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Abstract

Aggregation operations play a fundamental role in a large number of disciplines, from mathematics and natural sciences
to economics and social sciences. This paper is focused on the problem of distributivity for some special classes of
aggregation operations, and quasi-linear means. Characterization of distributivity pairs for uninorms, semi-uninorms
and associative a-CAOA vs quasi-linear means is given.
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1 Introduction

There are many real life situations where the process of combining and merging a certain number of data into a single
representative value is required. Mathematical functions carrying out this process are known as aggregation operations
(aggregation functions, connectives, merging functions, etc.,). Although the idea of aggregation is very old (think of
the arithmetic mean), detailed study of aggregation function in general, their formalization and classification is quite
more recent. Therefore, due to high level of applicability, aggregation operations have been intensively studied from
1980’s to nowadays. Some purely theoretical researches of this subject can lead to new possibilities of applications as
seen in e.g. [3, 5, 12].

The problem of distributivity has roots in [2] and, recently, investigations of this problem are directed towards finding
solutions for different classes of aggregation operations such as t-norms, t-conorms, uninorms, nullnorms, semi-uninorms,
semi-nullnorms, semi-t-operators, uni-nullnorms, 2-uninorms, quasi-arithmetic means, etc (see [4, 8, 9, 10, 13, 18, 20,
21, 22, 23, 25, 26, 28, 30]). Also, researchers are investigating the problem of distributivity on the restricted domain,
i.e., the conditional distributivity. This particular approach produces a larger variety of solutions (see [15, 27, 28]).
The significance of the considered contemporary topic (see [13, 24, 27, 28, 30]) follows not only from the theoretical
point of view, but also from its applicability in the utility theory for modelling some specific problems [12, 14]. Also,
an interesting application of these laws on two Borel-Cantelli lemmas and independence of events for decomposable
measures is given in [6].

This paper extends the research from [4, 26] where a characterization of all pairs (Mf , F ) where Mf is a quasi-
linear mean, and F is a t-norm, t-conorm, Mayor’s aggregation operator, nullnorm, semi-nullnorm or semi-t-operator,
satisfying distributivity laws on the whole domain is given. Therefore, the main concern of this paper are distributivity
equations on the whole domain where one of the unknown functions is a quasi-liner mean and another one is a uninorm,
semi-uninorm from the classes Nmin

e ∪Nmax
e , T-uninorm, S-uninorm and bi-uninorm.

This paper is organized as follows. The Section 2 contains preliminary notions concerning the aggregation operations
in general, then the preliminary notions on quasi-linear means, uninorms, semi-uninorms, semi-t-operators, T-uninorms,
S-uninorms, bi-uninorms and the distributivity equations. Distributivity of the above mentioned classes of aggregation
operations over quasi-linear mean is considered in the third section. Section 4 contains results of distributivity equations
in the opposite direction. Some concluding remarks are given in Section 5.
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2 Preliminaries

A short overview of notions that are essential for this research is given throughout this section (see [1, 2, 8, 11, 12, 16,
17, 19, 29]). The basic definition of an aggregation operation is the starting point of this research.

Definition 2.1. [12] A binary aggregation operation Ag on [0, 1] is a function Ag : [0, 1]2 → [0, 1] that is nondecreasing
in each variable and for which the following holds

Ag(0, 0) = 0 and Ag(1, 1) = 1.

The previous definition is in its binary form and it can be easily extended to n-ary aggregation operation on arbitrary
nonempty real interval I (bounded or not). This definition presents the bare bone structure of aggregation operations
and, depending on the situation that is being investigated, many other properties can be required. Therefore, depending
on the framework in which the aggregation is performed, the additional properties can be commutativity, associativity,
idempotence, continuity, bisymmetry, strict increasing monotonicity, etc.

2.1 Quasi-linear means

The focus of this research is on means, perhaps the best known family of aggregation functions with a long history,
especially on quasi-linear means (for more details see Chapter 4 from [12]). First, a mean is noting other than an
idempotent aggregation function. A well-studied class of means is the class of quasi-arithmetic means introduced as
n-ary functions in [1] by Aczél.

Definition 2.2. [12] Let f : [0, 1] → R be a continuous and strictly monotone function. The n-ary quasi-arithmetic
mean generated by f is a function Mf : [0, 1]n → [0, 1] of the form

Mf (x1 · · ·xn) = f−1

(
1

n

n∑
i=1

f(xi)

)
. (1)

Of course, the class of quasi-arithmetic means comprises most of the algebraic means.
The next result gives an axiomatization of n-ary quasi-arithmetic means which is due to Aczél.

Theorem 2.3. [12] A function F : [0, 1]n → R is commutative, continuous, strictly increasing, idempotent and bisym-
metric if and only if there is a continuous and strictly monotonic function f : [0, 1] → R such that F = Mf , i.e., F is
a quasi-arithmetic mean generated by f.

Many authors have attempted to generalize the concept of quasi-arithmetic means by relaxing some conditions
that characterize the quasi-arithmetic means such as commutativity or strictly increasing monotonicity. The concept
considered here is of weighted quasi-arithmetic means, also called quasi-linear means, obtained simply by dropping the
commutativity property from the previous theorem.

Theorem 2.4. [12] A function F : [0, 1]n → R is continuous, strictly increasing, idempotent and bisymmetric if and
only if there is a continuous and strictly monotonic function f : [0, 1] → R and real numbers w1, · · · , wn > 0 satisfying∑n

i=1 wi = 1 such that

F (x1, · · · , xn) = f−1

(
n∑

i=1

wif(xi)

)
. (2)

In papers [4, 26] the aggregation operation F from Theorem 2.4 is called quasi-arithmetic mean. In this paper we
use terminology from [12], where the quasi-arithmetic mean is given by (1), and function F given by (2) is quasi-linear
mean or weighted quasi-arithmetic mean.

Since the function f from (1) and (2) is continuous and strictly monotonic, the range of f is an interval [m,n]
where m,n ∈ R. Thus, the working assumption through this paper is that f : [0, 1] → [m,n], and that f is a monotone
bijection. Also, this paper deals with binary aggregation operations, therefore the assume is that n = 2 in the equation
(2).

This following sub-sections provide overviews of aggregation operations that will be considered as a part of a
distributive pair together with the quasi-linear mean.
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2.2 Uninorms and semi-uninorms

Definition 2.5. [29] A uninorm U : [0, 1]2 → [0, 1] is an aggregation operation that is commutative, associative, and
for which there exists a neutral element e ∈ [0, 1], i.e., U(x, e) = x for all x ∈ [0, 1].

Recall that when e = 1 uninorm U becomes a t-norm denoted by T , and when e = 0, U is a t-conorm denoted by
S. For e ∈ (0, 1) the following result holds.

Theorem 2.6. [11] Let U be a uninorm with a neutral element e ∈ (0, 1). Then there exists a t-norm TU , a t-conorm
SU , and increasing operator C : [0, e)× (e, 1]∪ (e, 1]× [0, e) → [0, 1] that fulfils min ≤ C ≤ max, such that U is given by

U(x, y) =


eTU

(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e+ (1− e)SU

(
x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

C(x, y) otherwise.

(3)

A t-norm TU and a t-conorm SU from the previous theorem are called the underlying t-norm and underlying
t-conorm of U . If U(0, 1) = 0, the uninorm U is conjunctive and, if U(0, 1) = 1 the uninorm U is a disjunctive one.

Semi-uninorms are a form of relaxed uninorms, that are obtained by omitting commutativity and associativity from
Definition 2.5. This specific class of operators was introduced in [7]. The family of all semi-uninorms with neutral
element e is denoted by Ne. Specially, the class N1 consists of t-seminorms or semicopulas, and N0 t-semiconorms.

Notations Nmax
e and Nmin

e (see [7]) are used for families of all semi-uninorms with the neutral element e ∈ (0, 1)
satisfying the following additional conditions

∀x ∈ (e, 1] U(0, x) = U(x, 0) = x and ∀x ∈ [0, e) U(1, x) = U(x, 1) = x,

respectively.

2.3 Associative a-CAOA: T-uninorms, S-uninorms, bi-uninorms and nullnorms

Another generalization of uninorms necessary for the presented research are associative, commutative aggregation
operations with annihilator a, shortly associative a-CAOA, that were studied in [17]. Further on, for any binary
operation A : [0, 1]2 → [0, 1], and any element c ∈ [0, 1], let the section Ac : [0, 1] → [0, 1] given by

Ac(x) = A(c, x),

be denoted by Ac. As it will be seen from the following, the continuity (discontinuity) of sections A0 and A1 plays a
crucial role in classification of associative a-CAOA operations.

Definition 2.7. [17] Let A : [0, 1]2 → [0, 1] be an associative a-CAOA.

• A is called a S-uninorm if A0 is continuous and A1 is not, and there exists e ∈ (0, 1) such that e is idempotent,
Ae is continuous and Ae(1) = 1.

• A is called a T -uninorm if A1 is continuous and A0 is not, and there exists e ∈ (0, 1) such that e is idempotent,
Ae is continuous and Ae(0) = 0.

• A is called a bi-uninorm if A0 and A1 are not continuous, and there exist idempotent elements e0, e1 ∈ (0, 1)
such that Ae0 and Ae1 are continuous and Ae0(0) = 0 and Ae1(1) = 1.

• A is called a nullnorm (a t-operator) if A0 and A1 are continuous.

Remark 2.8. Distributivity between semi-nullnorm (or nullnorm) and quasi-linear mean was investigated in full in
[26], therefore that type of associative a-CAOA will not be considered further in this paper.

The following overview of results from [17] shows that the form of associative a-CAOA is closely related to uninorms,
t-norms and t-conorms, and is essential for investigation that follows. Let A : [0, 1]2 → [0, 1] be a binary operation.

• A is a S-uninorm if and only if There exists a ∈ [0, 1), a t-conorm S′ and a conjunctive uninorm U ′ with neutral
element e′ ∈ (0, 1) such that A is given by
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A(x, y) =


aS′ (x

a ,
y
a

)
if (x, y) ∈ [0, a]2,

a+ (1− a)U ′
(

x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a]

(4)

• A is a T -uninorm if and only if there exists a ∈ (0, 1], a t-norm T ′ and a disjunctive uninorm U ′ with neutral
element e′ ∈ (0, 1) such that A is given by

A(x, y) =


aU ′ (x

a ,
y
a

)
if (x, y) ∈ [0, a]2,

a+ (1− a)T ′
(

x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a]

(5)

• A is a bi-uninorm if and only if there exists a ∈ (0, 1), a disjunctive uninorm U ′
0 and a conjunctive uninorm U ′

1

with neutral elements e′0, e
′
1 ∈ (0, 1), respectively, such that A is given by

A(x, y) =


aU ′

0

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2,

a+ (1− a)U ′
1

(
x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a]

(6)

T-uninorms S-uninorms

associative
a-CAOA

uninorms
U(0,1) is in {0,1} a=U(0,1)

generalized by

bi-uninorms
nullnorms
t-operators

semi-t-operators

-commutativity

Figure 1. Associative a-CAOA and semi-t-operators.

2.4 Semi-t-operators

Now, commutativity is omitted from definition of t-operators, i.e., from nullnorms. Distributivity of this type of
operators with respect to quasi-linear mean was also studied in [26], however some corrections are needed and they are
given in the fourth section of this paper.

Definition 2.9. [8] A semi-t-operator F : [0, 1]2 → [0, 1] is an associative aggregation operation such that the functions
F0, F1, F

0, F 1, where F0(x) = F (0, x), F1(x) = F (1, x), F 0(x) = F (x, 0), F 1(x) = F (x, 1), are continuous.

The family of all semi-t-operators such that F (0, 1) = a and F (1, 0) = b is denoted with Fa,b. The following result
holds.

Theorem 2.10. [19] Let F : [0, 1]2 → [0, 1], F (0, 1) = a, F (1, 0) = b. The operation F ∈ Fa,b if and only if there
exists an associative t-seminorm TF and an associative t-semiconorm SF such that

F (x, y) =



aSF

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2,

b+ (1− b)TF

(
x−b
1−b ,

y−b
1−b

)
if (x, y) ∈ [b, 1]2,

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
x otherwise,

(7)

for a ≤ b and

F (x, y) =



bSF

(
x
b ,

y
b

)
if (x, y) ∈ [0, b]2,

a+ (1− a)TF

(
x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
y otherwise,

(8)

for b ≤ a.



Distributivity laws for quasi-linear means 5

2.5 Distributivity equations

Finally, let us recall the functional equations that are called left and right distributivity laws ([2], p. 318).

Definition 2.11. Let F and G be some binary aggregation operations. F is distributive over G, if the following two
laws hold:

(LD) F is a left distributive over G ,i.e.,

F (x,G(y, z)) = G(F (x, y), F (x, z)), for all x, y, z ∈ [0, 1],

and

(RD) F is a right distributive over G ,i.e.,

F (G(y, z), x) = G(F (y, x), F (z, x)), for all x, y, z ∈ [0, 1].

Of course, for commutative F (LD) and (RD) coincide. Since for this research results for (RD) are analogous to the
results for (LD), further on, the focus will be only on (LD) case for non-commutative F.

3 Distributivity of some aggregation operations over quasi-linear means

In this section we present results concerning distributivity of previously described classes of aggregation operations
over quasi-linear means Mf , where f : [0, 1] → [m,n]. Further on, the assumption is that generator f is an increasing
bijection, i.e., that f(0) = m and f(1) = n.

3.1 Distributivity of uninorms and semi-uninorms over quasi-linear means

Proposition 3.1. Let U be a disjunctive uninorm with a neutral element e ∈ (0, 1), and Mf be a quasi-linear mean.
Then U is not distributive over Mf .

Proof. Let us suppose that a disjunctive uninorm U with a neutral element e ∈ (0, 1) is distributive over quasi-linear
mean Mf . Similarly to the proof of Theorem 7 from [4] we obtain that

U(x, y) = f−1(A(x)f(y) +B(x)), (9)

or
U(x, y) = f−1(C(x)), (10)

where A,B and C are three functions on [0, 1].
Equation (10) is not possible solution for the uninorm U , since, according to (10), the uninorm U does not depend

on y. This implies that for all x ∈ [0, 1] x = U(x, e) = U(x, 1) = 1 which is impossible. Therefore, the only possible
solution is (9).

It follows from (9) and the structure of U that

1 = U(0, 1) = f−1(A(0)f(1) +B(0)) and 0 = U(0, 0) = f−1(A(0)f(0) +B(0).

Hence, the following is obtained

n = A(0)n+B(0) and m = A(0)m+B(0),i.e., n−m = A(0)(n−m).

Since n ̸= m, it follows that A(0) = 1 and B(0) = 0. Again, from (9) and the structure of U follows

0 = U(0, e) = f−1(A(0)f(e) +B(0)) ,i.e., f(0) = m = f(e).

Since f is a bijection, 0 = e is obtained and this is in contradiction with the assumption e ∈ (0, 1). Therefore,
disjunctive uninorm U with a neutral element e ∈ (0, 1) is not distributive over quasi-linear mean Mf .

As a consequence of the previous theorem and results from [4] the following result can be obtained.
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Theorem 3.2. Let U be a disjunctive uninorm with a neutral element e ∈ [0, 1), and Mf be a quasi-linear mean. U is
distributive over Mf if and only if U is a t-conorm given by

U(x, y) = f−1

(
n− f(x)

n−m
f(y) + n

f(x)−m

n−m

)
. (11)

That is, distributivity in this case reduces disjunctive uninorms to t-conorms of a specific form.
For distributivity of conjunctive uninorm over quasi-linear mean results are similar.

Proposition 3.3. Let U be a conjunctive uninorm with a neutral element e ∈ (0, 1), and Mf be a quasi-linear mean.
Then U is not distributive over Mf .

Theorem 3.4. Let U be a conjunctive uninorm with a neutral element e ∈ (0, 1], and Mf be a quasi-linear mean. U
is distributive over Mf if and only if U is a t-norm given by

U(x, y) = f−1

(
f(x)−m

n−m
f(y) +m

n− f(x)

n−m

)
. (12)

Now conjunctive uninorms are reduced to t-norms of a specific form.
Using similar arguments as in Proposition 3.1 and Proposition 3.3 the following result can be proved.

Theorem 3.5. Let U be a semi-uninorm from the classes Nmin
e ∪Nmax

e with a neutral element e ∈ (0, 1) and let Mf

be a quasi-linear mean. Then, U is not left (right) distributive over Mf .

3.2 Distributivity of associative a-CAOA over quasi-linear means

Now, the focus is on distributivity of aggregation operations with an annihilator over quasi-linear mean.

Theorem 3.6. Let A be a S-uninorm and let Mf be a quasi-linear mean. Then, A is not distributive over Mf .

Proof. Let suppose that a S-uninorm A with an annihilator a ∈ (0, 1) is distributive over quasi-linear mean Mf . The
case when a = 0 is solved in Proposition 3.3, since in that case S-uninorm reduces to conjunctive uninorm with neutral
element e ∈ (0, 1). Again, similarly to the proof of Theorem 7 from [4] the following can be obtained

A(x, y) = f−1(A1(x)f(y) +B(x)), (13)

or
A(x, y) = f−1(C(x)), (14)

where A1, B and C are three functions on [0, 1]. As in Proposition 3.1, (14) is not possible solution for S-uninorm
A, and only (13) remains as an option.

It follows from (13) and the structure of A for x ∈ (0, a) that

x = A(x, 0) = f−1(A1(x)f(0) +B(x)) and a = A(x, a) = f−1(A1(x)f(a) +B(x).

Hence,

f(x) = A1(x)m+B(x) and f(a) = A1(x)f(a) +B(x),

i.e.,
f(a)− f(x) = A1(x)(f(a)−m).

In order to determine A1(x), the following two cases have to be considered:

• f(a) = m. This implies a = 0, however it contradicts the starting assumption a ∈ (0, 1).

• f(a) ̸= m. Then A1(x) = f(a)−f(x)
f(a)−m and B(x) = f(a) f(x)−m

f(a)−m . Again, from the structure of A for x ∈ (0, a), it

follows that A(x, 1) = a. From (13) follows

f(a) =
f(a)− f(x)

f(a)−m
n+ f(a)

f(x)−m

f(a)−m
,

which implies f(x) = f(a) or f(a) = n = f(1). This results contradict the assumption of the strict monotonicity
of f, because x ∈ (0, a) and a ∈ (0, 1).
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Therefore, S-uninorm A is not distributive over quasi-linear mean Mf .

Similar claims can be shown for T-uninorms and bi-uninorms. That is, the following two theorems hold.

Theorem 3.7. Let A be a T-uninorm and Mf be a quasi-linear mean. Then A is not distributive over Mf .

Theorem 3.8. Let A be a bi-uninorm and Mf be a quasi-linear mean. Then A is not distributive over Mf .

The results from this section show that the distributivity of disjunctive (conjunctive) uninorms over quasi-linear
means is being reduced into the distributivity of t-conorms (t-norms) over quasi-linear means. Also, for a given quasi-
linear mean Mf , there does not exist a uninorm or a semi-uninorm from the class Nmin

e ∪Nmax
e with the neutral element

e ∈ (0, 1), nor a T-uninorm, a S-uninorm or a bi-uninorm, that is distributive with respect to Mf .

4 Distributivity of quasi-linear means over some aggregation operations

Results in this section concern the revers situation, i.e., distributivity of a quasi-linear mean Mf over some classes of
aggregation operations.

4.1 Distributivity of quasi-linear means over uninorms and semi-uninorms

Theorem 4.1. Let Mf be a quasi-linear mean, and let U be a disjunctive uninorm with a neutral element e ∈ (0, 1).
Then, Mf is not left (right) distributive over U.

Proof. Let suppose that (LD) holds. From the representation of Mf , it follows Mf (x, y) = f−1(w1f(x) + w2f(y)), for
all (x, y) ∈ [0, 1]2 where w1 + w2 = 1. Letting x = y = z in equation (LD), the following is obtained Mf (x,U(x, x)) =
U(Mf (x, x),Mf (x, x)). Now, from structure of Mf there follows

w1f(x) + w2f(U(x, x)) = f(U(x, x)), that is,

w1f(x) = (1− w2)f(U(x, x)) = w1f(U(x, x)).

Since f is a bijection, U(x, x) = x for all x ∈ [0, 1], i.e., U is an idempotent uninorm. Since U is an idempotent
uninorm, there holds (see [16]) U |[0,e]2 = min, U |[e,1]2 = max . On the remaining part of the unit square [0, 1]2, that is
for x < e < y, U(x, y) ∈ {x, y}.

Now, by letting x = 1, y ∈ (0, e), z = e in (LD), there holds

Mf (1, y) = Mf (1, U(y, e)) = U(Mf (1, y),Mf (1, e)). (15)

Since y < e, it follows Mf (1, y) < Mf (1, e). Also, Mf (1, e) > Mf (e, e) = e.

• If Mf (1, y) = e, then from (15) follows e = Mf (1, e). This is in contradiction with Mf (1, e) > e.

• If Mf (1, y) > e, then from (15) and since U |[e,1]2 = max, follows

Mf (1, y) = max(Mf (1, y),Mf (1, e)) = Mf (1, e),

which implies y = e, because Mf is strictly increasing. This is in contradiction with y ∈ (0, e).

Therefore, for all y ∈ (0, e), there should be Mf (1, y) < e. Now, since Mf is continuous, it follows

Mf (1, e) = lim
y→e−

Mf (1, y) ≤ e.

Again, this is in contradiction with Mf (1, e) > e.
Therefore, the quasi-linear mean Mf is not left distributive over disjunctive uninorm U with a neutral element

e ∈ (0, 1).

Similar result can be obtained for a conjunctive uninorm U.

Theorem 4.2. Let Mf be a quasi-linear mean, and let U be a conjunctive uninorm with a neutral element e ∈ (0, 1).
Then, Mf is not left (right) distributive over U.
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Therefore, according to [4], the only conclusion is that quasi-linear mean Mf is left (right) distributive over a
conjunctive uninorm with a neutral element e = 1, (t-norm) and over a disjunctive uninorm with a neutral element
e = 0 (t-conorm). That is, the following theorem hold.

Theorem 4.3. [4] Let Mf be a quasi-linear mean, and let F be a t-norm or a t-conorm. Mf is left (right) distributive
over F if and only if F = min or F = max.

Using similar arguments as in Theorem 4.1 and Theorem 4.2 the following result can be proven.

Theorem 4.4. Let U be a semi-uninorm from the classes Nmin
e ∪Nmax

e with a neutral element e ∈ (0, 1) and Mf be
a quasi-linear mean. Then Mf is not left (right) distributive over U.

4.2 Distributivity of quasi-linear means over associative a-CAOA

Now, we consider the left (right) distributivity of quasi-linear means with respect to the classes of aggregation operations
with an annihilator.

Theorem 4.5. Let A be a T-uninorm, and let Mf be a quasi-linear mean. Then, Mf is not left (right) distributive
over A.

Proof. Let suppose that a T-uninorm A has an annihilator a ∈ (0, 1). The case a = 1 is solved by Theorem 4.1, since
in that case T-uninorm reduces to a disjunctive uninorm with neutral element e ∈ (0, 1).

Let suppose that Mf is left distributive over a T-uninorm A. Similarly to the proof of Theorem 4.1 idempotency of
A is obtained.

Setting x = 1, y = 1, z = 0 in (LD), the following is obtained

Mf (1, a) = Mf (1, A(1, 0)) = A(Mf (1, 1),Mf (1, 0)) = A(1,Mf (1, 0)).

Now, from the structure of T-uninorm A follow:

• if Mf (1, 0) ≥ a, then Mf (1, a) = Mf (1, 0) which implies a = 0,

• if Mf (1, 0) < a, then Mf (1, a) = a = Mf (a, a) which implies a = 1.

Both cases are in contradiction with the assumption that a ∈ (0, 1).
Therefore, Mf is not left distributive over a T-uninorm A.

Similarly, we can obtain results for S-uninorms and bi-uninorms.

Theorem 4.6. Let A be a S-uninorm and Mf be a quasi-linear mean. Then Mf is not left (right) distributive over A.

Theorem 4.7. Let A be a bi-uninorm and Mf be a quasi-linear mean. Then Mf is not left (right) distributive over A.

From the previously presented results can be deduced that for a given uninorm and a semi-uninorm U from the
classes Nmin

e ∪ Nmax
e with a neutral element e ∈ (0, 1), does not exist a quasi-linear mean Mf that is left (right)

distributive with respect to U. Also, the same conclusion holds for T-uninorms, S-uninorms and bi-uninorms.

4.3 Distributivity of quasi-linear means over semi-t-operators

The focus of this section are semi-t-operators. Wang and Qin in [26] proved the following for a quasi-linear mean Mf

and a semi-t-operator F ∈ Fa,b:

• if a < b, then Mf is left (right) distributive over F if and only if F = max or F = min or F (x, y) = x for all
x, y ∈ [0, 1];

• if a > b, then Mf is left (right) distributive over F if and only if F = max or F = min or F (x, y) = y for all
x, y ∈ [0, 1].

However, the next results improve ones from [26] by showing that a can not be 1, and b can not be 0, that is that
F ̸= max and F ̸= min .

Theorem 4.8. Let Mf be a quasi-linear mean, and let F ∈ Fa,b be a semi-t-operator with a < b. Then, Mf is left
(right) distributive over F if and only if F (x, y) = x for all x, y ∈ [0, 1].
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Proof. (⇒) Here, only the case when Mf is left distributive over F is considered since the right distributivity proof is
analogous. Analogously to the proof of Theorem 4.1 there can be obtained that F (x, x) = x for all x ∈ [0, 1], i.e., that
F is an idempotent semi-t-operator. Then, by letting x = 0, y = 0, z = 1 in (LD), the following is obtained

Mf (0, a) = Mf (0, F (0, 1)) = F (Mf (0, 0),Mf (0, 1)) = F (0,Mf (0, 1)).

• If Mf (0, 1) < a, then it follows from the structure of F that Mf (0, a) = F (0,Mf (0, 1)) = Mf (0, 1), which implies
a = 1. This contradicts the assumption a < b ≤ 1.

• If Mf (0, 1) ≥ a, that it follows from the structure of F that Mf (0, a) = F (0,Mf (0, 1)) = a = Mf (a, a), which
implies a = 0.

Now, letting x = 1, y = 1, z = 0 in (LD), the following is obtained

Mf (1, b) = Mf (1, F (1, 0)) = F (1,Mf (1, 0)).

• If Mf (1, 0) ≤ b, then it follows from the structure of F that Mf (1, b) = F (1,Mf (1, 0)) = b = Mf (b, b) which
implies b = 1. Now, Theorem 2.10 implies that F (x, y) = x for all x, y ∈ [0, 1].

• If Mf (1, 0) > b, that it follows from the structure of F that Mf (1, b) = F (1,Mf (1, 0)) = Mf (1, 0), which implies
b = 0. This is contradiction to the assumption that 0 ≤ a < b.

The converse statement is obvious.

The analogous result for semi-t-operator F ∈ Fa,b with a > b can be obtain in the same manner.

Theorem 4.9. Let Mf be a quasi-linear mean, and let F ∈ Fa,b be a semi-t-operator with a > b. Then Mf is left
(right) distributive over F if and only if F (x, y) = y for all x, y ∈ [0, 1].

It should be emphasized that Theorem 4.8 and Theorem 4.9 show that structure of semi-t-operator F is the same
as in the case of left (right) distributivity of semi-t-operator with respect to quasi-linear mean Mf (see Theorem 3.7
and Corollary 3.8 from [26]).

5 Conclusion

This paper deals with distributivity equations on the whole domain for quasi-linear means on one side, and uninorms,
semi-uninorms from the classes Nmin

e ∪ Nmax
e with a neutral element e ∈ (0, 1), T-uninorms, S-uninorms and bi-

uninorms on the other. The results in Section 3 and Section 4 confirm the fact that distributivity law is strong condition
because distributivity equations between disjunctive (conjunctive) uninorms and quasi-linear means degrades into the
distributivity between t-conorms (t-norms) and quasi-linear means. Also, as seen, in the other cases distributivity
laws do not hold. Additionally, Theorem 4.8 and Theorem 4.9 improve corresponding ones from [26], i.e., semi-t-
operator F can be neither max nor min operator, it is being reduced to F (x, y) = x or F (x, y) = y for all x, y ∈
[0, 1]. In the forthcoming work analogous study to the one given in this paper will be done for the other classes of
aggregation operations such as uni-nullnorms and 2-uninorms. Also, since pairs of aggregation operators that are
satisfying distributivity law play an important role in utility theory (see [12, 14]), further investigations will go to this
direction as well.
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[7] J. Drewniak, P. Drygaś, E. Rak, Distributivity between uninorms and nullnorms, Fuzzy Sets and Systems, 159
(2008), 1646-1657.
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