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Abstract

The purpose of this paper is to study the stabilization problem for a class of uncertain chaotic systems against unknown
dynamics and disturbances, based on fuzzy sliding mode controller approaches. To fulfill this aim, the first- and the
second-orders sliding mode controllers and an adaptive variable universe fuzzy sliding mode controller are combined
to a set of linguistic rules, to design some novel approaches for improving the performance of the control action and
eliminating the chattering issue. The stability analysis of the closed-loop system is proved via the Lyapunov stability
theorem, and also the convergence of the tracking error to zero in finite-time is guaranteed. The new proposed control
laws contribute the control actions to outperform the conventional one in terms of chattering reduction and elimination,
along with lessening in the reaching time. Moreover, some numerical simulations are provided to depict that the proposed
control laws are not only robust with respect to uncertainties and external disturbances, which lead the system to the
desired state, but also can significantly eliminate the chattering effect.
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1 Introduction

Over the past years, the control of the chaotic systems has been attracted widespread interest from a practical point of
view in the science, engineering, and the theoretical value. Many researchers have paid attention to propose appropriated
control algorithms to control the chaotic systems. Hitherto, various controller approaches have been designed to control
this nonlinear ubiquitous phenomenon, such as the OGY method [25], feedback linearization [10], adaptive method [1],
backstepping method [18], noisy synchronization method [43], sliding mode controller [7, 13, 21, 38], fuzzy control [4],
fuzzy neural network control [44], passive control [42], and adaptive neuro-fuzzy inference system based control [11].

In the real world problems and in most practical systems, we always expect to encounter unknown model uncertain-
ties. Among the above methods, the conventional (first-order) sliding mode control (SMC) is one of the useful robust
controls duo to its advantages including the fast response and low sensitivity to uncertainties and external disturbances.
Nonetheless, the conventional SMC has the deficiency of the chattering phenomenon. Reducing the chattering phe-
nomenon and the reaching time is a main issue when designing an SMC. To tackle these drawbacks, so far several
approaches have been proposed, among which the boundary layer method [35, 41], dynamic sliding mode surface [20],
global SMC [8], fuzzy SMC [3, 6, 14], and in particular, high-order sliding mode control (HOSMC) [23] (especially,
second-order sliding mode control (SOSMC) [2]).

On the other hand, recently, some studies have endeavored to combine the mentioned methods for improving control
performance. For example, Joo and Subramaniam [12, 28, 29] investigated the fuzzy integral sliding-mode control for
permanent magnet synchronous generator-based wind energy conversion systems. In [33], the boundary layer technique
was combined with a fuzzy logic control. Also, terminal sliding mode controller was combined into a fuzzy system
to stabilize the equilibrium point of the system in [16]. Niu and Wang [24] proposed a variable universe fuzzy SMC
to control a class of uncertain chaotic systems. In [39] an SMC based on a linear matrix inequality was proposed for
chaotic systems. Van, Kang, and Suh[37] combined the Takagi–Sugeno (T-S) fuzzy model and the second-order sliding
mode observer. In [17], a new sliding surface was defined based on a combination of the conventional sliding surface
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in the terminal sliding mode control and a nonlinear function of the integral of the system states. Medhaffar, Feki,
and Derbel [22] investigated the stabilization of unstable periodic orbits of continuous-time chaotic systems using fuzzy
time-delayed controller. Likewise, Chang and Hsu [5] studied multiple performance constrained sliding mode fuzzy
control problem for continuous-time stochastic nonlinear systems with multiplicative noises. In [9], a terminal SMC
(TSMC) and the adaptive control techniques were combined to the states tracking error, which can attain the terminal
sliding mode surface and converge to zero in a finite-time. Moreover, a TSMC was designed in [36] for multi-input,
multi-output (MIMO) uncertain nonlinear systems in order to reduce the chattering phenomenon. Furthermore, a
new backstepping control was merged with a super-twisting algorithm for MIMO nonlinear strict-feedback systems in
[26]. Subramaniam, Song, and Joo [30] investigated the T-S fuzzy based SMC design of the discrete-time nonlinear
model. Also, a sliding mode controller was utilized to overcome the adverse influences of stochastic packet dropouts in
networked control systems in [27]. Moreover, fuzzy SMC for hyperchaotic Chen systems was investigated in [34].

Among the existing methods to improve the control performance, the developed fuzzy controller on the basis of the
SMC system is a thought-provoking method that can simultaneously retain the benefits of the SMC and reduce the
chattering effect. Indeed, the major features of the designed fuzzy controller decrease the fuzzy rules and relaxation
of the uncertainty bound [15, 40]. In addition, the proper design of the fuzzy sliding mode controller is able to have a
chattering reduction as well as increasing the tracking performance regarding the small uncertainties in the nonlinear
system [32]. Recently, in [24], a variable universe adaptive fuzzy SMC was proposed and the control law was designed
based on a set of linguistic rules.

The present work aims to consider different aspects of the fuzzy sliding mode controller along with whose stabilization
for a specific class of uncertain chaotic system. To be laconic, we primarily introduce and investigate several modified
fusing approaches based on the fuzzy SMC, the fuzzy surface-based SMC, the fuzzy sliding mode structure based on
the boundary layer theory, and finally, the fuzzy second-order SMC. Furthermore, we attempt to improve the results of
a recently published article [24]. To be precise, we improve the performance of a class of uncertain chaotic system and
enhance the control accuracy by introducing the universe fuzzy control variable, so that the reaching time is significantly
faster than the one in [24]. The proposed control laws are smooth without any overshot where the tracing error reduces
meaningfully. At that juncture, the developed control schemes are hired for a class of uncertain chaotic system, that
is, the multi-scroll chaotic system with the nonlinear hysteresis, is applied to illustrate their abilities and advantages.
By the previous discussion, the motivation and the advantages of the paper are summarized as follows:

• Developed approaches are fast-response compared to other methods.

• The presented approaches improve the performance of the system, which is reduced the tracing error of state
variables.

• The control accuracy is enhanced in all presented approaches.

• The reaching time is significantly faster than the other methods in published articles.

• The proposed control laws are smooth without any overshot.

The layout of this paper is organized as follows: In Section 2, the mathematical model for a class of uncertain chaotic
systems with external disturbance is described. Moreover, a new fuzzy sliding mode controller is introduced, and the
stability of the proposed schemes for the uncertain chaotic systems is analyzed. Then, in Section 3, some simulation
results are presented to illustrate the implementation, effectiveness, and validation of the presented schemes. Also, we
discuss and compare the simulation results in this section. Finally, Section 4 culminates the paper.

2 Problem statement and system description

In this research, we purpose to focus on the group of chaotic systems with uncertainty described as follows:{
ẋi(t) = xi+1(t), i = 1, . . . , n− 1

ẋn(t) = f(X, t) + ∆f(X, t) + d(t) + u(t),
(1)

where X(t) = [x1(t), x2(t), . . . , xn(t)]
T = [x(t), ẋ(t), . . . , x(n−1)(t)]T ∈ Rn denotes the system state vector. Also,

f(X, t) ∈ R stands for a determined nonlinear function of X and t, u(t) ∈ R is the control input, ∆f(X, t) is the
uncertainty parameter, and d(t) denotes the disturbance term. Furthermore, it is assumed that two terms ∆f(X, t)
and d(t) are bounded, that is, |∆f(X, t)| ≤ Fmax > 0 and |d(t)| ≤ Dmax > 0. In fact, the main problem is to
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design a control law that provides the desired performance for the uncertain chaotic system. Let the desired output be

Xd(t) = [xd1(t), xd2(t), . . . , xdn(t)]
T = [xd(t), ẋd(t), . . . , x

(n−1)
d (t)]T , and also assume that

E(t) = X(t)−Xd(t) = [e1(t), e2(t), . . . , en(t)]
T , (2)

is the tracking errors vector of the variable X that ei+1 = ėi, i = 1, . . . , n− 2. Here, the target of the attitude control
design is to offer an appropriate and novel fuzzy sliding mode controller, which guarantees that the output vector, X(t),
tracks the desired signal Xd(t) , that is,

lim
n→∞

∥E(t)∥ = lim
n→∞

∥X(t)−Xd(t)∥ → 0. (3)

To achieve this goal, which is, in fact, designing adequate control laws, this work deals with two major steps for the
uncertain chaotic system in subsequent. The first step is to select a suitable sliding surface for the system such that
the error vector converges to zero. The second one is to propose some new designed fuzzy controllers according to the
SMC approaches to reduce the chattering phenomenon in the given system with inherent uncertainties and external
disturbances.

A time-varying sliding surface in the state-space Rn is introduced as follows:

s(t) = (
d

dt
+ λ)n−1e(t) = en(t) + λn−1en−1 + λn−2en−2 + · · ·+ λ1e1 = en(t) +

n−1∑
i=1

λiei(t), (4)

where λi, i = 1, . . . , n−1 are the sliding surface coefficients that can be chosen such that the surface is strictly Hurwitz.
After designing the appropriate sliding surface, now, we need to give a control law such that any state X outside of the
sliding surface s(t) = 0 is driven to reach the surface in the finite-time. By solving ṡ(t) = 0, that is,

ṡ(t) = ėn(t) +

n−1∑
i=1

λiėi(t) = 0, (5)

the control law can be obtained, which is so-called the equivalent control ueq. Since in a real world system, the
uncertainty and external disturbance, ∆f(X, t) and d(t), are unknown, in the equivalent control, these terms are
ignored. Hence, by substituting (1) with (4), the equivalent control ueq is determined as

ueq = −f(X, t)−
n−1∑
i=1

λiei+1 + x
(n)
d (t). (6)

In the conventional SMC, the control law is selected as follows:

u = ueq −Kureach, (7)

where the reaching control, ureach, is

ureach = Sign(s). (8)

Moreover, K is called the control gain, which is positive and Sign(s(·)) is the Sign function of s(t), that is,

Sign(s(t)) =


1 if s(t) > 0,

0 if s(t) = 0,

−1 if s(t) < 0.

From (8) and (7), the overall control u is obtained as

u = ueq −KSign(s). (9)

To obtain the convergence of X(t) to zero, we have to steer the sliding surface s in (2) to zero in the finite-time.
This task can be achieved by applying Lyapunov function techniques. A candidate Lyapunov function is introduced as
follows:

V =
1

2
s2. (10)
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Therefore, to guarantee that the trajectory of the system in (1) is driven toward the sliding surface in (4) and remains
on it thereafter, a sufficient condition is

V̇ = sṡ ≤ −ζV τ , (11)

where ζ is a strictly positive constant and 0 < τ < 1. Equation (11) is so-called the reaching condition. In (9),
the discontinuous term in the control law results in the chattering phenomenon that can affect the unmodeled system
dynamics and cause system instability. It is necessary noting that to gain an ideal performance, the chattering must be
eliminated. As mentioned before, in fact, there are different methods suggested to reduce the chattering phenomenon in
the traditional SMC such as the boundary layer solution, observer-based solution, higher order SMC, and fuzzy control
solution. However, according to [35], to reduce the chattering effects, we first need to define a thin boundary layer
neighboring the switching surface B(t) = {e(t)|s(e(t)) ≤ φ}, where φ > 0 is so-called the boundary layer thickness.
Hence, by smoothing out the discontinuity in B(t), we may expect to weaken the chattering effectively. To this end,
outside of B(t), we choose the control law, u(t) by (9), and inside B(t), we replace the term Sign(s) by s/φ in (9) to
determine the control law. This process guarantees that the boundary layer is always attractive (for more details, we
refer the interested readers to [35]). Actually, the Sign function in (9) is replaced by the saturation function Sat(·), and
accordingly, the reaching control is converted to ureach = −KSat( s

φ ), where

Sat(
s

φ
) =

{
s
φ if |s| ≤ |φ|
Sign(s) if otherwise,

(12)

is the saturation function, which will satisfy the reaching condition in (11). In this case, the modified control law
becomes as follows:

u = eeq − K̄Sat(
s

φ
), (13)

where K̄ = K − φ. On the other hand, another technique to tackle the chattering phenomenon is using the function
tanh(cs) instead of the function Sign(s) in (9) and consequently tanh( s

φ ) instead of Sat( s
φ ) in (13), where c is a positive

constant parameter. The response of the function tanh(cs) with different values for c, the Sat function, and the Sign
function is depicted in Fig. 1 from [2]. Note that, by increasing the value of c, the behavior of the function tanh(cX) will
be more similar to Sign(X). Now, we are ready to propose some novel schemes to obtain a better performance, reducing

Figure 1: The response of Sign(·), Sat(·), and tanh(·) functions

the chattering phenomenon significantly and efficiently, by a set of linguistic rules based on the expert knowledge and
various sliding mode controllers. Next Lemma gives the sufficient conditions for finite-time stability for the equilibrium
point of the system.

Lemma 2.1. [31] Consider the system dx
dt = f(x), f(0) = 0, and x ∈ Rn, if there is a positive definite continuous

function V (x) that satisfies dV
dt ≤ −ζV τ , where the real numbers ζ and τ satisfy ζ > 0 and 0 < τ < 1, respectively, then

V (x) = 0 can be reached in finite-time treach, and the origin is a finite-time stable equilibrium of the system.

3 Traditional SMC and fuzzy control

In this section, several control laws are investigated in order to improve the performance of the control action for a
class of chaotic systems. First, we consider traditional SMCs such as the boundary layer SMC that are combined with
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the fuzzy logic control based on the T-S fuzzy rules, as mentioned in Approach A. Then by using the universe fuzzy
control variable, we propose a new control law based on the fuzzy surface SMC, explained in Approach B. Afterwards
Approaches A and B are combined and declared in Approach C.

3.1 Approach A.

In this approach, we use a fuzzy SMC based on the variable time boundary layer (FBSMC) surrounding the sliding sur-
face to attenuate the chattering phenomenon for a class of chaotic systems with uncertainties and external disturbances.
The FBSMC scheme is exhibited in Fig. 2. The fuzzy inference system in this case is a single-input-single-output. It

Figure 2: Scheme of the FBSMC

contains an equivalent control part and a single-input-single-output FBSMC. The sliding surface s is as the input lin-
guistic variable of the FBSMC and Φfs is as the output of the FBSMC and the error state is as the input of the sliding
mode function. Therefore, regarding the universal approximation theorem [19], the universe fuzzy control variable can
be shown as follows:

Φfs = FBSMC(s). (14)

The thickness of the boundary layer can be modified according to the sliding surface changes as the input, on the
interval [0, a]. Therefore, the T-S fuzzy model with nine rules is used. The sets S1, S2, . . . , S9 are the fuzzy sets on the
common interval [−a, a], which are represented by language values “negative very big (NVB)”, “negative big (NB)”,
“negative medium (NM)”, “negative small (NS)”, “zero (Z)”, “positive small (PS)”, “positive medium (PM)”, “positive
big (PB)”, and “positive very big (PVB)”.

Remark 3.1. In this study, for the sake of convenience, we choose the interval [-1,1] to specify fuzzy sets. Moreover, all
corresponding membership functions to the fuzzy sets are defined by “triangular membership functions” which are shown
in Fig. 3. Also, the thickness of the boundary layer is fitting according to the changes of sliding surface. Therefore, it
can change in interval [0,1]. In this work, we chose the following value as illustrated in Fig. 4.
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Figure 3: Input membership function for the FBSMC
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Figure 4: Output membership function for the FBSMC

In summary, the fuzzy SMC law is described as follows:

u = −f(X, t)−
n−1∑
i=1

λiei+1 + x
(n)
d (t)− K̄ tanh(

s

Φfs
), (15)

Φfs = FBSMC(s) =

9∑
i=1

Si(s). (16)

The fuzzy IF-THEN ith rule based on s is stated as follows:
IF s is Si THEN φi = s+Ais,
where A = [Ai]

9
i=1 is given as,

A =
[
A5 A4 A3 A2 A1 A2 A3 A4 A5

]
. (17)

Fig. 4 depicts the output membership function for the FBSMC. As a matter of fact, a basic consideration is used to
determine the fuzzy rules as follows.

Assumptions 1.

1. When the value of the sliding variable s is large in terms of absolute, a large number of the boundary layer
thickness is selected.

2. When the value of the sliding variable s is small in terms of absolute, a small number of the boundary layer
thickness is selected.

In the following theorem, we prove that the scheme in (15) is able to drive the chaotic system in (1) into the sliding
surface s(t) = 0, that is, the reaching condition sṡ < 0 is guaranteed. Algorithm 1 demonstrates the summery of design
procedure for the FBSMC.

Algorithm 1 (Algorithm for Approach A)

1: Determine a stable sliding mode surface from (4).
2: Determine the implemented equivalent control from (6).
3: Design the singleton-type FBSMC using s.
4: Calculate the overall control u from (15).

Theorem 3.2. Assume that the uncertain chaotic system in (1) is controlled by u in (15), where Φfs is defined in (16)
and K > Fmax +Dmax +Φfs. Then, the error state trajectory converges to the sliding surface s(t) = 0. Moreover, the
states of system in (1) converge to zero in finite-time.

Proof. A candidate Lyapunov function of the system is taken V = 1
2s

2. Therefore s =
√
2V

1
2 Then to provide the
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global finite-time stability, the condition V̇ < 0 must be satisfied

V̇ = sṡ = s[ėn(t) +

n−1∑
i=1

λiėi]

= s[f(X, t) + ∆f(X, t) + d(t) + ueq(t)− K̄ tanh(
s

Φfs
)− x

(n)
d (t) +

n−1∑
i=1

λiėi]

= s[∆f(X, t) + d(t)− K̄ tanh(
s

Φfs
)]

≤ |s|[∆f(X, t) + d(t)− K̄ tanh(
s

Φfs
)]

≤ Fmax|s|+Dmax|s| − K̄|s|
= (Fmax +Dmax −K +Φfs)|s|
= −(K − (Fmax +Dmax +Φfs))|s|

= −(K − (Fmax +Dmax +Φfs))
√
2V

1
2

If we select K > Fmax +Dmax + Φfs the condition V̇ ≤ −ζV
1
2 is satisfied, where ζ = (K − (Fmax +Dmax + Φfs))

√
2.

By integrating from equation V̇ ≤ −ζV
1
2 between t0 = 0 and t = treach we have the following result,

treach ≤ 2

ζ
[V (t0)]

1/2.

Thus, in accordance with Lemma 2.1, the states of chaotic system in (1) converge to zero in finite-time.

3.2 Approach B.

The second approach to reduce the chattering issue is to use a fuzzy surface sliding mode control (FSSMC). In this
case, Ii = [−Ei, Ei], i = 1, 2, . . . , n are, respectively, the interval of the input variables e1, e2, . . . , en of the FSSMC and
J = [−S, S] is the interval of the output variables FSSMC. In this way, we will use the T-S fuzzy with the two-input-
single-output fuzzy model, which has been widely utilized to model the nonlinear systems. In general, the fuzzy control
rules according to the inputs and the output linguistic variable can be shown as follows:

Sfs = FSSMC(e1, e2, . . . , en). (18)

In this approach, first we focus on the special case n = 2 as:

Sfs = FSSMC(e1, ė1). (19)

In Table 1, the values show the peak points of the fuzzy sets on the output interval. The sets Ẽ1, Ẽ2, . . . , Ẽ9 are
the fuzzy sets on the common interval [−1, 1], which are represented by the values of “negative very big”, “negative
big”, “negative medium”, “negative small”, “zero”, “positive small”, “positive medium”, “positive big”, and “positive

very big”. Also, ˙̃E1,
˙̃E2, . . . ,

˙̃E9 are the fuzzy sets on the common interval [−1, 1], which are again represented by the
language values with the same meaning as above. All the membership functions of the fuzzy sets are similarly chosen
as the “triangle membership functions”. Hence, the fuzzy SMC law is described as follows:

u = −f(X, t)− (λe1 + ė1) + ẍd(t)−K tanh(Sfs), (20)

where

Sfs =
9∑

i=1

9∑
j=1

hijCij = FSSMS(e1, ė1) = GS(GE.e1 +GCE.ė1) = λe1 + ė1 (21)

hij =
Ẽ1i(e1)

˙̃E2j(ė1)

Ẽ1i(e1) +
˙̃E2j(ė1)

for i, j = 1, . . . , 9.

Here, GE (gain of error) is a scalar, GS = λ/GE and GCE = 1/GS for any given λ > 0, and Cij is the membership
function of the output. The FSSMC plant is illustrated in Fig. 5. It contains an equivalent control part and a two-
input-single-output FSSMC. The error state e and its change rate ė are the input linguistic variables of the FSSMC,
and Sfs is the output linguistic variable.

Fig. 6 depicts the output membership function for the FSSMC. Now, we consider the following assumptions.
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Figure 5: Scheme of the FSSMC

Figure 6: Output membership function for the FSSMC

Assumptions 2.

Since the control inputs are selected from the common interval [−1, 1], according to (5), the value of the outputs are
chosen from the interval [−2, 2].

1. When the error variable e1 and its derivative ė1 are negative very big, in order to decrease the quantity of e1 and
ė1 for come back trajectory to reach the sliding surface, according to the definitions of the error and the sliding
surface, the maximum value of the control output is required.

2. When the error variable e1 is positive very big and its derivative ė1 is negative very big, the control output value
is zero.

3. When the error variable e1 and its derivative ė1 are positive very big, the maximum value of the control output
is required for come back trajectory to reach the sliding surface.

4. In other modes, the control output is chosen proportional to the error variable e1 and its derivative ė1, so that
the convergence to the sliding surface takes place faster.

Regarding to Assumptions 2, we define the (i, j)th fuzzy rule, based on e1 and ė1 as follows:

IF e is Ẽi and ė1 is ˙̃Ej THEN s is Ci,j ,
where Ci,j is the (i, j)th element in Table 1. For instance, C3,6 = B8 and C7,8 = B14.

Algorithm 2 demonstrates the summery of design procedure for the FSSMC.

Algorithm 2 (Algorithm for Approach B)

1: Determine a stable sliding mode surface from (4).
2: Determine the implemented equivalent control from (6).
3: Design the singleton-type FSSMC using e1 and ė1.
4: Calculate the overall control u from (20).
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Table 1: Rule-table of FSSMC
˙̃E1

˙̃E2
˙̃E3

˙̃E4
˙̃E5

˙̃E6
˙̃E7

˙̃E8
˙̃E9

Ẽ1 B1 B2 B3 B4 B5 B6 B7 B8 B9

Ẽ2 B2 B3 B4 B5 B6 B7 B8 B9 B10

Ẽ3 B3 B4 B5 B6 B7 B8 B9 B10 B11

Ẽ4 B4 B5 B6 B7 B8 B9 B10 B11 B12

Ẽ5 B5 B6 B7 B8 B9 B10 B11 B12 B13

Ẽ6 B6 B7 B8 B9 B10 B11 B12 B13 B14

Ẽ7 B7 B8 B9 B10 B11 B12 B13 B14 B15

Ẽ8 B8 B9 B10 B11 B12 B13 B14 B15 B16

Ẽ9 B9 B10 B11 B12 B13 B14 B15 B16 B17

Remark 3.3. In accordance with the previous discussion, we can consider the suggested linearization for the general
case in (18) as follows:

Sfs = FSSMC(e1, e2, . . . , en) = en +
n−1∑
i=1

λiei.

Now, we are able to prove the following theorem, which guarantees the reaching condition sṡ < 0.

Theorem 3.4. Assume that the uncertain chaotic system in (1) is controlled by u in (20), where Sfs is defined in (21)
and K > Fmax + Dmax. Then, the error state trajectory converges to the sliding surface Sfs(t) = 0 in a finite-time.
Moreover, the states of system in (1) converge to zero in finite-time.

Proof. A candidate Lyapunov function of the system is taken V = 1
2S

2
fs. Then, to provide the global finite-time

stability, the condition V̇ ≤ 0 must be satisfied

V̇ = SfsṠfs = Sfs[ėn +
n−1∑
i=1

λiėi]

= Sfs[f(X, t) + ∆f(X, t) + d(t) + ueq(t)−K tanh(Sfs)− x
(n)
d (t) +

n−1∑
i=1

λiėi]

= Sfs[∆f(X, t) + d(t)− K̄ tanh(Sfs)]

≤ |Sfs|[∆f(X, t) + d(t)− K̄ tanh(Sfs)]

≤ Fmax|Sfs|+Dmax|Sfs| −K|Sfs|
= (Fmax +Dmax −K)|Sfs|
= −(K − (Fmax +Dmax))|Sfs|

= −(K − (Fmax +Dmax))
√
2V

1
2 .

Suppose K > Fmax + Dmax, and also, assume that treach is the time required to hit the sliding surface Sfs(t) = 0.

Integrating V̇ = Sfs(t) ˙Sfs(t) ≤ −ζV
1
2 , where ζ = (K − (Fmax +Dmax))

√
2 between t0 = 0 and t = treach leads to the

following result: ∫ treach

t0

dV

V
1
2

≤
∫ treach

t0

−ζdt.

Hence, treach is rewritten as follows:

treach ≤ 2

ζ
[V (t0)]

1
2 ,

Note that Sfs(treach) = 0. Thus, in accordance with Lemma 2.1, the states of chaotic system in (1) converge to zero in
finite-time.



142 R. Khalili Amirabadi, O. S. Fard, A. Mansoori

3.3 Approach C.

Here, to improve the performance of the two approaches, namely, A and B, we intend to merge two schemes FBSMC
and FSSMC. First, we consider the variables e and ė as two inputs for the schemes including FBSMC (i.e., (21)) and
we obtain the output Sfs. Then, by using Sfs as the input to the scheme FBSMC (i.e., (16)), consequently we have
the output Φfs. Hence, the fuzzy surface boundary sliding mode control law (FSBSMC) is defined as below:

u = −f(X, t)−
n−1∑
i=1

λiei+1 + x
(n)
d (t)− K̄ tanh(

Sfs

Φfs
). (22)

The plant FSBSMC is shown in Fig. 7. It shows an equivalent control part and a two-input-single output FSBSMC,
where the error state e and its change rate ė are the input linguistic variables of the FSSMC, Sfs is the output of
the FSSMC, Sfs is the input linguistic variable of the FBSMC, and Φfs is the output of the FBSMC. Algorithm 3

Figure 7: Scheme of the FSBSMC

demonstrates the summery of design procedure for the FSSMC.

Algorithm 3 (Algorithm for Approach C)

1: Determine a stable sliding mode surface from (4).
2: Determine the implemented equivalent control from (6).
3: Design the singleton-type FSSMC using e and ė.
4: Design the singleton-type FBSMC using Sfs.
5: Calculate the overall control u from (22).

Theorem 3.5. Assume that the uncertain chaotic system in (1) is controlled by u in (22), where Sfs is defined in
(21), Φfs is as (16), and K > Fmax + Dmax + Φfs. Then, the error state trajectory converges to the sliding surface
Sfs(t) = 0 in a finite-time. Moreover, the states of system in (1) converge to zero in finite-time.

Proof. The proof is similar to that of the preceding theorems.

4 SOSMC and fuzzy control

As known, the SOSMC is a class of methods to reduce the chattering phenomenon. In this section, first we focus on a
special case of SOSMC in which the super twist algorithm is agglutinated with the fuzzy logic control, and we provide
Approach D. In this method, the Sign(·) is used in the control law. Thereupon, with the purpose of improving the
control action, this function is replaced with tanh(·), which is expressed in Remark 4.2.

4.1 Approach D.

As we know, the main purpose of the conventional SMC is to keep the sliding variable s at zero without considering
the derivative (or derivatives) of this variable. Accordingly, there are certainly variations in the sliding variable, though
negligible, which cause the chattering phenomenon in the control signal. In the literature, there are several approaches
to handle the phenomenon and to reduce the chattering effect. Especially, one of the approaches to deal with the
chattering issue is the HOSMC, which provides a continuous control signal that drives not only the sliding variable
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but also its derivatives to zero. In other words, the HOSMC attempts to synthesize the continuous control, and
consequently, the chattering will be reduced. During the subsequent lines, we are just going to consider the special
case of the HOSMC, called the SOSMC, which is one of the simplest in implementing and can eliminate the chattering
phenomenon. Briefly, the main idea of the SOSMC is to drive the sliding variable and its derivative to zero, that
is, s, ṡ → 0 in a finite-time. The SOSMC consists of several algorithms such as “sub-optimal algorithm”, “twisting
algorithm”, “super twisting algorithm”, and so on. In this study, utilizing an integral state not requiring the information
of ṡ in the control, we provide some different super twisting algorithms with the relative degree of 1, which are more
effective than the SOSMCs. To this end and to drive the sliding variable s to zero in a finite-time, first we define the
reaching term of the control input as follows:

ureach = −α|Sfs|ρSign(Sfs)− β

∫
Sign(Sfs)dt. (23)

Here, α, β > 0, 0 < ρ < 1, and Sfs is given by (21). So, the continuous control law is determined as follows:

u = eeq − α|Sfs|ρSign(Sfs)− β

∫
Sign(Sfs)dt. (24)

By substituting (6) with (24), the fuzzy super-twist control (FSTC) law is described by

u = −f(X, t)−
n−1∑
i=1

λiei+1 + x
(n)
d (t)− α|Sfs|ρSign(Sfs)− β

∫
Sign(Sfs)dt. (25)

The following properties are presented by the super-twisting control (STC) formulation in (25):

• The STC in (25) is an SOSMC, since it drives both s, ṡ → 0 in a finite-time.

• The STC in (25) is continuous, since both terms α|Sfs|ρSign(Sfs) and β
∫
Sign(Sfs)dt are continuous. Now, the

high-frequency switching term is hidden under the integral.

The FSTC plant is shown in Fig. 8.

Figure 8: Scheme of the FSTC

Theorem 4.1. Assume the uncertain chaotic system in (1) controlled by u in (25) with α|ξ1|ρ − Fmax − Dmax ≥ 0,
where Sfs is defined in (21), 0 < ρ < 1, and α, β > 0. Then, the error state trajectory converges to the sliding surface
Sfs(t) = 0 in a finite-time.

Proof. In Approach D, ˙Sfs is defined as

˙Sfs = ∆f(X, t) + d(t)− α|Sfs|ρSign(Sfs)− β

∫
Sign(Sfs)dt. (26)

The system in (26) can be equivalently developed by the following system of two first-order differential equations:{
ξ̇1 = −α|ξ1|ρSign(ξ1) + ∆f(X, t) + d(t) + ξ2, ξ1 = Sfs,

ξ̇2 = −βSign(ξ1).
(27)
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A candidate Lyapunov function for the system is taken as V (ξ) = β|ξ1|+ 1
2ξ

2
2 . Then, to provide the global finite-time

stability

V̇ = β
ξ1
|ξ1|

ξ̇1 + ξ̇2ξ2

= β
ξ1
|ξ1|

(−α|ξ1|ρSign(ξ1) + ∆f(X, t) + d(t) + ξ2) + ξ2(−βSign(ξ1))

= −αβ|ξ1|ρ + βSign(ξ1)∆f(X, t) + βSign(ξ1)d(t) + βSign(ξ1)ξ2 − βSign(ξ1)ξ2

≤ β(Fmax +Dmax − α|ξ1|ρ)
= −β(α|ξ1|ρ − Fmax −Dmax). (28)

Now, if α|ξ1|ρ − Fmax −Dmax ≥ 0 we have α|ξ1|ρ ≥ Fmax +Dmax. Thus, (28) can be rewritten as follows:

V̇ ≤ −βα|ξ1|ρ = −c|ξ1|ρ,

wherein, c = αβ. Based on the definition of Lyapunov function we have |ξ1| ≤ 1
βV therefore, V̇ ≤ −c 1

βρV
ρ for 0 < ρ < 1.

Employing Lemma 2.1 gives the desired result.

Remark 4.2. In this approach, to further weaken the chattering phenomenon, we may replace the function Sign(Sfs)
by tanh(cSfs) function in (25). Hence, the new FSTC law is introduced as follows:

u = −f(X, t)−
n−1∑
i=1

λiei+1 + x
(n)
d (t)− α|Sfs|ρ tanh(c1Sfs)− β

∫
Sign(Sfs)dt, (29)

where c1 is a positive constant.

5 Simulation results

In this section, we aim to verify the performances of the all suggested control laws, Approaches A–D, for the following
multi-scroll chaotic system with a hysteresis nonlinear with the uncertainties and disturbances:{

ẋ1 = x2,

ẋ2 = −ax1 + bx2 + a.k.hys(x1) + ∆f(X, t) + d(t) + u(t).
(30)

Here, X = [x1, x2] = [x, ẋ] stands for the state variable, a, b, and k are given constants, and hys(·) is a hysteresis
nonlinear function with extension to the third quadrant (Fig. 9 shows its transfer characteristic). Moreover, ∆f(X, t)
and d(t) are the uncertainties and disturbance terms, respectively. For the simulation, in the system in (30), we set
∆f(X, t) = 0.1 sin(x1) sin(x2) and d(t) = 0.05 cos(t). Obviously, ∆f(X, t) ≤ Fmax = 0.1 and d(t) ≤ Dmax = 0.05. Fig.
10 shows the chaotic system in (30) according to Table 2, u(t) = 0, and without uncertainty and disturbance terms.
Note that the uncontrolled uncertain system in (30) (i.e. u(t) = 0) is also chaotic. By the former discussion, to design

Figure 9: Transfer characteristic of hys(x(·)) function

an appropriate control law, the sliding variable is introduced as

s(t) = e2(t) + λe1(t), (31)
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Figure 10: Phase plot of the chaotic attractor

Table 2: Parameters of system (30)
Parameter Value Parameter Value
x1(0) 0.5 a 0.15
x2(0) 0 b 0.065
Fmax 0.1 k 1
Dmax 0.05 α 2
λ 8 β 1.5
ρ 0.5 c1 1
c2 1

where ei(t) = xi(t) − xdi(t) and xdi(t) = x
(i−1)
d (t). Therefore, by solving ṡ = 0, we obtain the equivalent control as

follows:

ṡ(t) = ė2(t) + λė1(t) = −ax1 + bx2 + a.k.hys(x1) + u− ẍd(t) + λẋ(t)− λẋd(t).

Thus, the equivalent control is obtained as

ueq = ax1 − bx2 − a.k.hys(x1) + ẍd(t)− λẋ(t) + λẋd(t). (32)

Hence, according to Approach A and (32), the control input is given by

u = ax1 − bx2 − a.k.hys(x1) + ẍd(t)− λẋ(t) + λẋd(t)− K̄ tanh(
s

Φfs
). (33)

In the simulation, we choose xd = sin(t) as the target, which is a periodic orbit. Regarding (17) and Table 2, Fig. 11
demonstrates the time response of x1, the state trajectory in phase plane, the time response of the sliding surface, the
control action, and the time response of the error states for tracking xd.

Now, in accordance with Approach B and (32), the control law is derived as

u = ax1 − bx2 − a.k.hys(x1) + ẍd(t)− λẋ(t) + λẋd(t)−K tanh(Sfs). (34)

The simulation results are shown in Fig. 12. Approach C and (32) yield the following control law:

u = ax1 − bx2 − a.k.hys(x1) + ẍd(t)− λẋ(t) + λẋd(t)−K tanh(
Sfs

Φfs
). (35)

Fig. 13 illustrates the simulation results. From Approach D and (32), we have the following control law:

u = ax1 − bx2 − a.k.hys(x1) + ẍd(t)− λẋ(t) + λẋd(t)− α|Sfs|ρSign(Sfs)− β

∫
Sign(Sfs)dt, (36)

and the results are displayed in Fig. 14.
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Figure 11: The simulation results according to Approach A for the system in (30): (a) Trajectories of the controlled
system for xd = sin(t). (b) Responses of the control action for tracking to the desired orbit. (c) Trajectories s(t) for
the desired orbit. (d) Trajectories for the desired orbit.
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Figure 12: The simulation results according to Approach B for the system in (30): (a) Trajectories of the controlled
system for xd = sin(t). (b) Responses of the control action for desired orbit. (c) Trajectories s(t) for the desired orbit.
(d) Trajectories of the error for the desired orbit.

For more comparison, we apply the proposed method (Approach D) on the Chen system in [31]:

dx1

dt
= x1,

dx2

dt
= x3, (37)

dx3

dt
= 130x1 − 50x2 − x3 − x3

1 +∆f + d(t) + u(t).

∆f is considered as the following sine signal:

∆f = 2 sin(πx1) sin(πx2) sin(πx3).

Table 3 gives the initial values and parameters setting of system (37). Fig. 15 illustrates the simulation results based
on proposed method (Approach D) for system (37). This system also was investigated in [31]. The reported results in
Fig. 15 shows that our method is well performed in known Chen system (37) and one can see that the error of state
variable is tend to zero. Also, the sliding surface without chattering after about 2 seconds tends to zero. Moreover, the
state variable x1 after about 4 seconds tend to desired signal similar to the results in [31].
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Figure 13: The simulation results according to Approach C for the system in (30): (a) Trajectories of the controlled
system for xd = sin(t). (b) Responses of the control action for desired orbit. (c) Trajectories s(t) for the desired orbit.
(d) Trajectories of the error for the desired orbit.
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Figure 14: The simulation results according to Approach D for the system in (30): (a) Trajectories of the controlled
system for xd = sin(t). (b) Responses of the control action for desired orbit. (c) Trajectories s(t) for the desired orbit.
(d) Trajectories of the error for the desired orbit.

Table 3: Parameters and initial values of system (37)
Parameter Value Parameter Value
x1(0) 5 λ1 9.6201
x2(0) -2 λ2 6.7014
x3(0) 3 c1 1
Dmax 5.7 α 2.5
c2 1 β 1.8
ρ 0.9

6 Conclusion and discussion

For Approach A, the sliding surface reached zero after about 5 seconds and the control input was also smooth, as
the simulation results are depicted in Fig. 11. In the next approach, Approach B, although the control input has no
chattering, the tracking error (about 0.3) was not acceptable as the results given in Fig. 12. In order to improve the
performance of the control action, two Approaches A and B were combined as Approach C to produce a new control
law. Hence, the sliding surface converged to zero in less than 2 seconds with a lower overshoot than that of Approach
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Figure 15: The simulation results according to Approach D for the system in (37): (a) Trajectories of the controlled
system for xd = 0. (b) Responses of the control action for desired orbit. (c) Trajectories s(t) for the desired orbit. (d)
Trajectories of the error for the desired orbit.

A (see Fig. 13). By using the control law given in Approach D, the sliding surface convergence occurred earlier than
Approach C, but unfortunately, even though the chattering effect was reduced, there still existed the chattering in
the sliding surface and the control signal; while in [24], the sliding surface converged to zero in more than 10 seconds
with overshot in control, and moreover, the tracking error is bigger than this paper. By using Remark 4.2 as the
simulation results were shown in Fig. 14, the chattering issue was reduced significantly and the error state was less
than the previous approaches. Furthermore, we utilized the proposed method in known Chen system (37). One can
check the method was well performed as depicted in Fig. 15. The reported results in Chen system was similar to the
proposed method in [31]. Employing the developed method in some systems such as (30) and (37) demonstrated that
the presented approach was well performed in chaotic systems.

In this work, several control laws based on the variable universe FSMC schemes for a class of uncertain chaotic
systems were proposed. Moreover, by employing the Lyapunov technique, the finite-time stability of each proposed
scheme was studied and proved in details. By applying the combinatorial methods, mentioned in Sections 3 and 4, the
advantages of the fuzzy logic control and the SMC (the first-order and the second-order) were used simultaneously. The
explained methods in Approaches A–D are more efficient than the previous ones such that the last one was proposed as
the best control law. As expected, the simulation results illustrated the efficiency and high accuracy of these developed
control laws in reduction and elimination of the chattering phenomenon, stability, and high speed in reach to sliding
surface.

Some future research study based on this work may be suggested as follows. These approaches may be applied
for hyper-chaotic systems, the membership can be chosen as nonlinear function, and the fuzzified sliding surface and
boundary layer with super twist algorithm can be combined. Also, the gain of control can be considered as fuzzy.
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 شوبناك آهای یک رویکرد جدید کنترل لغزشی فازی برای سیستم 

مقاله مطا.  دهیچک این  از  از سیستمهدف  برای یک کلاس  پایداری  با  آ های  لعه مسئله  نامعین  شوبناک 

کنترل پایه  بر  اغتشاش  و  نامعلوم  لغزشدینامیک  ب گرهای  دستیابی  برای  است.  فازی  هدف،  ی  این  ه 

گرهای لغزشی مرتبه اول و دوم و یک متغیر یکنواخت تطبیقی فازی با یک مجموعه قوانین زبانی  کنترل

رویکرد طراحی  ب برای  وبهبود    منظور  ههای جدید  کنترل  یکدیگر   عملکرد  با  زیگزاگ  پدیده  کاهش 

به   ییبات و همگراثته با استفاده از قضیه پایداری لیاپانوف انالیز همگرایی سیستم حلقه بسآ .ندا ه ادغام شد

قوانین کنترل پیشنهادی در مقایسه با نوع کلاسیک، برای کاهش و  د.  صفر در خطای ردیابی تضمین ش

سازی  نتایج شبیه  ، اینبرکند. علاوه حذف زیگزاگ به همراه کاهش زمان دسترسی به سطح بهتر عمل می

قانون کنترل پیشنهادی نه تنها نسبت به نامعینی و اغتشاش خارجی مقاوم است و  دهد که  عددی نشان می

 .دهد هش میطور چشمگیری کاه کند بلکه پدیده زیگزاگ را ب به حالت مطلوب هدایت می سیستم را


