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Abstract

Fuzzy arithmetic performed with the product t-norm is the focus of this paper. The subject is handled from both
practical and theoretical perspectives. Explicit formulas for product-sum and product-multiplication of triangular fuzzy
numbers are obtained. These formulas can effectively replace the computational methods proposed so far. The issue
that these operations are not shape preserving is solved by the presentation of appropriate approximations. Finally, the
product arithmetic is compared in detail to the arithmetic performed with the boundary t-norms, namely the minimum
and drastic sum.
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1 Introduction

Arithmetic with fuzzy numbers has a wide range of application in many different directions especially in engineering and
decision making. The demand for fuzzy arithmetic in these different disciplines has attracted many researchers. Most
of these applications use the minimum t-norm TM as connective referring to Zadeh’s extension principle [17]. For this
arithmetic type the α-level method [12] is easy to exploit thanks to the monotonicity of arithmetic operators. For non-
monotonic operators, discrete computational methods are introduced such as in [3]. Fairly new tools for fuzzy arithmetic
are the Relative Distance Measure (RDM) arithmetic that uses horizontal membership function representations and the
M-IT2-F arithmetic linked to Piegat and Landowski [13, 14]. This approach seems very useful for solving equations [8],
but is not suitable for use with t-norms other than the minimum connective. Arithmetic with different types of t-norms
plays an important role in applications. However, fuzzy arithmetic with different type of t-norms -a generalization of
Zadeh’s extension by replacing the minimum operator with a t-norm- is facing serious difficulties in practice. These
difficulties arise because supremums of infinitely many combinations for each resulting single point are involved in
the definition of the extension principle. On the other hand, for particular t-norms and operations, there are simple
and useful results. For example, in the case of addition with the product t-norm TP Fullėr [2] calculates the limit of
product-sum series, Triesch [16] develops the results for the finite case with sufficient conditions and Hong [4] completes
the study of Triesch with the necessary conditions. Mesiar [10] takes a step further and generalizes the results to
a family of t-norms under sufficient conditions, followed by Markova’s work [9] about the necessary conditions. It
should be emphasized that in all these papers the input fuzzy numbers have common left and right-spreads, a rather
strong condition. Multiplication with the product t-norm is a more complex task, Hong [5] proves that the only shape
preserving multiplication is the drastic-multiplication. In [15] Seresht and Fayek introduce a computational method
for arithmetic on triangular fuzzy numbers with TP where they relax the condition of common spreads of the input
variables. Unfortunately, the method only works for a one-time operation, with more than two fuzzy inputs, repetitive
operations are too complex to be performed so far. Moreover, the results are computed with the help of an algorithm
only at discrete points. This leads to the requirement of an interpolation process.

Despite all the difficulties with TP -arithmetic there is a demand for it in certain fields of applications. For example
in [1] it is proven that the TP t-norm is the unique one for which fuzzy constrained optimization problems are scale-
invariant. In [7] the authors show the effect of using TP in a fuzzy controller.
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The motivation of this study is twofold: the first is to provide product-arithmetic tools for the potential applications
and secondly to present a theoretical insight into the mechanism of the arithmetic. The main contribution of the study
is the introduction of explicit formulas for the product-sum and product-multiplication of triangular fuzzy numbers.
Thereby, the problems of the computational method in [15] are solved. Since the results are computed continuously
rather than at discrete points an interpolation procedure is no more necessary.

There are two main directions to deal with t-norm fuzzy arithmetic: the generalized α-cut method and the generalized
extension principle which are of equivalent complexity. We follow the extension principle. The results are compared
with TM and the drastic t-norm Tω based operations in terms of fuzziness. In order to enable multiple calculations, the
problem of lack of shape preservation is solved by introducing well-suited, appropriate approximations. Moreover, the
distances of the approximations to the original results are computed and a close relation between TP -arithmetic and
Tω-arithmetic is discovered.

2 Preliminaries

Throughout the text it will be used only conventional notations, nevertheless a brief list of some definitions can be find
in this section.

Definition 2.1. A triangular fuzzy number A denoted by (a, b, c) has the membership function µA defined on the set
of real numbers R by,

µA(x) =

{ x−a
b−a , a ≤ x ≤ b,
c−x
c−b , b < x ≤ c,

∀x ∈ R.

Let A = (a, b, c) be a fuzzy number. The left and right spreads of this fuzzy number will be denoted respectively by
α = b− a, and β = c− b.

Definition 2.2. The additive inverse of a fuzzy number A is denoted by −A and has the following membership function,

µ−A(x) = µA(−x), ∀x ∈ R.

Definition 2.3. The reciprocal of a fuzzy number A is denoted by A−1 and has the following membership function,

µA−1(x) = µA(1/x), ∀x ∈ R.

Definition 2.4. The core of a fuzzy number A is denoted by core(A) and is defined as,

core(A) = {x ∈ R : µA(x) = 1}.

Definition 2.5. The support of a fuzzy number A is denoted by supp(A) and is defined as,

supp(A) = {x ∈ R : µA(x) > 0}.

Remark 2.6. Although for a triangular fuzzy number A = (a, b, c), supp(A) is the open interval (a, c), we will use the
convention to use its closure [a, c].

Another useful concept is the L-R representation of fuzzy numbers. The L-R representation of a fuzzy number
carries the information of the modal value b, the left and right spreads α, β and finally the ”shapes” L,R of both sides
of the modal value of the membership function. In this setting fuzzy numbers are denoted by ⟨b, α, β⟩L,R .

Definition 2.7. The L-R representation of a triangular fuzzy number A = (a, b, c) is ⟨b, α, β⟩1−x,1−x .

3 Addition with the product t-norm

Besides that this section presents an explicit formula for the addition using TP , the results can be transformed easily
to the case of subtraction by using the identity A−B = A+ (−B), which is also valid in fuzzy arithmetic.

Let A and B be two triangular fuzzy numbers with, A = (a1, b1, c1) and B = (a2, b2, c2).
The spreads of these fuzzy numbers will be denoted by, b1 − a1 = α1, c1 − b1 = β1, b2 − a2 = α2 and c2 − b2 = β2.
For the product t-norm it is known that supp[A+B] = [a1 + a2, c1 + c2] and core[A+B] = b1 + b2.
The increasing part of the membership function of a fuzzy number will briefly be called the left-side (L) and the

decreasing part the right-side (R). The study will begin with the construction of the left-side of A+B.
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Let x be a point in the domain of the left-side of the sum, so x ∈ [a1 + a2, b1 + b2]. According to Zadeh’s Extension
Principle the membership value of x is

µA+B(x) =
∨

x=y+z

µA(y) · µB(z).

There are three possibilities:
1. x is the sum of a point in the domain of the left-side of A and a point in the domain of the left-side of B (LL).
2. x is the sum of a point in the domain of the left-side of A and a point in the domain of the right-side of B (LR).
3. x is the sum of a point in the domain of the right-side of A and a point in the domain of the left-side of B (RL).
So, for each particular choice of x the question is: which combination leads to a greater membership, LL, LR or

RL?
To find the answer, the optimum value for each particular case has to be calculated and compared with each other.

Without loss of generality, throughout it is assumed that α1 ≤ α2 and β1 ≤ β2.
The coordinates cL = a1 + a2 + 2α1 and cR = c1 + c2 − 2β1 will be useful in the sequel.
i. Case: LL.
Let y ∈ [a1, b1], z ∈ [a2, b2] and x = y + z. There are two subcases:

x ∈ [a1 + a2, cL] or x ∈ (cL, b1 + b2]. The subcase x ∈ [a1 + a2, cL] is discussed as follows:
Assuming that x = a1 + a2 + t, for a k ∈ [0, α1] one may write y = a1 + k and z = a2 + t− k. It can be observed that
the corresponding membership degrees are as follows,

µA(y) =
k

α1
and µB(z) =

t− k

α2
.

Keeping in mind that it is needed to find the value, µ(x) =
∨

x=y+z

{µA(y) · µB(z)}, the following function is defined,

ft(k) = µA(y) · µB(z) =
k

α1
· t− k

α2
=

tk − k2

α1α2
.

In order to calculate µ(x) it remains to optimize ft(k). We derivate ft(k) w.r.t. k and observe, d
dk [ft(k)] = 0 if k = t

2 .

The maximum value then is, ft(
t
2 ) = t2

4α1α2
. At this step it should be noted that since k ∈ [0, α1] it holds that

t ∈ [0, 2α1] and therefore x ∈ [a1 + a2, cL].
For the subcase x ∈ (cL, b1 + b2] we have t > 2α1 and this together with k ∈ [0, α1] means that,

d

dk
[ft(k)] =

t− 2k

α1α2
> 0.

Therefore ft(k) is increasing w.r.t k and attains its maximum at k = α1 with the value ft(α1) = t−α1

α2
. Substituting

backwards, t = x− (a1 + a2) the result for the (LL) case will be obtained as following,

µ1(x) =

{
(x−(a1+a2))

2

4α1α2
, x ∈ [a1 + a2, cL]

x−(b1+a2)
α2

, x ∈ (cL, b1 + b2].
(1)

The result above has to be compared with the cases (RL) and (LR) to obtain the supremum value of µA(y) · µB(z).
ii. Case: RL.
Let y ∈ [b1, c1], z ∈ [a2, b2] and x = y + z. Since x ∈ [b1 + a2, b1 + b2], it may be assumed that x = b1 + a2 + t,

y = b1 + k and z = a2 + (t − k), with the restrictions k ∈ [0, β1] and (t − k) ∈ [0, α2]. In this case the corresponding
membership values are as follows,

µA(y) =
β1 − k

β1
and µB(z) =

t− k

α2
.

Then ft(k) becomes

ft(k) = µA(y) · µB(z) =
β1 − k

β1
· t− k

α2
.

Derivating w.r.t. k, it is observed that,

d

dk
[ft(k)] = − (t− k) + (β1 − k)

β1α2
≤ 0.
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So ft(k) is a decreasing function and attains its maximum value at k = 0. For k = 0, µ(y) · µ(z) = t
α2

. Substituting
backwards, t = x− (b1 + a2) the result for the (RL) case is obtained as,

µ2(x) =
x− (b1 + a2)

α2
, x ∈ [b1 + a2, b1 + b2]· (2)

It should be noted that in this case the resulting membership function is linear.
iii. Case: LR
Let y ∈ [a1, b1], z ∈ [b2, c2] and x = y+z. Since x ∈ [a1+b2, b1+b2], it is assumed that x = a1+b2+t, y = a1+(t−k)

and z = a2 +α2 + k, with the restrictions k ∈ [0, β2] and (t− k) ∈ [0, α1]. The corresponding membership values are as
follows,

µA(y) =
t− k

α1
, µB(z) =

β2 − k

β2
.

The procedure is similar to the case (RL),

ft(k) = µA(y) · µB(z) =
t− k

α1
· β2 − k

β2
.

Derivating ft(k) it can be seen that,

d

dk
[ft(k)] =

− ((t− k) + (β2 − k))

β1α2
≤ 0.

So ft(k) is a decreasing function and attains its maximum value at k = 0. For k = 0, µA(y) · µB(z) =
t
α1

. Substituting
backwards, t = x− (a1 + b2) the result for the (RL) case is obtained to be

µ3(x) =
x− (a1 + b2)

α1
, x ∈ [a1 + b2, b1 + b2]· (3)

The case (LR) returns a linear membership function as well.
Since µA+B(x) = max{µ1(x), µ2(x), µ3(x)}, it remains to compare the functions µ1, µ2, µ3 on their common domain.

Keeping in mind that α1 ≤ α2 it is obvious that µ3 ≤ µ2 for all x ≤ b1 + b2, therefore it will be sufficient to compare
µ1 with µ2.

The claim is that µ2(x) ≤ µ1(x), ∀x ∈ R. This can be verified by observing that the only solution to the equation
µ1(x) = µ2(x) is x0 = 2α1 + a1 + a2 = cL. The result is µ3 ≤ µ2 ≤ µ1 and considering the domains of these functions
completes the discussion.

It is easy to check that all the results obtained above can be transformed symmetrically to the right-side of the
fuzzy number A+B. The conclusion of the discussion is summarized in the following theorem.

Theorem 3.1. Given two triangular fuzzy numbers A = (a1, b1, c1) and B = (a2, b2, c2), let α1 ≤ α2 and β1 ≤ β2. The
sum A+B under the product t-norm is a fuzzy number with the following membership function,

µA+B(x) =


(x−(a1+a2))

2

4α1α2
, a1 + a2 ≤ x ≤ a1 + a2 + 2α1,

x−(b1+a2)
α2

, a1 + a2 + 2α1 ≤ x ≤ b1 + b2,
−x+(b1+c2)

β2
, b1 + b2 ≤ x ≤ c1 + c2 − 2β1,

(x−(c1+c2))
2

4β1β2
, c1 + c2 − 2β1 ≤ x ≤ c1 + c2.

(4)

Remark 3.2. If α1 > α2 and/or β1 > β2 all indexes for α, a, b in the left part of the result and/or β, b, c in the right
part of the result should we swapped.

Corollary 3.3. If α1 = α2 then µA+B(x) =
(x−(a1+a2))

2

4α1α2
, ∀x ∈ [a1 + a2, b1 + b2].

Corollary 3.4. If β1 = β2 then µA+B(x) =
(x−(c1+c2))

2

4β1β2
, ∀x ∈ [b1 + b2, c1 + c2].

It means that in case of equal left (right) spreads of the input fuzzy numbers the left (right) spread of their sum
consists only of a quadratic term. As it was mentioned in the introduction, the case of equal spreads of the summands
was already covered in the literature. For instance Corollary 1 in [10] can be exploited as following. Since log(1−x), the
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logarithm of both left and right shape functions, is concave, the membership function of A+B is (setting α = α1 = α2

and β = β1 = β2),

µA+B(x) =

{
L2( b1+b2−x

2α ) , b1 + b2 − 2α ≤ x ≤ b1 + b2,

R2(x−(b1+b2)
2β ) , b1 + b2 ≤ x ≤ b1 + b2 + 2β.

This is equal to,

µA+B(x) =

{
(1− ( b1+b2−x

2α ))2 , b1 + b2 − 2α ≤ x ≤ b1 + b2,

(1− (x−(b1+b2)
2β ))2 , b1 + b2 ≤ x ≤ b1 + b2 + 2β.

And since b1 + b2 = a1 + a2 + 2α = c1 + c2 − 2β, after simple computation we observe,

µA+B(x) =


(

x−(a1+a2)
2α

)2

, a1 + a2 ≤ x ≤ b1 + b2,(
(x−(c1+c2)

2β

)2

, b1 + b2 ≤ x ≤ c1 + c2,

which agrees with the results claimed in Corollary 1 and Corollary 2.

Example 3.5. We consider the triangular fuzzy numbers A = (3, 6, 8) and B = (10, 14, 17). The sum of A and B is
computed by the formula (4) as following:

µA+B(x) =


(x−13)2

48 , 13 ≤ x ≤ 19,
x−16

4 , 19 ≤ x ≤ 20,
−x+23

3 , 20 ≤ x ≤ 21,
(x−25)2

24 , 21 ≤ x ≤ 25.

The support of A+B is [13, 25] with core {20}. Since 2αmin = 6 and 2βmin = 4 we observe in Figure 1 that in [13, 19]
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Figure 1: The membership function of the sum A+B .

and [21, 25] the membership degrees are quadratic (normal lines). In the interval [19, 21] we have linear membership
degrees (thick lines).

4 Multiplication with the product t-norm

The change of the arithmetic operator under investigation will not change the approach to the solution of the problem.
Assuming that A,B > 0, first the left-side of A ·B is going to be constructed. Obviously, supp[A ·B] = [a1 · a2, c1 · c2]
and core[A · B] = b1 · b2. Let x be a point in the domain of the left-side of the sum (x ∈ [a1a2, b1b2]). According to
Zadeh’s Extension Principle the value,

µA·B(x) =
∨

x=y·z
µA(y) · µB(z).

has to be calculated. Similarly to the case of addition there will be three cases that will be analyzed:
i. Case LL:
Let y ∈ [a1, b1], z ∈ [a2, b2] and x = y · z.
The corresponding membership degrees are as follows,

µA(y) =
y − a1
α1

, µB(z) = µ

(
x

y

)
=

x− a2y

α2y
.
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We define,

fx(y) = µA(y) · µB(z) =

(
y − a1
α1

)(
x− a2y

α2y

)
·

The maxima of fx(y) is determined by
d

dy
[fx(y)] = 0 ⇐⇒ y =

√
a1x

a2
·

Then,

fx(

√
a1x

a2
) =

(
√
x−√

a1a2)
2

α1α2
·

This way we define,

µ1(x) =
(
√
x−√

a1a2)
2

α1α2
.

It is still needed to find a valid domain for this function. Consider the following constraints: since y =
√

a1x
a2

one has,

a1 ≤
√

a1x

a2
≤ b1 ⇔ a1a2 ≤ x ≤ a2b

2
1

a1
, (5)

and since z =
√

xa2

a1
,

a2 ≤
√

xa2
a1

≤ b2 ⇔ a2a1 ≤ x ≤ b22a1
a2

. (6)

Combining (5) and (6) the domain of µ1 is obtained as,

a1a2 ≤ x ≤ min

{
a1b

2
2

a2
,
a2b

2
1

a1

}
.

So the result for the LL case is,

µ1(x) =
(
√
x−√

a1a2)
2

α1α2
, x ∈

[
a1a2, min

{
a1b

2
2

a2
,
a2b

2
1

a1

}]
. (7)

ii. Case: LR:
Let y ∈ [a1, b1], z ∈ [b2, c2] and x = y ·z. Substituting y = x

z it is observed that, µA

(
x
z

)
= x−a1z

α1z
, and µA is decreasing

with respect to z. On the other hand µB(z) =
b2+β2−z

β2
, is decreasing with respect to z as well, so the product of these

functions attains its maximum value at the minimum value of z which is z = b2. Since

µA

(
x

b2

)
· µB(b2) =

x− a1b2
α1b2

,

it can be concluded that in the LR case the membership is the following linear function,

µ2(x) =
x− a1b2
α1b2

, x ∈ [a1b2, b1b2]. (8)

iii. Case: RL:
Let y ∈ [b1, c2], z ∈ [a2, b2] and x = y · z. Substituting z = x

y it may be observed that µA(y) =
b1+β1−y

β1
, is decreasing

with respect to y. On the other hand, µB

(
x
y

)
= x−a2y

α2y
, is decreasing with respect to y as well, so the product of these

functions attains its maximum value at the minimum value of y which is y = b1. Since

µA(b1) · µB(b1) =
x− a2b1
α2b1

,

it can be concluded that in the case LR the membership is the following linear function,

µ3(x) =
x− a2b1
α2b1

, x ∈ [a2b1, b1b2]. (9)

Now the functions (7),(8) and (9) will be compared on their common domain.
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Lemma 4.1. If min
{

a1b
2
2

a2
,
a2b

2
1

a1

}
=

a1b
2
2

a2
then µ3 ≤ µ2 ≤ µ1, ∀x ∈ x ∈ [a1a2, b1b2].

Proof. Let min
{

a1b
2
2

a2
,
a2b

2
1

a1

}
=

a1b
2
2

a2
. By the observation,

a1b
2
2

a2
≤ a2b

2
1

a1
⇔ a1b2 ≤ a2b1,

we conclude that the root of µ2 is less than the root of µ3 and since the functions intersect at (b1b2, 1) it is seen that
µ3 ≤ µ2 in the domain under discussion. On the other hand solving the equality µ2 = µ1 it may be observed that the
equality

x− a1b2
α1b2

=
(
√
x−√

a1a2)
2

α1α2
,

leads to the quadratic equation

x (α2 − b2) + 2b2
√
a1a2

√
x− (a1b2α2 + b2a1a2) = 0,

for which the discriminant is
(2b2

√
a1a2)

2 − 4 (a2 (a1b2α2 + b2a1a2)) = 0.

Since the discriminant of the quadratic equation is zero, it is concluded that µ2 is tangent to µ1 and therefore µ2 ≤
µ1.

Once it is observed that µ2 is tangent to µ1, one can compute the x−coordinate of the tangent intersection by

solving the following equality, d
dxµ1(x) =

d
dxµ2(x), to obtain the solution x =

a1b
2
2

a2
.

All the results obtained above can easily be transformed symmetrically to the right-side of the fuzzy number A ·B.
The conclusion of the discussion is summarized in the following theorem.

Theorem 4.2. Given two triangular fuzzy numbers A = (a1, b1, c1) and B = (a2, b2, c2) their product A · B under the
product t-norm is a fuzzy number with the following membership function,

µA·B(x) =



(
√
x−√

a1a2)
2

α1α2
, a1a2 ≤ x ≤ min

{
a1b

2
2

a2
,
a2b

2
1

a1

}
,

x−a1b2
α1b2

,
a1b

2
2

a2
≤ x ≤ b1b2 and a1b2 ≤ a2b1,

x−a2b1
α2b1

,
a2b

2
1

a1
≤ x ≤ b1b2 and a2b1 ≤ a1b2,

c2b1−x
β2b1

, b1b2 ≤ x ≤ c2b
2
1

c1
and c1b2 ≤ c2b1,

c1b2−x
β1b2

, b1b2 ≤ x ≤ c1b
2
2

c2
and c2b1 ≤ c1b2,

(
√
x−√

c1c2)
2

β1β2
, max

{
c1b

2
2

c2
,
c2b

2
1

c1

}
≤ x ≤ c1c2.

(10)

The following two propositions ensure that the conditional linear parts of µA·B match up on the common boundary
conditions.

Proposition 4.3. If a1b2 = a2b1 then x−a1b2
α1b2

= x−a2b1
α2b1

.

Proof. Let a1b2 = a2b1. We use the identities b2 = a2 + α2 and b1 = a1 + α1 to observe a1α2 = a2α1. By adding the
term α1α2, to both sides of the last equality we observe α2b1 = α1b2, and therefore,

x− a1b2
α1b2

=
x− a2b1
α2b1

.

So we obtain that µ3 = µ2 on their common domain.

Since a1b2 = a2b1 also implies
a1b

2
2

a2
=

a2b
2
1

a1
, we see that their domains are also equal and we can conclude that

µ3 = µ2.

Proposition 4.4. If c1b2 = c2b1 then c2b1−x
β2b1

= c1b2−x
β1b2

, ∀x ∈
[
b1b2,

c2b
2
1

c1

]
.

Proof. The proof is similar to the proof of the foregoing proposition and will be omitted.
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For both A < 0 and B < 0, multiplication can be performed by the identity A ·B = (−A) · (−B). If A < 0, B > 0,
then A ·B = − ((−A) · (B)) .

It should be pointed out that division can not be performed directly by using A ÷ B = A · B−1 as claimed in [15]
since the term B−1 will not be a triangular fuzzy number. For division, a solution is to use the tangent approximation
of B−1 ([3]) and then make use of A ÷ B = A · B−1. The tangent approximation of an either positive or negative
triangular fuzzy number B = (a, b, c) is

B−1 =

⟨
1

b
,
β

b2
,
α

b2

⟩
1−x

.

Example 4.5. We consider the triangular fuzzy numbers, A = (2, 3, 4) and B = (5, 7, 10). Here a1b2 = 14, a2b1 =
15, c1b2 = 28c2b1 = 30, therefore the product of A and B is computed by formula (10) as following:

µA·B(x) =


(
√
x−

√
10)2

2 , 10 ≤ x ≤ 19.6,
x−14

7 , 19.6 ≤ x ≤ 21,
30−x

9 , 21 ≤ x ≤ 22.5,
(
√
x−

√
40)2

3 , 22.5 ≤ x ≤ 40.

The support of A ·B is [10, 40] with core {21}. Since min
{

a1b
2
2

a2
,
a2b

2
1

a1

}
= 19.6 and max

{
c1b

2
2

c2
,
c2b

2
1

c1

}
= 22.5 we observe
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Figure 2: The membership function of the product A ·B .

in Figure 2 that in [10, 19.6] and [22.5, 40] the membership degrees are quadratic (normal lines), whereas in the interval
[19.6, 22.5] we have linear membership degrees again(thick lines).

5 Some algebraic properties

In this section we review some key properties of the product arithmetic. Algebraic properties of T -arithmetic of fuzzy
numbers are studied in detail in [6]. Here we list the modified results for the particular case of product arithmetic. We
just prove some of them to show how the results in [6] can be transformed. Maybe the most important observation is
that the sum (or product) of two normal and convex fuzzy numbers is also a normal and convex fuzzy number.

Proposition 5.1. Product-sum and product-multiplication are commutative, i.e. let ∗ ∈ {+, ·}

A ∗B = B ∗A.

Proof. Let Z = A ∗B. The commutativities of ∗ and the product t-norm imply,

µZ (z) = sup
z=x∗y

(µA (x) · µB (y)) = sup
z=y∗x

(µB (y) · µA (x)).

Proposition 5.2. Product-sum and product-multiplication are associative, i.e. let ∗ ∈ {+, ·}

(A ∗B) ∗ C = A ∗ (B ∗ C).
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Proof. Let V = (A ∗B) ∗ C and V
′
= A ∗ (B ∗ C). The associativities of ∗ and the product t-norm provide,

µV (v) = sup
v=s∗z

(( sup
s=x∗y

µA (x) · µB (y)) · µC (z))

= sup
v=(x∗y)∗z

(µA (x) · µB (y)) · µC (z)

= sup
v=x∗(y∗z)

µA (x) · (µB (y) · µC (z))

= sup
v=x∗t

(µA (x) · (sup
t=y∗z

µB (y) · µC (z)))

= µV ′ (v) .

Proposition 5.3. The crisp numbers 0 and 1 are neutral elements of product addition and multiplication respectively:

A+ 0 = A, A · 1 = A.

Proposition 5.4. Product sum and product multiplication are not invertible, i.e. there exist no objects (as long as A
is non-crisp) A+, A× with,

A+A+ = 0, A ·A× = 1.

Proposition 5.5. Product arithmetic is weak distributive:

A× (B + C) ⊂ A×B +A× C.

The paper [6] includes an example of violation of exact distributivity for the case of product arithmetic. In the
light of these observations we can conclude that fuzzy numbers equipped with product arithmetic form commutative
monoids. The lack of complete distributivity hinders a semiring structure.

6 Measure of fuzziness

In this section we compute the measures of fuzziness of the results and compare them with minimum t-norm arithmetic
and weak t-norm arithmetic. As measure of fuzziness we adopt the cardinality:

Car(µ) =

∫
X

µ(x)dx.

The calculation will be performed for the left-hand side of the result that can be transformed to the right-hand side
as both cases are equivalent.

∫ b1+b2

−∞
µA+B(x)dx =

∫ a1+a2+2α1

a1+a2

(x− (a1 + a2))
2

4α1α2
dx+

∫ b1+b2

a1+a2+2α1

x− (b1 + a2)

α2
dx =

α2
1 + 3α2

2

6α2
. (11)

It is easy to verify that the cardinality measure for the same fuzzy inputs with the minimum t-norm arithmetic is
α1+α2

2 and with the weak t-norm arithmetic is α2

2 .
The gain factor of the fuzzy addition performed with product t-norm over the addition performed with minimum

t-norm can then be obtained as: [
(1−

(
(α2

1 + 3α2
2)

3α2 (α1 + α2)

)
× 100

]
%

Example 6.1. The sum and product of the triangular fuzzy numbers A = (2, 3, 5) and B = (6, 8, 11) with the TP t-norm
and their comparisons with TM and Tω are discussed below.
For the given inputs (4) returns the following membership function:

µA+B(x) =


(x−8)2

8 , 8 ≤ x ≤ 10,
x−9
2 , 10 ≤ x ≤ 11,

−x+14
3 , 11 ≤ x ≤ 12,

(x−16)2

24 , 12 ≤ x ≤ 16.
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Figure 1 illustrates the membership functions of the sum A+B performed with the three t-norms TP , TM and Tω.
Their cardinalities are, 2.80, 4.00 and 2.50 respectively. The gain factor of the addition performed with TP over

the addition performed with TM is 30%. At this point it should be noted that for any t-norm weaker or equal to the
Luckasiewicz t-norm, the addition of triangular fuzzy numbers coincide with their Tw addition (see, e.g. Theorem 2(a)
in [11]).
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Figure 3: A+B, Dashed: TM Dots: Tω. Solid: TP

For the given inputs (10) returns the following membership function:

µA·B(x) =


(
√
x−

√
12)2

2 , 12 ≤ x ≤ 64
3 ,

x−16
8 , 64

3 ≤ x ≤ 24,
40−x
16 , 24 ≤ x ≤ 320

11 ,
(
√
x−

√
55)2

6 , 320
11 ≤ x ≤ 55.
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Figure 4: A ·B, Dashed:TM Dots:Tω. Solid:TP

Figure 2 illustrates the membership functions of the product A ·B performed with the three t-norms TP , TM and Tω.
Their cardinalities are rounded to, 14.15, 20.83 and, 12 respectively. The gain factor of the multiplication performed

with TP over the multiplication performed with TM is about 32%.

7 Triangular approximations and conclusion

Generally the addition of two triangular fuzzy numbers with product t-norm results in fuzzy numbers with piece-wise
linear and quadratic membership functions. Only when both input variables have the same left and right spreads
respectively, their sum has an entirely quadratic membership function. This particular case can be expressed in terms
of shape functions with the following equality:

⟨b1, α1, β1⟩1−x,1−x +TP
⟨b2, α1, β1⟩1−x,1−x = ⟨b1 + b2, 2α1, 2β1⟩1−x2,1−x2 .

It means that if there are more than one addition tasks to perform, the calculations will become rather complex.

Especially when the left and right spreads differ, it seems quite difficult to find a general formula for
n∑

i=1

Ai, where Ai

is a triangular fuzzy number for all i, when the connective is the product t-norm.
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The task is even more difficult in case of the product of triangular fuzzy numbers. As a result, to perform multiple
arithmetic operations, the set of triangular fuzzy numbers needs to be closed under addition and multiplication with
the product t-norm. This can be provided by using triangular approximations to the non-linear results. Consider the
membership function of addition (4), a natural way to approximate this function is to use the linear parts involved and
extend their domain. The resulting approximation denoted by µ̃A+B is then as following,

µ̃A+B(x) =

{
x−(b1+a2)

α2
, a1 + a2 + α1 ≤ x ≤ b1 + b2,

−x+(b1+c2)
β2

, b1 + b2 < x ≤ c1 + c2 − β1.
(12)

The L-R representation of this membership function is

⟨b1 + b2, α2, β2⟩1−x,1−x .

So for the general case;

⟨b1, α1, β1⟩1−x,1−x +TP
⟨b2, α2, β2⟩1−x,1−x

∼= ⟨b1 + b2,max{α1, α2},max{β1, β2}⟩1−x,1−x .

The distance of the approximation (12) to the exact result (4) with the integral metric is,∫
R

|µA+B(x)− µ̃A+B(x)| dx =
1

6

(
α2
1

α2
+

β2
1

β2

)
,

and the relative error of the approximation can be calculated by the ratio of the distance to the measure of fuzziness, 1
6 (

α2
1

α2
+

β2
1

β2
)

α2
1+3α2

2

6α2
+

β2
1+3β2

2

6β2

× 100

%.

Example 7.1. We consider the sum of the triangular fuzzy numbers A = (2, 3, 5) and B = (6, 8, 11) given in Example
1.

The sum has the following membership function:

µA+B(x) =


(x−8)2

8 , 8 ≤ x ≤ 10,
x−9
2 , 10 ≤ x ≤ 11,

−x+14
3 , 11 ≤ x ≤ 12,

(x−16)2

24 , 12 ≤ x ≤ 16.

The membership function of the approximation is,

µ̃A+B(x) =

{
x−9
2 , 9 ≤ x ≤ 11,

−x+14
3 , 11 < x ≤ 14.

Then the relative error can be computed to be about 10%. The dotted graph in Figure 1 corresponds to the approximation.

The most important observation is that this approximation equals the sum of A and B with the weak t-norm (see
for instance [11]).

For the multiplication process consider the membership function (10), once again a natural approximation to this
fuzzy number can be obtained by using the linear pieces in this membership function and extend their domain. For
example if a1b2 ≤ a2b1 and c2b1 ≤ c1b2, the related approximation then is,

µA·B(x) ≃

{
x−a1b2
α1b2

, a1b2 ≤ x ≤ b1b2,
c1b2−x
β1b2

, b1b2 ≤ x ≤ c1b2.

This fuzzy number can be described in the L-R setting as

⟨b1b2, b1b2 − a1b2, c1b2 − b1b2⟩1−x,1−x = ⟨b1b2, α1b2, β1b2⟩1−x,1−x .

Since a1b2 ≤ a2b1 ⇔ α2b1 ≤ α1b2 and c2b1 ≤ c1b2 ⇔ β2b1 ≤ β1b2, the membership function of the approximation in
L-R form can be written as

⟨b1b2,max{α2b1, α1b2},max{β2b1, β1b2}⟩1−x,1−x .

This again agrees with the membership function of A ·B with the weak t-norm which can be found in [5].
In the light of these facts it can be concluded that whenever multiple arithmetic operations have to be performed,

the use of TP could be replaced with the arithmetic operations with Tω. It should also be stressed that recent software
algorithms designed to perform fuzzy arithmetic based on t-norms with additive generators are capable to deal with
product sum and multiplication quite reasonably.
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8 Future works

A generalization of the results obtained in this paper regarding addition remains to be a challenging problem. However,
a comparison with the results in the literature covering the case of fixed spreads of the input variables yields to the
following postulate:

Proposition 8.1. Let Ai = ⟨ai, αi, βi⟩L,R be fuzzy numbers for i ∈ {1, 2, ..., n}. Let T be a t-norm with additive
generator f. Let the composite functions f ◦L and f ◦R be convex. Then the T sum of Ai has the membership function

[
n∑

i=1

Ai

]
(x) =


f [−1]

(
nf

(
L
(

c−x∑n
i=1 αi

)))
if c−

∑n
i=1 αi ≤ x ≤ c− nα,

linear if c− nα ≤ x ≤ c,
linear if c ≤ x ≤ c+ nβ,

f [−1]
(
nf

(
R
(

x−c∑n
i=1 βi

)))
if c+ nβ ≤ x ≤ c+

∑n
i=1 βi,

where c =
∑n

i=1 ai, α = min{αi} and β = min{βi}.

Even a proof of this proposition for the particular case T = TP (so f can be chosen as − log x) would provide exact
solutions to iterative additions and also would enable to generalize the results to all strict t-norms. On the other hand,
the transformation of the potential generalizations mentioned above to the case of multiplication is also an subject of
interest. For this purpose, the equality A×T B = exp(logA+T logB) might be useful.
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 رم حاصلضربن -tحساب فازی با 

مورد توجه این مقاله است. موضوع از دو جنبه    ضربرم حاصلن  -tبا    انجام شده    حساب فازی.  دهیچک

ضرب اعداد حاصل - ضرب و ضربحاصل   -گیرد. برای جمععملی و نظری مورد رسیدگی قرار می

توانند بطور مؤثری جایگزین روشها میهای صریحی بدست آمده است. این فرمولفازی مثلثی فرمول

ارا تائهای محاسباتی  این مسئله که  ه شده  نیستندکنون شوند.  ارا،  این عملیات حافظ شکل  تقریب ئبا  ه 

می حل  حاصلمناسب  حساب  سرانجام،  با  شود.  شده  انجام  حساب  با  یعنی رم ن  -t  ضرب  مرزی،  های 

 شوند.  حداقل و مقدار شدید با جزئیات مقایسه می

  


