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Abstract

Testing the capability of a productive process on the basis of the flexible fuzzy quality using Yongting’s index is proposed
in this paper by the Monte Carlo simulation. The theoretical approach and detailed steps of an algorithm are given
to simulate the critical-value-based and also p-value-based approaches to statistical testing fuzzy quality. Also, the
probability of type II error of the quality test simulated by Monte Carlo approach. Moreover, a real-world case study
is provided to show the performance of the proposed algorithm for triangular and trapezoidal fuzzy qualities.
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1 Introduction and background

In quality control, such as other statistical problems, we may confront imprecise concepts. One practical case in quality
analyses is a situation in which the specification tolerance is a fuzzy set. In such a vague environment, products are
not qualified with a 0 and 1 boolean view, but to some degrees depending on the quality level of the products. This
matter can be caused to a justified judgment in decision making on manufacturing processes. Yongting [9] introduced
the concept of “fuzzy quality” in 1996 by substituting the indicator function I{x:x∈[LSL,USL]} with the membership

function of the fuzzy set Q̃. Motivations and merits of applying this flexible approach instead of using the classical
quality were discussed in [5]. Sadeghpour-Gildeh [7] compared capability indices Cp, Cpk and Yongting’s index with
respect to the measurement error occurrence. Amirzadeh et al. [1] proposed a new p-chart controlling the degree of
nonconformity based on fuzzy quality (FQ), and they expressed that the proposed control chart is more sensitive not
only to changes in the process mean, but also to changes in the variance. Another generation of process capability
indices was developed by Parchami and Mashinchi [4] to measure the capability of fuzzy quality.

Testing capability is a common method to check the performance of industrial production processes. Usually, the
test statistic of such test is the process capability index. Due to the complexity of the capability indices formulas, the
statistical distribution of the process capability estimator may not be clear, which makes a challenge in testing process
capability in applications. This challenge is also seen to test the process capability based on fuzzy quality, and we have
tried to solve it by proposing a simple and practical algorithm in this paper. In the proposed algorithm, a statistical
significance test is simulated for testing the capability of a fuzzy process on the basis of normal data.

This paper is organized as follows. The probabilistic capability index based on fuzzy quality is reviewed in Section
2. Moreover, a significance fuzzy quality test is investigated in Section 2. Then, the Monte Carlo testing fuzzy quality is
investigated by a practical algorithm in Section 3. A case study based on two triangular and trapezoidal fuzzy qualities
has been provided with real-world data in Section 4. The final section is conclusions and future works.
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2 Testing fuzzy quality

2.1 Capability index to measure fuzzy quality

Let f be the probability density/mass function of a one-dimensional quality characteristic X. Yongting (1996) intro-
duced the process capability index

CQ̃ =

{ ∫ +∞
−∞ Q̃(x) f(x) dx, for continuous quality characteristic,∑n
i=1 Q̃(xi) f(xi), for discrete quality characteristic,

(1)

based on fuzzy quality for precise data in which Q̃ is the membership function of fuzzy quality to construct the degree
of conformity with the standard fuzzy quality. Note that Q̃(x) represents the degree of conformity with standard
quality (or briefly, the degree of quality) when the measured quality characteristic of a product is x; see [5]. It must
be mentioned that the introduced process capability index in Eq. (1) is equal to the probability of the fuzzy quality

event, by considering Zadehs probabilistic definition [10], that is, CQ̃ = P
(
X ∈ Q̃

)
.

2.2 Significance fuzzy quality test and p-value

The main problem. For fuzzy quality analysis under the normality condition of one-dimensional quality characteristic,
the main problem is testing the null hypothesis

H0 : CQ̃ ≤ c0 (process is not capable),
against the alternative hypothesis

H1 : CQ̃ > c0 (process is capable),
based on the random sample x1, x2, . . . , xn with unknown mean and unknown variance parameters, where c0 ∈ (0, 1) is
the standard minimal criterion for Yongting’s capability index. From now on, we briefly call this problem Testing Fuzzy
Quality (TFQ) throughout this paper and the Monte Carlo simulation approach is investigated for TFQ in Section 3.

Now, we are going to derive a construction of a precise (and not fuzzy) test on the basis of the simulated distribution

of CQ̃, which is formally similar to recent tests. Obviously, the critical region of the proposed capability test is ĈQ̃ > c
in which c is the precise unknown critical value and

ĈQ̃ =

∫ +∞

−∞
Q̃(x) ϕ̂µ,σ(x) dx =

∫ +∞

−∞
Q̃(x) ϕµ̂,σ̂(x) dx, (2)

is the estimator of Yongting’s capability index based on the fuzzy quality Q̃ and random sample from normal distribution
with unknown parameters µ and σ2. Note that, the estimator of Yongting’s capability index can be easily obtained

by replacing unknown parameters µ and σ2 with their estimators µ̂ = X̄ and σ̂2 = S2 =
∑n

i=1(Xi−X̄)2

n−1 , respectively.

Considering random sample X1, . . . , Xn
i.i.d.∼ N

(
µ, σ2

)
with unknown parameters, the probability of type I error in

TFQ can be formulated by

α = sup
H0

Pr
(
ĈQ̃ > c

)
= Pr

(
ĈQ̃ > c | CQ̃ = c0

)
, (3)

and so

Pr
(
ĈQ̃ ≤ c | CQ̃ = c0

)
= 1− α. (4)

Therefore, the unknown critical value c is equal to the (1 − α)th quantile of ĈQ̃ distribution under the assumption
CQ̃ = c0, and finding a precise critical value c by the Monte Carlo simulation is investigated in Section 3 as the main
goal of this paper. Moreover, the p-value in TFQ is equal to

p-value = Pr
(
ĈQ̃ > ĉQ̃ | CQ̃ = c0

)
= E

[
I
(
ĈQ̃ > ĉQ̃ | CQ̃ = c0

)]
, (5)

where ĉQ̃ is the observed value of Yongting’s capability index based on x1, . . . , xn from Eq. (2) and I(A) is the indicator
function of event/set A. The power function of the fuzzy quality test using Yongting’s index is

Π(CQ̃) = Pr
(
ĈQ̃ > c

)
, (6)
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where c is the critical value. Therefore, the probability of type II error at c∗
Q̃

is equal to

β(c∗
Q̃
) = 1−Π(c∗

Q̃
) = Pr

(
ĈQ̃ ≤ c | CQ̃ = c∗

Q̃

)
= E

[
I
(
ĈQ̃ ≤ c | CQ̃ = c∗

Q̃

)]
, (7)

for any c∗
Q̃
> c0.

3 Monte Carlo testing fuzzy quality

An algorithm is proposed in bellow to simulate/compute the critical value, p-value and the probability of type II error
for the Monte Carlo TFQ at the given significance level α.

Algorithm 1.
Step 1: Compute the observed/estimated Yongting’s index ĉQ̃ on the basis of the observed random sample x1, x2, . . . , xn

by Eq. (2).
Step 2: Calculate sequence µ1 < µ2 < . . . < µk to cover the interquartile range [Q1, Q3] by the following formula

µj = Q1 +
j − 1

k − 1
(Q3 −Q1) , j = 1, 2, . . . , k, (8)

where Q1 and Q3 are 25th and 75th percentiles of observations x1, x2, . . . , xn.
Step 3: For any µj ∈ {µ1, µ2, . . . , µk},

a) compute the unknown value of root σ0 from the equation CQ̃ = c0, which is equivalent to the equation∫ +∞

−∞
Q̃(x) ϕµj ,σ0(x) dx = c0, (9)

b) simulate m = 103 random samples with size n from N
(
µj , σ

2
0

)
,

c) estimates ĉQ̃
[1]
, ĉQ̃

[2]
, . . . , ĉQ̃

[m]
for capability index, using Eq. (2) based on the fuzzy quality Q̃ for each simulated

sample from part (b),
d) considering Eq. (4), the critical value for m simulated samples in part (b) is equal to the (1 − α)th quantile of

ĈQ̃ distribution, that is

cj = ĉQ̃
(m(1−α))

, j = 1, . . . , k, (10)

where ĉQ̃
(1)

, ĉQ̃
(2)

, . . . , ĉQ̃
(m)

are the ordered estimated indices in part (c),
e) simulate the p-value by

p-valuej = I
(
ĈQ̃ > ĉQ̃ | CQ̃ = c0

)
=

1

m

m∑
r=1

I
(
ĉQ̃

[r]
> ĉQ̃ | µ = µj , σ = σ0

)
, j = 1, . . . , k, (11)

in which the simulated capability indices are denoted by ĉQ̃
[1]
, . . . , ĉQ̃

[m]
and σ0 is the computable root of the equation

CQ̃ = c0 from Part (a) by the Newton-Raphson method. Regarding to the strong low of large numbers, it must be
mentioned that the Monte Carlo estimator p-valuej almost surely converges to Eq. (5), for each iteration, as m → ∞,

f) for any arbitrary point c∗
Q̃
> c0, the simulated probability of type II error at c∗

Q̃
is

β(c∗
Q̃
)j = Pr

(
ĈQ̃ ≤ cj | CQ̃ = c∗

Q̃

)
= I

(
ĈQ̃ ≤ cj | CQ̃ = c∗

Q̃

)
=

1

m

m∑
r=1

I
(
ĉQ̃

[r] ≤ cj | µ = µj , σ = σ∗
0

)
, j = 1, . . . , k, (12)

in which σ∗
0 is the computable root of equation CQ̃ = c∗

Q̃
by Newton-Raphson method and also the simulated indices

basis of µj and σ∗
0 are denoted by ĉQ̃

[1]
, . . . , ĉQ̃

[m]
. Note that the Monte Carlo estimator β(c∗

Q̃
)j almost surely converges
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to Eq. (7), as m → ∞.
Step 4: Monte Carlo critical value in TFQ is equal to the average of k calculated critical values in Step 3 and therefore

c =
1

k

k∑
j=1

cj . (13)

Step 5 (Decision rule): The process is capable, that is, the null hypothesis is rejected at significance level α, if
ĉQ̃ > c; otherwise the process is incapable.
Step 6 (p-value): The Monte Carlo p-value in TFQ is equal to the average of k calculated p-values in iterations of
Part (e), that is,

p̂-value =
1

k

k∑
j=1

p-valuej . (14)

Step 7 (Probability of type II error): Finally, the Monte Carlo probability of type II error at c∗
Q̃
, for any

arbitrary point c∗
Q̃
> c0, is simulated in TFQ by the average of k calculated β in iterations of Part (f), i.e.

β̂(c∗
Q̃
) =

1

k

k∑
j=1

β(c∗
Q̃
)j . (15)

A real-world case study is presented in the next section to show the performance of Algorithm 1.

4 Case study

Piston rings for a vehicle engine are produced in a forging process. Twenty-five samples, each of size five, are taken
from the inside diameter length (in terms of a millimeter) [3]; see Figs. 1 and 2. The degree of nonconformity was
defined by Amirzadeh et. al [1] based on the trapezoidal fuzzy quality, and a fuzzy p-chart was proposed. It must be
emphasized that all the programs and plots in this paper have been carried out with R software, and moreover the
piston rings data are accessible by “qcc” package [8].
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Figure 1: Box plots of 25 samples of piston rings in millimeter.

In continue, we are going to test the capability of a manufacturing process for the inside diameter measurement of
the produced rings based on Yongting’s index at significance level 0.01 by considering the trapezoidal fuzzy quality

Q̃(x) =


x−73.96

0.03 if 73.96 ≤ x < 73.99,
1 if 73.99 ≤ x < 74.02,
74.03−x

0.01 if 74.02 ≤ x < 74.03,
0 elsewhere.
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Figure 2: Histogram and kernel density estimation for 125 observed inside diameters.

The above membership function of the non-symmetric trapezoidal fuzzy quality is drawn in Fig. 3, and also the degrees
of conformity and nonconformity for each observation are denoted at the left and right sides of Fig. 3, respectively.
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Figure 3: Membership function of trapezoidal fuzzy quality Q̃ and the related degree of nonconformity.

Figure 4: Cullen and Frey graph of the observed inside diameters.

Monte Carlo simulation approach is considered in this study to test H0 : CQ̃ ≤ 0.95, against H1 : CQ̃ > 0.95,
based on the observed random sample x1, . . . , x125. Shapiro-Wilk test strongly confirms the normality assumption of
the observed data with p-value = 0.786. Furthermore, to determine data distribution for these data set, a common
method can be used namely, the Cullen and Frey graph [2]. It suggests the selection of a best fit for an unknown
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distribution regarding to skewness level and kurtosis. On this graph, values for common distributions are shown to help
in the model selection. Fig. 4 shows the distribution of observation has a skewness of zero, which also normal, uniform,
and logistic distribution have zero skewness, but the kurtosis of observation model is close to the normal distribution.
Thus, by examining the skewness and kurtosis graph of the observed inside diameters of piston rings in Fig. 4, the
normal distribution model is appropriate to fit the data. Therefore by Eq. (2), the estimated Yongting’s index is equal
to

ĉQ̃ =

∫ 74.03

73.96

Q̃(x) ϕµ̂,σ̂(x) dx = 0.966,

in which ϕ is the probability density function of standard normal distribution, and unknown mean and variance of

normal random variable are estimable by µ̂ = x̄ = 74.00118 and σ̂2 = s2 = 0.010072, respectively. Hence, 0.966 < c is
the critical region of Monte Carlo TFQ at significance level α = 0.01, in which the critical value must be simulated by
using Algorithm 1. We did a simulation to compute the Monte Carlo critical value in TFQ, where the mean changes
over the following sequence: 73.99400, 73.99633, 73.99867, 74.00100, 74.00333, 74.00567 and 74.00800.

Considering the membership function of the fuzzy quality, the unknown root σ0 in the equation
∫
Q̃(x) ϕµj ,σ0(x) dx =

c0 is computed for all seven possible cases by the Newton-Raphson method. Then, 1000 independent random samples
are simulated from the normal distribution N

(
µ, σ2

0

)
for each case. For each simulated sample, we estimated Yongting’s

index using Eq. (2). After ordering 1000 estimated capability indices, the 990th capability index is considered as the
critical value for every seven possible cases. The left side graphs in Fig. 5 were shown the curve h(σ0) = CQ̃ − c0 in
first three iterations of Part (a) to compute its unknown root σ0. Moreover, corresponding histogram of the simulated
Yongting’s index with σ0 is shown in the right side graphs of Fig. 5 from Parts (a) in gray color, and also, histogram
of the simulated Yongting’s index with σ∗

0 is shown in the right side graphs based on Part (f). The total average of
seven captured critical values is equal to c = 0.973, which is considered as the Monte Carlo critical value of TFQ in
this study.
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Figure 5: Left: Curve h(σ0) = CQ̃ − c0 to compute its unknown root for first three iterations of Part (a). Right:
Histograms of the simulated Yongting’s index with σ0 and σ∗

0 for first three iterations in parts (a) and (f), respectively.

By comparing ĉQ̃ = 0.966 and c, the null hypothesis cannot be rejected and so the process is determined as an
incapable process at significance level 0.01. The results of the Monte Carlo simulation approach are summarized for
every iterations in Table 1 based on the considered trapezoidal fuzzy quality in this case study.
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Table 1: Results of seven iterations in the Monte Carlo simulation based on the trapezoidal fuzzy quality at different
significance levels 0.01 and 0.05.

j µj σ0j cj p-valuej β(c∗
Q̃
)j

α = 0.01 1 73.99400 0.0078 0.968 0.027 0.132
c0 = 0.95 2 73.99633 0.0095 0.970 0.053 0.225
c∗
Q̃
= 0.975 3 73.99867 0.0106 0.971 0.049 0.320

4 74.00100 0.0111 0.972 0.062 0.357
5 74.00333 0.0111 0.975 0.079 0.494
6 74.00567 0.0106 0.975 0.087 0.515
7 74.00800 0.0097 0.975 0.097 0.531

c = 0.973 p̂-value = 0.065 β̂ = 0.368
α = 0.05 1 73.99400 0.0086 0.956 0.002 0.008
c0 = 0.94 2 73.99633 0.0103 0.958 0.004 0.008
c∗
Q̃
= 0.973 3 73.99867 0.0113 0.958 0.005 0.032

4 74.00100 0.0117 0.959 0.009 0.045
5 74.00333 0.0117 0.961 0.016 0.079
6 74.00567 0.0111 0.962 0.024 0.103
7 74.00800 0.0102 0.962 0.025 0.129

c = 0.959 p̂-value = 0.012 β̂ = 0.058

Now, let us consider the following triangular fuzzy quality in TFQ (see Fig. 6)

Q̃∆(x) =


x−73.96
0.045 if 73.96 ≤ x < 74.005,

74.03−x
0.025 if 74.005 ≤ x < 74.03,

0 elsewhere.

By considering the triangular fuzzy quality instead of the trapezoidal fuzzy quality, the estimated Yongting’s capabil-
ity index strictly decreases to ĉQ̃∆

= 0.7665, so that the simpler quality test H0 : CQ̃∆
≤ 0.72, versus H1 : CQ̃∆

> 0.72
by the Monte Carlo approach lead us to the critical value 0.748. Therefore, the null hypothesis rejected at significance
level 0.05, by considering the triangular fuzzy quality Q̃∆, and hence the process is capable at this level. Graphical
information about first three iterations of Algorithm 1 is depicted in Fig. 7 based on triangular fuzzy quality.
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Figure 6: Membership function of the triangular fuzzy quality Q̃∆ and the related degree of nonconformity.
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Figure 7: Left: Curve h(σ0) = CQ̃∆
− c0 to compute its unknown root σ0 for first three iterations of Part (a). Right:

Histograms of the simulated Yongting’s index with σ0 and σ∗
0 for first three iterations in parts (a) and (f), respectively.

5 Comparison with traditional capability indices

Traditional process capability indices Cp = USL−LSL
6σ and Cpm = USL−LSL

6
√

σ2+(µ−T )2
have many applications in industry,

where LSL is the lower specification limit, USL is the upper specification limit, T is the target value and σ is the
process standard deviation. In this section, we are going to test the quality of inside diameters of piston rings - by
considering both crisp quality and fuzzy quality - on the basis of indices Cp, Cpm and the Yongting’s index CQ̃ at
different significance levels.

In quality test by Cp, the critical value based on the natural estimator Ĉp = USL−LSL
6S is equal to c0

√
n−1

χ2
n−1,α

, in

which c0 is the standard minimal criterion and χ2
n−1,α is the lower α-quantile of chi-square distribution with n − 1

degrees of freedom [6].
Also, the p-value for testing quality is equal to

p-value = Pr
(
Ĉp > ĉp | Cp = c0

)
= Pr

(
χ2
n−1 <

(n− 1)c20
ĉp

2

)
, (16)

where ĉp is the observed value of the index Cp based on x1, . . . , xn. Furthermore, the probability of type II error at
point c∗p is equal to

β(c∗p) = Pr
(
Ĉp ≤ c | Cp = c∗p

)
= 1− Pr

(
χ2
n−1 <

(n− 1)c∗2p
c2

)
, (17)

for any c∗p > c0. It must be mentioned that the critical value, the probability of type II error and the p-value for the

crisp quality test by Cpm based on the natural estimator Ĉpm = USL−LSL

6
√

S2+(X̄−T )2
were simulated by the Monte Carlo

simulation approach similar to what was presented in Algorithm 1. Moreover, in testing crisp quality based on indices
Cp and Cpm, specification LSL = 73.96 and USL = 74.03, and also the target value T = 73.999 were considered.

Regarding to the above discussion, four following quality tests were considered with various critical values in Table
2 at different significance levels for inside diameters of piston rings:
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(1) testing the crisp quality based on Cp,
(2) testing the crisp quality based on Cpm,
(3) testing the trapezoidal fuzzy quality based on Yongting’s index CQ̃, and
(4) testing the triangular fuzzy quality based on Yongting’s index CQ̃∆

.
For each case, the critical value, the p-value and the result of the quality test were computed/simulated in Table

2 at significance levels 0.010, 0.025, 0.05 and 0.100. Furthermore, the Monte Carlo probability of type II error were
simulated in Table 2 by Eq. (15), for each quality test at three various points c∗

Q̃
.

Table 2: Results of several testing crisp quality and fuzzy quality for inside diameters of piston rings with various
critical values and significance levels.
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6 Conclusions and future works

Evaluation and testing of the capability of manufacturing processes was investigated in this article by using the Yongt-
ing’s capability index. The main goal of this investigation was to estimate the critical value and p-value as well as the
probability of type II error by a Monte Carlo simulation approach for the normal quality characteristic based on flexible
fuzzy quality. The practitioners can use the proposed algorithm to determine whether their process meets the preset
capability requirement and make reliable decisions when the fuzzy quality is considered instead of crisp specification
limits. Also, a p-value-based approach is proposed for the capability test. Finally, a case study based on two triangular
and trapezoidal fuzzy qualities has been investigated with real-world data. Testing capability based on one-dimensional
and multivariate capability indices are two potential subjects for further research.
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 کارلو برای کیفیت فازیآزمون آماری مونت 

 

  و به کمک  پذیرانعطاف  کیفیت فازی  مبتنی برتولیدی    یندهایآفرین مقاله آزمون کارایی  در ا  .دهیچک

ب یانگتینگ  شبیه   ه شاخص  مونت روش  است.  سازی  شده  پیشنهاد  یک  یکرد،  رون  ایبرعلاوه کارلو 

شبیه کاربردی  وریتم  الگ بحرانی برای  مقدار  فازی  p-  و   سازی  کیفیت  آزمون  استارائه  نیز  مقدار  .  شده 

با استفاده از رویکرد مونت   دوم   احتمال خطای نوع نین  همچ سازی شده کارلو شبیه آزمون کیفیت فازی 

دو نوع  بر  تنی  مبپیشنهادی    ریتمنشان دادن عملکرد الگوبرای    یک مطالعه موردیاست. این مقاله شامل  

 .است  نیز ای  ذوزنقه مثلثی و کیفیت فازی  کیفیت فازی 


