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Abstract

Parametric time series models typically consists of model identification, parameter estimation, model diagnostic check-
ing, and forecasting. However compared with parametric methods, nonparametric time series models often provide
a very flexible approach to bring out the features of the observed time series. This paper suggested a novel fuzzy
nonparametric method in time series models with fuzzy observations. For this purpose, a fuzzy forward fit kernel-based
smoothing method was introduced to estimate fuzzy smooth functions corresponding to each observation. A simple
optimization algorithm was also suggested to evaluate optimal bandwidths and autoregressive order. Several common
goodness-of-fit criteria were also extended to compare the performance of the proposed fuzzy time series method com-
pared to other fuzzy time series model based on fuzzy data. Furthermore, the effectiveness of the proposed method was
illustrated through two numerical examples including a simulation study. The results indicate that the proposed model
performs better than the previous ones in terms of both scatter plot criteria and goodness-of-fit evaluations.
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1 Introduction

The time series prediction method has a wide range of applications in business, finance, computer science, engineering,
medicine, physics, chemistry, and many interdisciplinary fields (e.g.[6, 7, 33, 40, 46, 52]). It worths noting that the
traditional time series models lead to exact predictions. However, due to uncertain conditions of the future, it is better to
predict a quantity via imprecise values such as fuzzy sets. In addition, the traditional time series models fail to deal with
forecasting problems with vague or ambiguous observations represented by the linguistic concept. Such a shortcoming
could be overcome by the fuzzy-based time series models. In this regard, fuzzy time series approaches, introduced by
Song and Chissom [43], have successfully substituted the traditional ones. The fuzzy time series forecasting models
have three main steps. In step 1, the exact data are reported. By identifying the fuzzy logical relationships, the
forecasting values can be transformed via fuzzy quantities (based on their universe of discourse) in step 2. Step 3 offers
a defuzzified approach [5, 13, 16, 28, 31, 34, 57] to convert the fuzzy quantities into exact values. The identifying fuzzy
logical relationship techniques in step 2 mainly include fuzzy logical relationship groups and matrice [8, 11, 12, 15, 17,
37, 39, 42, 43, 45, 49, 50, 53], soft computing techniques [2, 3, 10, 19, 21, 41, 51, 54, 55, 56], and statistical techniques
adopted with fuzzy logic [8, 16, 29, 38, 47]. Step 2 plays an important role in the prediction performance of the proposed
model. Fuzzy time series models based on imprecise information have gained considerable attention in last decades due
to their vast applications in statistics and engineering. Many researchers have studied a time series model based on
imprecise information. Soft computing techniques used in this context are mainly a combination of fuzzy sets, artificial
neural networks, rough sets and evolutionary computation. Such approaches have been widely employed for exact or
fuzzy predictions based on exact historical data such as enrollment, stocks index prices, temperature, financial prediction
and electricity load (for a comprehensive review on these methods, see recent works of [1, 14, 20, 22, 23, 30, 32, 35, 36].
Other fuzzy time series methods rely of fuzzy data. In this regards, [48] proposed a fuzzy seasonal ARIMA for non-fuzzy
data in the cases where the future situations are predicted as fuzzy values.They suggested a fuzzy confidence region for
future forecasting. In addition, [24] proposed a statistical time series models based on fuzzy data. They suggested a
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semi-parametric time series model with fuzzy data, non-fuzzy coefficients and fuzzy smooth functions. Also, Zarei et
al. [58] applied a special version of Hesamian and Akbari model for triangular fuzzy data. The main contribution of
this paper is the investigation of a fuzzy nonparametric time series model based on fuzzy data inspired by method of
Hesamian and Akbari [26].

The purpose of this article is to extend a multiple nonlinear model for fuzzy time series data. For this purpose,
an additive kernel smoothing approach is proposed to estimate unknown fuzzy smoothing nonlinear functions. The
performance of the proposed method was also compared with the existing fuzzy time series techniques in terms of
several goodness-of-fit criteria. For practical reasons, the proposed method was further evaluated through a real data
and a simulation study. The numerical results indicate that the proposed method provides sufficiently accurate results
in a fuzzy time series model compared to the other ones.

The rest of this paper is organized as follows: Section 2 reviews some concepts including α-values of fuzzy numbers
and a generalized difference. In Section 3, an additive nonparametric fuzzy time series model with fuzzy smooth function
is suggested. Section 4 illustrates two numerical examples to evaluate the performance of the proposed method in terms
of some common performance measures. Finally, the main contributions of this paper will be summarized in Section 5.

2 Fuzzy numbers

This section reviews some basic definitions of fuzzy numbers which will be used in the proposed method. A fuzzy set
Ã of R (the real line) is defined by its membership function µÃ : R → [0,1]. In addition, a fuzzy set Ã of R is called
a fuzzy number (FN) if it is normal, i.e. there is a unique x∗

Ã
∈ R so that µÃ(x

∗
Ã
) = 1, and for every α ∈ [0, 1], the

set Ã[α] = {x ∈ R : µÃ(x) ≥ α} is a nonempty compact interval in R. This interval is denoted by Ã[α] = [ÃL
α, Ã

U
α ],

where ÃL
α = inf{x : x ∈ Ã[α]} and ÃU

α = sup{x : x ∈ Ã[α]}. To represent and handel FNs, several authors have
captured the information contained in a (unimodal) FN using a functional parametric form called an LR-fuzzy number

Ã = (a; la, ra)LR where la, ra > 0 with the following membership function:

Ã(x) =

{
L(a−x

la
), x ≤ a,

R(x−a
ra

), x > a,
(1)

where L and R are continuous and strictly decreasing functions from [0, 1] to [0, 1] satisfying L(0) = R(0) = 1 and

L(1) = R(1) = 0. A commonly used type of LR-fuzzy number are triangular fuzzy numbers (TFNs) Ã = (a; la, ra)T
with L(x) = R(x) = 1− x whose membership function is:

Ã(x) =


x−(a−la)

la
a− la ≤ x ≤ a,

a+ra−x
ra

a ≤ x ≤ a+ ra,

0 x ∈ R− [a− la, a+ ra].

(2)

Definition 2.1. [27] The α-values of a FN Ã are defined for each α ∈ [0, 1] as follows:

Ãα =

 ÃL
2α α ∈ [0, 0.5],

ÃU
2(1−α) α ∈ (0.5, 1],

(3)

Remark 2.2. It should be noted that the relationship between α-values and α-cuts of a FN Ã can be evaluated as
follows:

Ã[α] = [ÃL
α, Ã

U
α ] = [Ãα/2, Ã1−α/2]. (4)

Therefore, according to Resolution identity [4], the membership degree of Ã at x ∈ R can be computed as:

Ã(x) = sup{α ∈ [0, 1] : x ∈ [Ãα/2, Ã1−α/2]}.

Remark 2.3. Let λ ∈ R and Ã and B̃ be two FNs. Then, for any α ∈ [0, 1], the following relationships relevant to

some arithmetic operations of FNs hold for α-values of Ã and B̃:

1. (Ã⊕ B̃)α = Ãα + B̃α.
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2. (λ⊗ Ã)α =

{
λÃα, λ ≥ 0,

−λÃ1−α, λ < 0.

where ⊕ and ⊗ denote the addition and multiplication operators in fuzzy domain [4].

Definition 2.4. [25] The generalized difference between two FNs Ã and B̃ is defined as a FN Ã⊖G B̃ with the following
α-values:

(Ã⊖G B̃)α =

{
infβ∈[α,1−α](Ãβ − B̃β) for 0.0 ≤ α ≤ 0.50,

supβ∈[1−α,α](Ãβ − B̃β) for 0.50 ≤ α ≤ 1.0.
(5)

The arithmetic properties of ⊖G are employed in next section to provide a fuzzy nonparametric time series mode
(for more, see [25]).

Furthermore, a square error distance between two FNs Ã and B̃ [25] is employed in this to investigate the perfor-

mance of the proposed fuzzy time series model. For 1 ≤ p < ∞, the Lp-distance between two FNs Ã and B̃ is defined

by dp(Ã, B̃) = (
∫ 1

0
g(α)|Ãα − B̃α|pdα)1/p where

g(α) =

{
4α 0 ≤ α ≤ 0.5,

4(1− α) 0.5 ≤ α ≤ 1.
(6)

We will use this distance measure in our method for p = 1, 2.

Remark 2.5. Let Ã ∈ F(R) and f be a continuous function. The fuzzy function f(Ã) according to (Zadeh’s) Extension
principle [4] is can be rewritten as follows:

(f(Ã))α =

{
infβ∈[α,1−α] f(Ãβ) 0.0 ≤ α ≤ 0.50,

supβ∈[1−α,α] f(Ãβ) 0.50 < α ≤ 1.0.
(7)

Furthermore, a common defuzzification method known as “center of gravity” [44] is employed to examine performance

of the proposed fuzzy time series model using some common scatter plots. For a TFN Ã = (a; la, ra)T , the center of

gravity of Ã is evaluated as:
MÃ = a+ (ra − la)/3. (8)

3 Fuzzy nonparametric time series model

In this section, a fuzzy nonparametric time series model based on fuzzy data is introduced.

Definition 3.1. [24] The fuzzy-valued mapping X̃ : Ω → F(R) is called a fuzzy random variable if for any α ∈ [0, 1],

the real-valued mapping X̃α : Ω → R is a real-valued random variable on (Ω,A,P). In addition, it is said that

X̃1, X̃2, . . . , X̃T is a fuzzy time series random variables if for every α ∈ [0, 1], (X̃1)α, (X̃2)α, . . . , (X̃T )α is a sequence of

ordinary random variables indexed by time t. The observed value of X̃1, X̃2, . . . , X̃T is denoted by x̃1, x̃2, . . . , x̃T .

Definition 3.2. A fuzzy nonparametric time series model (FNTSM) is defined as follows:

x̃i =

p⊕
l=1

fl(x̃i−l)⊕ ϵ̃i, (9)

where

1. x̃1, x̃2, . . . , x̃T is a fuzzy time series,

2. fl(x̃i−l) shows fuzzy smooth functions to be estimated, and

3. ϵ̃i indicates a fuzzy error term.
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In order to estimate the fuzzy smooth functions f1(x̃i−1), f2(x̃i−2), ..., fp(x̃i−p), inspired by Hesamian and Akbari
[26], a fuzzy forward fit time series method is suggested. At first step, consider the univariate nonparametric fuzzy time
series model x̃i = f1(x̃i−1)⊕ ϵ̃1i . Extending the Nadaraya-Watson estimator [18] in the fuzzy environment, f1(x̃i−1) can
be evaluated via the α-value method as follows:

(
˜̂
f
K

1 (x̃i−1))α = [ inf
β∈[α/2,1−α/2]

g(β), sup
β∈[α/2,1−α/2]

g(β)], (10)

where

g(β) =
T∑

j=p+1

(
w1

j (x̃i−1;h1)(x̃j)β
)
,

and

w1
j (x̃i−1;h1) =

K
(

d1(x̃j ,x̃i−1)
h1

)
∑T

j=p+1 K
(

d1(x̃j ,x̃i−1)
h1

) .
in which K(.) shows a kernel function, hl > 0 is a bandwidth parameter. Since, w1

j (x̃i−1;h1) are positive constants, it

is easy to show that
˜̂
f
K

1 (x̃i−1) is a FN as:

˜̂
f
K

1 (x̃i−1) =
T⊕

j=p+1

(
w1

j (x̃i−1;h1)⊗ x̃j

)
. (11)

At the second step, by adding f2(x̃i−2) to the univariate fuzzy time series model x̃i = f1(x̃i−1)⊕ ϵ̃1i , we get a fuzzy time

series model as x̃i = f1(x̃i−1)⊕ f2(x̃i−2)⊕ ϵ̃2i . Substituting f̂K
1 (x̃i−1) instead of f1(x̃i−1) and applying the generalized

difference ⊖G on both sides, we get

x̃i ⊖G f̂1(x̃i−1) = (f̂1(x̃i−1)⊕ f2(x̃i−2)⊕ ϵ̃2i )⊖G f̂1(x̃i−1) = f2(x̃i−2)⊕ ϵ̃2i ,

Therefore, another univariate fuzzy time series model is obtained. Similar to the first step, the estimated value of f2(x̃)
can be attained as:

f̂K
2 (x̃i−2) =

T⊕
j=p+1

(
w2

j (x̃i−2;h2)⊗
(
x̃j ⊖G

˜̂
f
K

1 (x̃i−1)
))

, (12)

where

w2
j (x̃i−2;h2) =

K
(

d1(x̃j ,x̃i−2)
h2

)
∑T

j=p+1 K
(

d1(x̃j ,x̃i−2)
h2

) .
By continuing this procedure until (p − 1)th step, the fuzzy smooth functions f̂1(x̃i−1), f̂2(x̃i−2), ..., f̂p−1(x̃i−p) can be
estimated as:

f̂K
s (x̃i−s) =

T⊕
j=p+1

(
ws

j (x̃i−s;hs)⊗ (x̃j ⊖G

( s−1⊕
v=1

f̂K
v (x̃i−v)))

)
, s = 1, 2, ..., p− 1, (13)

where hs > 0 is a bandwidth parameter and

ws
j (x̃i−s;hs) =

K
(

d1(x̃j ,x̃i−s)
hs

)
∑T

j=p+1 K
(

d1(x̃j ,x̃i−s)
hs

) .
At the final step, consider the fuzzy multivariate nonlinear time series model x̃i =

⊕p−1
l=1 f̃l(x̃i−l)⊕ f̃p(x̃i−p)⊕ ϵ̃i. Similar

to the previous steps, the estimated value of f̃p(x̃i−p) can be then obtained as:

f̂K
p (x̃i−p) =

T⊕
j=p+1

(
wp

j (x̃i−p;hp)⊗
(
x̃j ⊖G

( p−1⊕
v=1

f̂K
v (x̃i−v)

)))
, (14)

where

wp
j (x̃i−p;hp) =

K
(

d1(x̃j ,x̃i−p)
hp

)
∑T

j=p+1 K
(

d1(x̃j ,x̃i−p)
hp

) .
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Remark 3.3. It should be pointed out that various performance measures have been proposed in the literature to estimate
and compare the forecasting accuracy in different models [9]. In this paper, some commonly used performance measures
were extended to estimate and compare the forecasting accuracy of different models:

1. Mean Forecast Error:

MFE =

∑T
i=p+1 d

2
2(
˜̂xi, x̃i)

T − p
. (15)

2. Mean Absolute Scaled Error:

MASE =

∑T
i=p+1 qi

T − p
, (16)

where

qi =
d2(˜̂xi, x̃i)

1
T−p

∑T
i=p+1 d

2
2(x̃i, x̃i−1)

. (17)

3. Mean Absolute Percentage Error:

MAPE =

∑T
i=p+1

∫
|
˜̂xi(x)−x̃i(x)

x̃i(x)
|dx× 100%

T − p
. (18)

4. Mean Similarity Measure:

MSM =
1

T − p

T∑
i=p+1

SUI(˜̂xi, x̃i), (19)

SUI(˜̂xi, x̃i) =
Card(˜̂xi ∩ x̃i)

Card(˜̂xi ∪ x̃i)
, (20)

where ∩, ∪ denote the intersection and union operators on the space of FNs, respectively; and Card(Ã) denotes

the cardinal number of Ã. Note that MSM ∈ (0, 1]. Therefore, it is reasonable that those values of MSM greater
than 0.5 indicate the degree of closeness between outputs and their corresponding estimations.

For a good forecast, MFE, MASE and MAPE should be close to zero as much as possible. In addition, to examine

the relation between X̃s and
˜̂
Xs, beside the mentioned goodness-of-fit measures, we also applied the center of gravity

to convert x̃s and ˜̂xs into the exact values Mx̃s and M˜̂xs. Then, according to the conventional regression models,
relationship between center gravity of Mx̃s (M˜̂xs) were investigated according to their plots.

Remark 3.4. To estimate the unknown components of the proposed FNTSM model, the bandwidth h = (h1, h2, . . . , hp)
⊤

and the autoregressive order p should be simultaneously estimated based on fuzzy time series (x̃1, . . . , x̃T )
⊤ and a specified

kernel function K. In this regards, three popular kernels including Epanechnikov, triweight and gaussian kernels (Table
1) were employed to examine their effect on performance measures. Since all the above mentioned target functions are
connected, a hybrid optimization algorithm is required to estimate such parameters. For this purpose, the optimal vector
of bandwidth h = (h1, h2, . . . , hp)

⊤ is then evaluated by minimizing the following extended cross validation criterion:

ĥ = arg min
h1,h2,...,hp

T∑
i=p+1

d22(x̃i, ˜̂x(i)

i ), (21)

where ˜̂x(i)

i denotes the estimation of x̃i based on the fuzzy data x̃j, j = p + 1, 2, . . . , T when j ̸= i. In addition, the
optimal autoregressive order popt is evaluated as popt = maxp∈{1,2,...} MSMh

p . In this regard, the following iterative

algorithm to the autoregressive order p and the optimal value of bandwidth h = (h1, h2, . . . , hp)
⊤ is suggested as follows:

1) Let p = 1.

2) Choose ĥp as the optimal bandwidth throughout an extended cross-validation criterion:

ĥp = arg min
h1,h2,...,hp

T∑
i=p+1

d22(x̃i, ˜̂x(i)

i ),

where ˜̂x(i)

i denotes the estimation of x̃i based on the fuzzy data x̃j, j = p+ 1, 2, . . . , T where j ̸= i.
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Table 1: Some common kernel functions.

Epanechnikov K(y) =

{
3
4 (1− y2), |y| ≤ 1,

0, |y| > 1.

Triweight K(y) =

{
35
32 (1− y2)3, |y| ≤ 1,

0, |y| > 1.

Gaussian K(y) = 1√
2π

e−0.5y2

.

3) Let p = p+ 1 and return to step 2 until |MSM
ĥp+1

p+1 −MSM
ĥp
p | < ϵ for a small value of ϵ > 0.

Therefore, p∗ = p+ 1 and ĥ
∗
= ĥp+1 are the optimal autoregressive order and optimal bandwidth.

Remark 3.5. A fuzzy semi parametric linear time series model (FSPTSM) introduced by Hesamian and Akbari [24]
as:

x̃i = ⊕p
l=1(θl ⊗ x̃i−l)⊕ f̃(ti)⊕ ϵ̃i, i = p+ 1, p+ 2, . . . , T,

where

1. x̃i = (xi; lxi , rxi)LR,

2. f̃(ti) = (f(ti); lf(ti), rf(ti))LR,

3. θl’s, for l = 1, 2, . . . , p, are unknown real-valued coefficients which should be estimated,

4. ϵ̃i = (ϵi; lϵi , rϵi)LR’s are fuzzy errors.

For selecting the optimal bandwidth h and autoregressive order p an algorithm was presented which combines both
cross-validation procedure and least square error estimation:

1) Choose a grid for p ∈ {1, 2, . . .} and a grid for h ∈ {0.01, 0.02, . . . , 3},

2) compute:

CVp(h) =
1

T − p

T−p∑
i=p+1

d22
(˜̂xp

i (h), x̃i

)
,

where ˜̂xp

i (h) denotes the estimation of x̃i, related to the autoregressive order p and bandwidth h, based on the fuzzy
data x̃j, j = p+ 1, 2, . . . , T when j ̸= i, and

MDh(p) =

∑T
i=p+1 d

2
2(
˜̂xp

i (h), x̃i)

T − p
,

Sh(p) =
1

T − p

T∑
i=p+1

SUI(˜̂xp

i (h), x̃i),

3) Choose hopt as the optimal bandwidth such that:

CVp(hopt) = min
h∈{0.01,0.02,...,3}

CVp(h),

and the optimal autoregressive order as:

popt = min
p∈{1,2,...,P}

g(p),

where g(p) =
MDhopt (p)

Shopt (p)
.

Compared to the proposed algorithm with the method of Hesamian and Akbari, it can be seen that: 1- The method of
Hesamian and Akbari relies on a fuzzy linear time series model while the proposed method is a fuzzy nonlinear regression
model which is often happens in many real applications, 2- In our method the only unknown parameters to be estimated
are bandwidths and autoregressive parameter, and 3- The proposed method provides a simple calculation procedure to
estimate the unknown components of the model compared to Hesamian and Akbari method.
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Table 2: Performance measures of the proposed FNTSM in comparison with Hesamian and Akbari corresponding to
some specific kernels in Example 4.1.

Method Kernel Results

ĥ1 = 0.08ĥ2 = 0.11
MFE 42.04

gaussian MAPE 0.75
MASE 21.01
MSM 0.68

FNTSM ĥ1 = 0.08, ĥ2 = 0.10
MFE 42.04

triweight MAPE 0.88
MASE 13.66
MSM 0.78

ĥ1 = 0.11, ĥ2 = 0.09
MFE 34.49

Epanechnikov MAPE 0.81
MASE 17.461
MSM 0.71

hopt = 0.10, p = 4

Coefficient estimation θ̂1 = 0.064, θ̂2 = 0.053, θ̂3 = 0.011, θ̂4 = 0.028
MFE 65.24

triweight MAPE 0.42
MASE 34.146
MSM 0.41

FSPTSM hopt = 0.08, p = 4

Coefficient estimation θ̂1 = 0.041, θ̂2 = −0.023, θ̂3 =, θ̂4 = 0.026
MFE 69.53

gaussian MAPE 0.40
MASE 38.874
MSM 0.39

hopt = 0.15, p = 4

Coefficient estimation θ̂1 = 0.064, θ̂2 = 0.053, θ̂3 = 0.011, θ̂4 = 0.028
MFE 65.02

epanechnikov MAPE 0.42
MASE 36.978
MSM 0.40

4 Numerical examples

In this section, feasibility and effectiveness of the proposed FNTSM was examined via two numerical examples.
Moreover, the proposed FNTSM was also examined with a fuzzy semi-parametric time series model (FSPTSM)
introduced by Hesamian and Akbari [24]. We remove the method Zarei et al.[58] in our computational procedure since
it is a special case of Hesamian and Akbari model. In order to conduct a competitive study, the measures of MFE,
MAPE, MASE and MSM are applied to calculate the goodness-of-fit criteria. In addition, popular kernels including
triweight, Epanechnikov and gaussian were applied to examine the model’s performance.

Example 4.1. Consider a set of simulated data set of size n = 700 generated according to the following FNTSM:

x̃i =
2⊕

l=1

fl(x̃i−l)⊕ ϵ̃i, (22)

where

1. f1(x̃i) = 40⊗ cos(8/35⊗ x̃i) and f2(x̃i) = (−1)i ⊗ sin(8/350⊗ x̃i),

2. x̃1 = (0; 0.1, 0.2)T and x̃2 = (0; 0.2, 0.1)T ,

3. ϵ̃i = (ϵi; lϵi , rϵi)T where ϵi ∼ N(0, 16), lϵi and rϵi are random variables taken from U(1, 2).

The Mx̃ values are plotted in Fig. 1 which shows that there is a nonlinear relationship between fuzzy time series data.
For this case, the goodness-of-fit values corresponding to our FNTSM are summarized in Table 2 based on some specific
kernels. It can be seen that the best results are relevant to triweight kernel in terms of the performance measures of
MSM = 0.78, MFE = 42.04, MAPE = 0.88, MASE = 13.66. In order to compare our method with that of [24], the
results of FSPTSM are also summarized in Table 2 for applied kernels. Regarding each applied kernel and goodness-of-
fit criterion, the proposed fuzzy time series method provided more accurate results compared with Hesamian and Akbari’s
approach. On the other hand the triweight kernel led to the best performance measures in both methods. Performance
of the proposed FNTSM was also compared with FSPTSM for triweight kernel (the model with the best performance)
as shown in Fig. 2. It is clear that the values of M˜̂x in our method are closer to Mx̃ values compared to Hesamian
and Akbari method. Therefore, it can be concluded that the proposed method performs better than FSPTSM in this
example.
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Figure 1: Time series plot of Mx̃ values in Example 4.1.

Figure 2: Comparing M˜̂x’s and Mx̃’s based on triweight kernel in Example 4.1.

Example 4.2. The main aim of this example is to examine daily time series analysis of an air pollutant in Isfahan
City located in the center of Iran. The daily air pollution concentrations of ozone (O3) were selected from March 2015
to March 2016 based on 350 days. Such data were reported by symmetric TFNs as x̃i = (xi; 0.05xi)T . Time series
plot of xis is plotted in Fig. 3. For this case, the goodness-of-fit values corresponding to our FNTSM and FSPTSM
introduced by Hesamian and Akbari are summarized in Table 3 for some popular kernels. Comparing the goodness-
of-fit measurers of two methods, the proposed FNTSM gives better results corresponding to all kernels. However, the
best results were evaluated for triweight kernel in terms of goodness-of-fit measures of MSM = 0.73, MFE = 15.72,
MAPE = 0.76, MASE = 15.04. In this regards, the best fuzzy nonparametric time series model for prediction is
relevant to triweight kernel: ˜̂xi =

2⊕
l=1

f̂K(x̃i−l),

˜̂
f
K

1 (x̃i−1) =
350⊕
j=3

(
w1

j (x̃i−1; 0.1)⊗ x̃j

)
.

and

f̂K
2 (x̃i−2) =

350⊕
j=3

(
w2

j (x̃i−2; 0.08)⊗
(
x̃j ⊖G

˜̂
f
K

1 (x̃i−1)
))

,

in which

w1
j (x̃i−1; 0.1) =

K
(

d1(x̃j ,x̃i−1)
0.1

)
∑350

j=3 K
(

d1(x̃j ,x̃i−1)
0.1

) ,
and

w2
j (x̃i−2; 0.08) =

K
(

d1(x̃j ,x̃i−2)
0.08

)
∑350

j=3 K
(

d1(x̃j ,x̃i−2)
0.08

) .
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Performance of the proposed FNTSM relative to FSPTSM can be also investigated in Fig. 4. The results indicate
that, M˜̂x values in our method are closer to MX̃ than FNTSM. Therefore we conclude that the proposed FNTSM is
also more efficient than FSPTSM in this example.

Table 3: Performance measures of the proposed FNTSM in comparison with Hesamian and Akbari corresponding to
some specific kernels in Example 4.2.

Method Kernel Results

ĥ1 = 0.1, ĥ2 = 0.15, p̂ = 2
MFE 20.01

gaussian MAPE 0.655
MASE 20.604
MSM 0.63

FNTSM ĥ1 = 0.1, ĥ2 = 0.08, p̂ = 2
MFE 15.72

triweight MAPE 0.76
MASE 15.04
MSM 0.73

ĥ1 = 0.17, ĥ2 = 0.15, p̂ = 2
MFE 19.56

epanechnikov MAPE 0.66
MASE 17.07
MSM 0.65

ĥ = 1.85, p̂ = 4

Coefficient estimation θ̂1 = 0.216, θ̂2 = 0.273, θ̂3 = 0.231, θ̂4 = 0.265
MFE 30.23

triweight MAPE 0.476
MASE 30.53
MSM 0.47

ĥ = 1.65, p̂ = 4

Coefficient estimation θ̂1 = 0.247, θ̂2 = 0.290, θ̂3 = 0.218, θ̂4 = 0.230
MFE 30.512

FSPTSM gaussian MAPE 0.472
MASE 33.167
MSM 0.46

ĥ = 2, p̂ = 4

Coefficient estimation θ̂1 = 0.188, θ̂2 = 0.264, θ̂3 = 0.218, θ̂4 = 0.230
MFE 23.512

epanechnikov MAPE 0.472
MASE 36.215
MSM 0.46

Figure 3: Time series plot of x values in Example 4.2.

5 Conclusion

The classical fuzzy time series models are often conducted based on parametric models. However, it may be too
restrictive to suppose that the effect of such fuzzy data is a parametric relationship. The main aim of this paper was
to propose a fuzzy nonparametric methodology for the time series model with fuzzy data and fuzzy smooth functions.
For this purpose, a fuzzy forward fit kernel smoothing technique was introduced and discussed. In this content,
the cross-validation and similarity measures based on some popular kernel functions were employed to estimate non-
fuzzy bandwidths and autoregressive parameter. The effectiveness of the proposed fuzzy additive time series model
was also examined and compared in terms of some common goodness-of-fit criteria. A common defuzzified method
was also employed to compare the performance of the proposed method by some scatter plots. The results of the
numerical examples clearly showed the better performances of the proposed method compared to others. The proposed
approach showed potential effectiveness for fuzzy nonparametric time series model in real applications such as hydrology,
agriculture, industry, economics and social studies. Although the triangular fuzzy numbers were used in the numerical
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Figure 4: Comparing M˜̂x’s and Mx̃’s based on triweight kernel in Example 4.2.

evaluations, the proposed fuzzy additive time series model is still applicable for all kinds of fuzzy numbers. Extending
the proposed model for other types of statistical time series models such as seasonal time series are some potential
topics for future research.
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 فازی   ناپارامتری فازی بر اساس مشاهدات یک مدل سری زمانی

 

  ی صیتشخ  یمدل، برآورد پارامترها، بررس  ییشامل شناسا  معمولاً  یپارامتر  یزمان  یسر  ی هامدل.  دهیچک

پ اهستند  ی نیبشی مدل و  با    ی پارامتر نا  یزمان  یسر  ی ها، مدل یپارامتر  ی هابا روش  سه یحال، در مقا  ن ی. 

-یارائه م  یزمانی  هایسرت  مشاهدا  یهایژگینشان دادن و  ی برا  ریپذانعطاف  اریبس  کردیرو  ک یاغلب  

فاز  یزمان  یسر   یهادر مدل   د یجد  یفاز  یپارامترناروش    ک یمقاله    ن یادهند.    شنهادیپ  یبا مشاهدات 

برا است.  هموارساز  ک یمنظور،    ن یا  ی کرده  کرنل  بر  ی مبتن  ی روش  برآورد   ی برافازی    پیشرو   برازش 

معرفمربو   یفاز  هموارسازتوابع   به هر مشاهده  استشد  یط  ن  یسازنهیبه  تمیالگور  کی.  ه    ی راب  ز یساده 

بهینه باند    یپهنا  محاسبه اتورگرسیو  مرتبه  ن  نیکویی  اریمع  نیشد. چند  شنهادیپ  و    سه یمقا  یبرا  زیبرازش 

-بر اساس داده  یفاز  یزمان  یسر  یها مدل  ریبا سا  سه یدر مقا  یشنهادیپ  یفاز  یزمان  یعملکرد روش سر

اس  یشنهادیپ   وشر  کارایی،  نیارب. علاوه ه استداده شد  تعمیم،  یازف  یها از    ی دو مثال عدداز    تفاده با 

شب  کیجمله   نتا  یسازهی مطالعه  است.  شده  داده  م  جینشان  پینشان  مدل  که  نظر  هم    ی شنهادیدهد  از 

 .دارد یتربه کارایی یقبل یهانسبت به مدل هم معیارهای نیکویی برازشو  یطرح پراکندگ یارهایمع


