition 2.5, each symmetric fusion function f which is z-homogeneous is also zσ-homogeneous for any
permutation σ. Moreover, due to the symmetry of f , f(zσ) = f(z) = c for any permutation σ. Therefore, for all
permutations σ and τ such that zσ ̸= zτ , the function f is constant (attaining the value c) on the segment which is the
intersection of the domain [0, 1]

n
and the straight line determined by points zσ and zτ .

Total end-point linearity can be seen as z-homogeneity valid for any end-point z ∈ [0, 1]
n
.

Theorem 2.6. A fusion function f : [0, 1]
n → [0, 1] is total end-point linear if and only if it is linear, i.e., f(x) =

a+
n∑

i=1

bixi for some real constants a, b1, . . . , bn such that a+
∑
bi<0

bi ≥ 0 and a+
∑
bi>0

bi ≤ 1. This f is a semi-aggregation

function if and only if a = 0 and
n∑

i=1

bi = 1 and then f is also an aggregation function.
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Proof. The sufficiency of both claims is obvious.
To see the necessity, denote a = f(0), b = f(1, 0, . . . , 0), c = f(0, 1, 0, . . . , 0), and d = f(1, 1, 0, . . . , 0). Observe that for
any x1 ∈ [0, 1], (x1, 0, . . . , 0) = (1 − x1)0 + x1 (1, 0, . . . , 0).

• Due to 0-homogeneity of f , it holds

f(x1, 0, . . . , 0) = (1 − x1) f(0) + x1 f(1, 0, . . . , 0) = (1 − x1) a + x1 b = a + (b− a)x1.

Similarly f(0, x2, 0, . . . , 0) = a + (c− a)x2. Next

• (1, 0, . . . , 0)-homogeneity ensures f(1, x2, 0, . . . , 0) = b + (d− b)x2, and

• (0, 1, 0, . . . , 0)-homogeneity forces f(x1, 1, 0, . . . , 0) = c + (d− c)x1.

• Also, (0, x2, 0, . . . , 0)-homogeneity and the equality

(x1, x2, 0, . . . , 0) = x1 (1, x2, 0, . . . , 0) + (1 − x1) (0, x2, 0 . . . , 0) implies,

f(x1, x2, 0, . . . , 0) = a + (b− a)x1 + (c− a)x2 + (d− c− b + a)x1x2.

• Due to (
1

2
,

1

2
, 0, . . . , 0

)
=

1

2
(0 + (1, 1, 0 . . . , 0)) =

1

2
((1, 0, . . . , 0) + (0, 1, 0, . . . , 0)),

it holds f
(
1
2 ,

1
2 , 0, . . . , 0

)
= a+d

2 = b+c
2 , and, finally

f(x1, x2, 0, . . . , 0) = a + (b− a)x1 + (c− a)x2.

Denoting b− a = b1 and c− a = b2, we see that f(x1, x2, 0, . . . , 0) = a + b1x1 + b2x2.

In similar way, one can prove that f(x1, 0, x3, 0, . . . , 0) = a + b1x1 + b3x3. Now, denote

α = f(x1, 0, . . . , 0) = a + b1x1

β = f(x1, 1, 0, . . . , 0) = a + b1x1 + b2

γ = f(x1, 0, 1, 0, . . . , 0) = a + b1x1 + b3 and

δ = f(x1, 1, 1, 0, . . . , 0)

Similarly as in the case of f(x1, x2, 0, . . . , 0), we can show that

f(x1, x2, x3, 0, . . . , 0) = α + (β − α)x2 + (γ − α)x3 + (δ − γ − β + α)x2x3,

and f
(
x1,

1
2 ,

1
2 , 0, . . . , 0

)
= α+δ

2 = β+γ
2 . Then

f(x1, x2, x3, 0, . . . , 0) = a + b1x1 + b2x2 + b3x3.

By induction we get f(x1, . . . , xn) = a+
n∑

i=1

bixi, i.e., f is a linear function. Its extremal values on [0, 1]
n

are a+
∑
bi<0

bi

and a +
∑
bi>0

bi, and thus f is a fusion function only if a +
∑
bi<0

bi ≥ 0 and a +
∑
bi>0

bi ≤ 1.

Clearly, if f is semi-aggregation function then f(0) = a = 0 and f(1) = a+
n∑

i=1

bi =
n∑

i=1

bi = 1 and a+
∑
bi<0

bi =
∑
bi<0

bi ≥ 0

ensures there is no negative bi, i.e., each bi ≥ 0. Obviously, then f is an aggregation function.

Based on Theorem 2.6 we see that the only total end-point linear (semi-) aggregation functions are just weighted
arithmetic means.

Example 2.7. The functions max and min are c-homogeneous aggregation functions for any c = (c, . . . , c), c ∈ [0, 1],
but not z-homogeneous whenever z is non-constant. Consider, e.g., n = 2, z = (1, 0) and suppose max (min) is z-
homogeneous. Then, knowing that max(1, 0) = max(0, 1) = 1 (min(1, 0) = min(0, 1) = 0), from the z-homogeneity it
follows max(x, 1 − x) = 1 (min(x, 1 − x) = 0) for each x ∈ [0, 1], which is a contradiction.

Observe that c-homogeneity, c ∈ [0, 1], holds for any Choquet integral [5, 6, 9].
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Remark 2.8. Observe that if z ∈ ]0, 1[n, then any z-homogeneous fusion function f is determined by the value f(z)
and values of f on the boundary points, i.e., on [0, 1]

n\ ]0, 1[n. If z /∈ ]0, 1[n, then even a proper subset of [0, 1]
n\ ]0, 1[n

is enough to be considered. For example, consider z =
(
1
2 , . . . ,

1
2

)
and f(z) = α, f(u) = β for any u ∈ [0, 1]

n\ ]0, 1[n,
α, β ∈ [0, 1]. Then the related z-homogeneous fusion function f : [0, 1]

n → [0, 1] is given by

f(x) = α + (β − α) max(|2x1 − 1|, . . . , |2xn − 1|).

For n = 2, we continue in Remark 2.8 and show the link between the values of a z-homogenous fusion functions
and the values of f on the boundary [0, 1]

2\ ]0, 1[2 and in z. For z ∈ ]0, 1[2, z-homogeneous binary functions f are fully
determined by f(z) and its four boundaries that is, f(0, ·), f(·, 0), f(1, ·) and f(·, 1).

Proposition 2.9. Let z = (z1, z2) ∈ ]0, 1[2 and f : [0, 1]
2 → [0, 1] be z-homogeneous. Then, if (x1, x2) ̸= z, f is such

that, it holds

(i) for (x1, x2) from the triangle ⟨0, z, (1, 0)⟩,

f(x1, x2) =
x2

z2
f(z) +

z2 − x2

z2
f

(
x1z2 − x2z1
z2 − x2

, 0

)
;

(ii) for (x1, x2) from the triangle ⟨0, z, (0, 1)⟩,

f(x1, x2) =
x1

z1
f(z) +

z1 − x1

z1
f

(
0,

x2z1 − x1z2
z1 − x1

)
;

(iii) for (x1, x2) from the triangle ⟨(0, 1), z,1⟩,

f(x1, x2) =
1 − x2

1 − z2
f(z) +

x2 − z2
1 − z2

f

(
x1 − z1 − x1z2 + x2z1

x2 − z2
, 1

)
;

(iv) for (x1, x2) from the triangle ⟨(1, 0), z,1⟩,

f(x1, x2) =
1 − x1

1 − z1
f(z) +

x1 − z1
1 − z1

f

(
1,

x2 − z2 − x2z1 + x1z2
x1 − z1

)
.

The proof is a matter of simple linear interpolation and therefore omitted.

3 2-dimensional end-point linear aggregation functions

Now, we focus on binary semi-aggregation functions with linear boundaries, i.e., functions f : [0, 1]
2 → [0, 1] which

are linear on segments ⟨0, (0, 1)⟩, ⟨0, (1, 0)⟩, ⟨1, (0, 1)⟩ and ⟨1, (1, 0)⟩. Clearly, then f(0) = 0 and f(1) = 1, and
f(1, 0) = a, f(0, 1) = b for some constants a, b ∈ [0, 1]. Due to the linearity on boundaries, f(x1, 0) = ax1, f(0, x2) =
bx2, f(x1, 1) = b + (1 − b)x1 and f(1, x2) = a + (1 − a)x2, see Figure 1. For the sake of brevity, f will be then called
⟨a, b⟩-boundary linear function.

As a particular ⟨a, b⟩-boundary linear function we recall the Choquet integral [5]. Note that the Choquet integral

Cm with respect to a capacity m such that m({1}) = a and m({2}) = b, is a function Cm : [0, 1]
2 → [0, 1] given by

Cm(x1, x2) =

{
ax1 + (1 − a)x2 if x1 ≥ x2,

(1 − b)x1 + bx2 otherwise.

The next result relates the Choquet integrals and 0-homogeneous (1-homogeneous) ⟨a, b⟩-boundary linear functions.

Proposition 3.1. The semi-aggregation function f : [0, 1]
2 → [0, 1] is ⟨a, b⟩-boundary linear for some a, b ∈ [0, 1] and

0-homogeneous (or 1-homogeneous) if and only if f = Cm is the Choquet integral with respect to a capacity m such that
m({1}) = a and m({2}) = b.
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Figure 1: The ⟨a, b⟩-boundary linear function

Proof. Obviously, Cm is linear on triangles determined by points (0, 0), (1, 1), (1, 0), and (0, 0), (1, 1), (0, 1), which en-
sures the ⟨a, b⟩-boundary linearity, 0-homogeneity and 1-homogeneity of f = Cm.
On the other hand, suppose that f is ⟨a, b⟩-boundary linear function which is 0-homogeneous (i.e., positively homoge-
neous).

Consider (x1, x2) ∈ [0, 1]
2

such that x1 ≥ x2 > 0.

Then (x1, x2) ∈
⟨

(0, 0) ,
(

1, x2

x1

)⟩
, (x1, x2) = (1 − x1) (0, 0) + x1

(
1, x2

x1

)
, and thus

f(x1, x2) = x1f

(
1,

x2

x1

)
= x1

(
a + (1 − a)

x2

x1

)
= ax1 + (1 − a)x2 = Cm(x1, x2).

Similarly, if 0 < x1 ≤ x2 then
f(x1, x2) = (1 − b)x1 + bx2 = Cm(x1, x2).

Summarizing, we have f = Cm.

Proposition 3.1 can be modified replacing the ⟨a, b⟩-boundary linearity and 0-homogeneity by z-homogeneity for
any z = (z, z), z ∈ [0, 1].

When considering z-homogeneous ⟨a, b⟩-boundary linear functions on [0, 1]
2
, then each such f is linear on (possibly

degenerated) triangles determined by point z and two neighbouring vertices of [0, 1]
2

square. In general, denote f(z) = c
(clearly, f(0, 1) = b, similarly f(1, 0) = a.) Then f is univocally determined by z and parameters a, b, c but it need not
be, in general, increasing and thus not aggregation function.

Theorem 3.2. Let f : [0, 1]
2 → [0, 1] be an ⟨a, b⟩-boundary linear function which is z-homogeneous and f(z) = c. Then

f is a semi-aggregation function such that

(i) for (x1, x2) from the triangle ⟨0, z, (1, 0)⟩,

f(x1, x2) = ax1 +
x2(c− az1)

z2
,

(if z2 = 0, the degenerated triangle ⟨0, z, (1, 0)⟩ coincides with the segment ⟨0, (1, 0)⟩ and then f(x1, 0) = ax1);

(ii) for (x1, x2) from the triangle ⟨0, z, (0, 1)⟩,

f(x1, x2) =
x1(c− bz2)

z1
+ bx2,

(if z1 = 0, the degenerated triangle ⟨0, z, (1, 0)⟩ ≡ ⟨0, (0, 1)⟩ and then f(0, x2) = bx2);

(iii) for (x1, x2) from the triangle ⟨(0, 1), z,1⟩,

f(x1, x2) = (1 − b)x1 +
(x2 − 1)(b + (1 − b)z1 − c)

1 − z2
+ b,

(if z2 = 1, the degenerated triangle ⟨(0, 1), z,1⟩ ≡ ⟨(0, 1),1⟩ and then f(x1, 1) = b + (1 − b)x1);
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(iv) for (x1, x2) from the triangle ⟨(1, 0), z,1⟩,

f(x1, x2) =
(x1 − 1)(a + (1 − a)z2 − c)

1 − z1
+ (1 − a)x2 + a,

(if z1 = 1, the degenerated triangle ⟨(1, 0), z,1⟩ ≡ ⟨(1, 0),1⟩ and then f(1, x2) = a + (1 − a)x2).

See, Figure 2.

Proof. The function f is linear on each of 4 discussed triangles and thus to determine f(x1, x2) it is enough to find
the triangle containing (x1, x2). Then f(x1, x2) is a convex combination of values of f on the related triangle vertices

corresponding to the convex combination of related vertices resulting into (x1, x2). As all 4 vertices of the square [0, 1]
2

have value from the set {0, 1, a, b} ⊂ [0, 1], f is a fusion function. More, due to f(0) = 0 and f(1) = 1 we see that f is
a semi-aggregation function.

Figure 2: The semi-aggregation function

Based on Theorem 3.2, it is not difficult to see when the discussed f is an aggregation function.

Corollary 3.3. Under the constraints of Theorem 3.2, f is an aggregation function if and only if

c ≥ az1 and c ≥ bz2 and c ≤ a + z2 − az2 and c ≤ b + z1 − bz1.

Considering some particular subclasses of aggregation functions, note that the only boundary linear (weighted)
quasi-arithmetic means are weighted arithmetic means W(w,1−w) given by

W(w,1−w)(x1, x2) = wx1 + (1 − w)x2, w ∈ [0, 1],

which are ⟨w, 1 − w⟩-boundary linear and z-homogeneous for an arbitrary z ∈ [0, 1]
2

and c = f(z) = wz1 + (1 − w)z2.

Next we focus on semicopulas and their subclasses quasi-copulas, copulas and triangular norms. Recall that an
aggregation function f : [0, 1]

2 → [0, 1] is a semicopula whenever 1 is its neutral element, f(x, 1) = f(1, x) for all
x ∈ [0, 1]. Obviously, semicopulas are just ⟨0, 0⟩- boundary linear aggregation functions. Next, a semicopula f :

[0, 1]
2 → [0, 1] is a quasi-copula if it is 1-Lipschitz, i.e.,

|f(x1, x2) − f(y1, y2)| ≤ |x1 − y1| + |x2 − y2| for all (x1, x2), (y1, y2) ∈ [0, 1]
2
.

A quasi-copula f : [0, 1]
2 → [0, 1] is a copula if it is supermodular, i.e.

f ((x1, x2) ∨ (y1, y2)) + f ((x1, x2) ∧ (y1, y2)) ≥ f(x1, x2) + f(y1, y2),

for all (x1, x2), (y1, y2) ∈ [0, 1]
2
. Finally, a semicopula f is a triangular norm if it is symmetric (commutative) and

associative. For more details we recommend [7].
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Proposition 3.4. A ⟨0, 0⟩-boundary linear z-homogeneous function f : [0, 1]
2 → [0, 1], f(z) = c, is a semicopula if and

only if c ≤ min(z1, z2).

Proof. For any semicopula f and (x1, x2) ∈ [0, 1]
2
, it holds f(x1, x2) ≤ min(x1, x2), and thus f(z) = c ≤ min(z1, z2),

showing the necessity. To see the sufficiency, note that due to Corollary 3.3, the above considered f is an aggregation
function if and only if c ≤ min(z1, z2). Also, due to a = 0 we have f(1, y) = y for all y ∈ [0, 1]. Similarly, due to b = 0,
it holds f(x, 1) = x for all x ∈ [0, 1], and thus 1 is a neutral element of f . Hence, f is a semicopula.

Example 3.5. Consider ⟨0, 0⟩-boundary linear (k, k)-homogeneous semicopula fk,c, where c ∈ [0, k]. Then, for the
greatest c = k,

fk,k(x1, x2) = min(x1, x2),

i.e., fk,k is also a quasi-copula, a copula and a t-norm. On the other hand, for the smallest c = 0, it holds

fk,0(x1, x2) =

{
0 if x2 ≤ min

(
1 + k−1

k x1,
k

k−1x1 − k
k−1

)
,

min(x1, x2) + k
1−k max(x1, x2) − k

1−k otherwise.

Then fk,0 is a semicopula for each k ∈ [0, 1[, it is quasicopula and copula for each k ∈
[
0, 1

2

]
and it is a t-norm only

for k ∈
{

0, 1
2

}
. Note that f0,0 = min and f 1

2 ,0
= TL is the  Lukasziewicz t-norm given by

TL(x1, x2) = max(x1 + x2 − 1, 0).

Theorem 3.6. For a ⟨0, 0⟩-boundary linear z-homogeneous function f : [0, 1]
2 → [0, 1], f(z) = c, the following are

equivalent:

(i) f is a quasi-copula;

(ii) f is a copula;

(iii) max(z1 + z2 − 1, 0) ≤ c ≤ min(z1, z2).

Proof. Recall that f is a semicopula if and only if c ≤ min(z1, z2), see Proposition 3.4. Then f is a quasi-copula only
if it is 1-Lipschitz on each of 4 triangles determined by z considered in Theorem 3.2. As on each of these triangles f is
linear (and increasing in both coordinates), it is 1-Lipschitz if and only if the coefficients by z1 and by z2 are bounded
from above by 1. Hence, f is a quasi-copula if and only if

c ≤ min(z1, z2) and
z2 − c

1 − z1
≤ 1, (i.e., c ≥ z1 + z2 − 1) and

z1 − c

1 − z2
≤ 1, (i.e., c ≥ z1 + z2 − 1).

Summarizing, we see that (i) and (iii) are equivalent. Next, each copula is also a quasi-copula, hence (ii) implies (i)
and (iii).

On the other hand suppose that (iii) holds. Recall that the supermodularity of a function f : [0, 1]
2 → [0, 1] trivially

holds if (x1, x2) and (y1, y2) are comparable, and hence we need to discuss the case when (x1, x2) and (y1, y2) are
incomparable only. Suppose x1 < y1 and x2 > y2. Then f is supermodular only if

f(y1, x2) + f(x1, y2) ≥ f(x1, x2) + f(y1, y2),

i.e., if Vf (R) ≥ 0, where R is the rectangle [x1, y2] × [y1, x2] and Vf (R) is its volume given by

Vf (R) = f(y1, x2) + f(x1, y2) − f(x1, x2) − f(y1, y2).

Note that if f is linear on some domain D, then Vf (R) = 0 for any R ⊆ D. Also, if R = R1 ∪ R2 for some non-
overlapping rectangles R1 and R2 (i.e., R1 ∩R2 has Lebesque measure 0), then Vf (R) = Vf (R1) + Vf (R2). These facts
allow to restrict our considerations to special rectangles only, namely to R = [x1, y2] × [y1, x2] with diagonal segment
⟨(x1, y2), (y1, x2)⟩ which is a subset of segment ⟨z,u⟩, where u ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. It is not difficult to check
the next 4 cases:

i) if ⟨(x1, y2), (y1, x2)⟩ ⊆ ⟨z,0⟩ then

Vf (R) =
c(x2 − y2)

z2
=

c(y1 − x1)

z1
≥ 0;
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ii) if ⟨(x1, y2), (y1, x2)⟩ ⊆ ⟨z, (1, 0)⟩ then

Vf (R) = (z2 − c)
x2 − y2

z2
≥ 0, (note that c ≤ z2).

iii) if ⟨(x1, y2), (y1, x2)⟩ ⊆ ⟨z, (0, 1)⟩ then

Vf (R) = (z1 − c)
y1 − x1

z1
≥ 0, (note that c ≤ z1).

iv) if ⟨(x1, y2), (y1, x2)⟩ ⊆ ⟨z,1⟩ then

Vf (R) = (1 − z1 − z2 + c)
x2 − y2
1 − z2

= (1 − z1 − z2 + c)
y1 − x1

1 − z1
≥ 0,

(note that c ≥ max(z1 + z2 − 1, 0) and thus 1 − z1 − z2 + c ≥ 0).

Summarizing, we see that Vf (R) ≥ 0 for any rectangle R ⊆ [0, 1]
2
, and thus f is a copula.

Remark 3.7. Due to Theorem 3.6, each ⟨0, 0⟩-boundary linear z-homogeneous function f : [0, 1]
2 → [0, 1], f(z) = c ∈

[TL(z1, z2),min(z1, z2)] is a copula. This copula is singular and its support with the corresponding masses is formed by
4 segments (possibly degenerated):

• ⟨0, z⟩ with mass c uniformly distributed over this segment;

• ⟨z, (0, 1)⟩ with mass z1 − c uniformly distributed over this segment;

• ⟨z, (1, 0)⟩ with mass z2 − c uniformly distributed over this segment;

• ⟨z,1⟩ with mass 1 − z1 − z2 + c uniformly distributed over this segment.

As we have seen, the class of ⟨a, b⟩-boundary linear z-homogeneous copulas is quite rich. This is not the case of
triangular norms as shown in the next theorem.

Theorem 3.8. An ⟨a, b⟩-boundary linear function f which is z-homogeneous for some z ∈ [0, 1]
2

is a t-norm if and
only if f ∈ {TL,min}.

Proof. The sufficiency is obvious. Indeed, the  Lukasiewicz t-norm TL is ⟨0, 0⟩-boundary linear and z = (z, 1 − z)-
homogeneous for any z ∈ [0, 1] and f(z) = 0. Similarly, the strongest t-norm, min, is ⟨0, 0⟩-boundary linear and
z = (z, z)-homogeneous with c = z, z ∈ [0, 1].
The necessity is more tricky. Obviously, each t-norm f is ⟨0, 0⟩-boundary linear. Suppose it is z-homogeneous and
f(z) = c. Clearly, c ∈ [0,min(z1, z2)]. Suppose first z1 ≤ z2.

If z2 = 1 then necessarily f(z) = z1 = c and f is symmetric and t-norm only if z1 = c = 1 (then f = min).

If z2 < 1, we will consider x sufficiently large, close to 1. Then

x(2) = f(x, x) = u = x
1 − z1 + z2 − c

1 − z1
− z2 − c

1 − z1
,

and

x(4) = u(2) = f(u, u) = u
1 − z1 + z2 − c

1 − z1
− z2 − c

1 − z1
= x

(
1 − z1 + z2 − c

1 − z1

)2

−
(
z2 − c

1 − z1

)(
2 +

z2 − c

1 − z1

)
.

On the other hand,

x(3) = f(x, x(2)) = f(x, u) = u +
(x− 1)(z2 − c)

1 − z1
= x

(
1 + 2

z2 − c

1 − z1

)
− 2

z2 − c

1 − z1

and, due to the associativity of t-norms,

x(4) = f(x, x(3)) = x(3) +
(x− 1)(z2 − c)

1 − z1
= x

(
1 + 3

z2 − c

1 − z1

)
− 3

z2 − c

1 − z1
.
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This two expressions for x(4) result into the next two equalities:(
1 − z1 + z2 − c

1 − z1

)2

= 1 + 3
z2 − c

1 − z1
and 3

z2 − c

1 − z1
= 2

z2 − c

1 − z1
=

(
z2 − c

1 − z1

)2

.

Hence

(
z2 − c

1 − z1

)2

=
z2 − c

1 − z1
which implies either c = z2 (and then necessarily z1 = z2 = c) or c = z1 + z2 − 1.

On the other hand, if z1 = 0, then necessarily c = 0 and f = min if z2 = 0. If z2 > 0 in this case, then f is not
symmetric and thus not a t-norm.

Suppose z1 > 0. For any x ∈]0, z1] it holds

x(2) = u =
xc

z2
, x(4) = u(2) =

uc

z2
= x

(
c

z2

)2

.

More,

x(3) = f(x, u) =
uc

z2
= x

(
c

z2

)2

and x(4) = f(x, x(3)) =
x(3)c

z2
= x

(
c

z2

)3

.

Thus

(
c

z2

)2

=

(
c

z2

)3

, which implies either c = 0 or c = z2 (and hence z1 = z2 = c).

Summarizing, we see that

c = z1 = z2 or c = z1 + z2 − 1, and c = 0 or c = z2 = z1.

Then either c = z1 = z2 and the resulting f = min, or c = 0 = z1 + z2 − 1, and then z = (z1, 1 − z1),
z1 ∈

]
0, 1

2

]
, f(z) = 0 and f = TL.

Similar results are obtained if we suppose z1 ≥ z2 (then we have the case z = (z1, 1− z1) for z1 ∈
]
1
2 , 1

]
). In all possible

situations, the only possibilities are f = min or f = TL.

Remark 3.9. Recall that if f is a t-norm then its dual fd is a t-conorm. Due to Theorem 3.8 we see that an ⟨a, b⟩-
boundary linear z-homogeneous function f : [0, 1]

2 → [0, 1] is a t-conorm if and only if f ∈ {SL,max}, (SL is the
 Lukasziewicz t-conorm given by SL(x1, x2) = min(x1 + x2, 1)). Note that the t-conorm max is ⟨1, 1⟩-boundary linear
and (z, z)-homogeneous with c = z, z ∈ [0, 1]. Similarly, SL is ⟨1, 1⟩-boundary linear and (z, 1 − z)-homogeneous with
c = 1, z ∈ [0, 1].

Recently, overlap and grouping functions were introduced, especially for applications in image processing [2].

Definition 3.10. A fusion function f : [0, 1]
2 → [0, 1] is called an overlap function whenever

(i) f is continuous and symmetric;

(ii) f is increasing in both coordinates;

(iii) f(x, y) = 0 if and only if x = 0 or y = 0;

(iv) f(x, y) = 1 if and only if x = y = 1.

Dual function fd : [0, 1]
2 → [0, 1] to an overlap function f is called a grouping function.

Obviously, for any overlap function f it holds f(1, 0) = f(0, 1) = 0, and thus the particular subclass of overlap
functions belong to the class of ⟨0, 0⟩-boundary linear aggregation functions. Clearly, these overlap functions are
symmetric semicopulas, too. Thus, based on Proposition 3.4, we have the next result.

Corollary 3.11. A ⟨0, 0⟩-boundary linear z-homogeneous function f : [0, 1]
2 → [0, 1], is an overlap function if and only

if z = (z, z), z ∈ [0, 1] and c = z if z ∈ {0, 1}, and c ∈]0, z[ if z ∈]0, 1[. Then f = fz, where

fz(x, y) =

{
min(x, y) if c = z

max
(

c
z · min(x, y),min(x, y) + z−c

1−z · max(y − 1, x− 1)
)

else,

see Figure 3.
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Figure 3: The z-homogeneous overlap function

Proof. The result that f = min in the case when z = (z, z) and c = z is trivial. Suppose that f is (z1, z2)-homogeneous,
f(z) = c. Due to the symmetry, f is also (z2, z1)-homogeneous, and f(z2, z1) = c. Due to properties of overlap functions,
z ∈]0, 1[2 or z ∈ {0,1}. Consider z ∈ ]0, 1[2. Clearly, f(z) = c > 0.
As our f is ⟨0, 0⟩-boundary linear semicopula, we have 4 possibilities how to evaluate f(z2, z1), depending on the triangle
with vertex z considered in Theorem 3.2 where (z2, z1) belongs. Thus either

i)
z2 c

z1
= c implying z1 = z2 = z;

ii)
z1 c

z2
= c implying z1 = z2;

iii) z2 +
(z1 − 1)(z1 − c)

1 − z2
= c implying z1 = z2 or c = z1 + z2 − 1, and thus also z1 + z2 > 1 (else the axiom (iii) from

Definition 3.10 of overlap functions will be violated);

iv) z1 +
(z2 − 1)(z2 − c)

1 − z1
= c, leading to the same conclusions as in the case iii).

Suppose z1 + z2 > 1 and f(z1, z2) = f(z2, z1) = c = z1 + z2 − 1 > 0. Due to z-homogeneity of f , f
(z1

2
,
z2
2

)
=

c

2
. On

the other hand, f is also (z2, z1)-homogeneous and then f
(z1

2
,
z2
2

)
= c

z1
2z2

, implying z1 = z2. Summarizing necessity

z = (z, z) for z ∈ [0, 1] and c = 0 if z = 0 (then f = min), c = 1 if z = 1 (then also f = min) and c ∈]0, z] if z ∈]0, 1[.

Corollary 3.11 has introduced a 2-parametric family (fz, c) of overlap functions, where (z, c) ∈ {(0, 0), (1, 1), (u, v)|u ∈
]0, 1[, v ∈]0, u]}. Due to duality of overlap and grouping functions, one can characterize all ⟨1, 1⟩-boundary linear z-
homogenous grouping functions, with z = (z, z), z ∈ [0, 1], where z = c if z ∈ {0, 1}, and else c ∈ [z, 1[.

4 Concluding remarks

We have introduced and discussed z-homogeneous fusion functions, in particular aggregation functions and semi-
aggregation functions. Our approach generalizes the positive homogeneity of functions, which in our terminology,
for functions vanishing in 0 (i.e., f(0) = 0), is just the 0-homogeneity. We expect applications of our results in several
engineering domains and physics where the end-point linearity related to one fixed end-point z is considered. Then the
z-homogeneity, possibly with some other given properties, allows to build consistent models of real world dependencies,
requiring few accurate measurements only. This fact was exemplified in the case of binary (semi-)aggregation functions

f : [0, 1]
2 → [0, 1] supposing the boundary linearity. We have completely characterized several particular classes of

binary aggregation functions which are boundary linear and z-homogenous, such as semicopulas, quasi-copulas, copu-
las, triangular norms, overlap functions. Then also dual aggregation functions are completely characterized what was
exemplified on t-conorms and grouping functions.
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Our approach can be helpful also when constructing some other types of fusion functions, such as fuzzy implications,
co-implications, restricted dissimilarity functions, etc. For example, consider boundary linear z-homogenous fuzzy im-
plication functions I : [0, 1]

2 → [0, 1] (for more details see [1]). Recall that I is a fuzzy implication if it extends the
classical Boolean implication, i.e., I(0, 0) = I(0, 1) = I(1, 1) = 0 and I(1, 0) = 0, and it is decreasing in the first coordi-
nate and increasing in the second coordinate. Clearly, if I is boundary linear, then I(0, y) = I(x, 1) = 1, I(x, 0) = 1− x

and I(1, y) = y for all x, y ∈ [0, 1]. Then the function f : [0, 1]
2 → [0, 1] given by

f(x, y) = 1 − I(x, 1 − y),

is a semicopula. If I is also z-homogeneous, z = (z1, z2), I(z) = c, then f is (z1, 1−z2)-homogeneous and f(z1, 1−z2) =
1 − c. Based on Proposition 3.4, 1 − c ≤ min(z1, 1 − z2), i.e., c ≥ max(1 − z1, z2).
For example, consider z1 = z2 = c = 1

2 . Then the corresponding fuzzy implication I which is z-homogeneous and
I(z) = 1

2 is just the Kleene-Dienes implication IKD given by IKD(x, y) = max(1 − x, y).
Similarly, for any z = (z, z), z ∈ [0, 1], and I(z) = 1, the corresponding z-homogeneous implication IL is given by
IL(x, y) = min(1, 1 − x + y).
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