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Abstract

In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms)
on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods by
Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we show that
the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and
t-conorms on bounded lattices. This paper has further constructed the t-norms and t-conorms on bounded lattices from
a mathematical viewpoint.
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1 Introduction and motivation

Aggregation operators [18] play an important role in theories of fuzzy sets and fuzzy logic. Two basic types of aggregation
functions, namely t-norms and t-conorms, were introduced by Schweizer and Sklar [26], in 1963. Although the t-norms
and t-conorms were strictly defined on the unit interval [0, 1], they were mostly studied on bounded lattices. The notion
of ordinal sum of semigroups in Clifford’s sense [7] was further developed by Mostert and Shields [22] and later used
for introducing new t-norms and conorms on the unit interval [0, 1], see [20]. Note that there is a minor difference in
ordinal sum construction for triangular norms (based on min operator) with those for triangular conorms (based on
max operator). Since Goguen’ s [17] generalization of the classical fuzzy sets (with membership values from [0, 1]) to
L-fuzzy sets (with membership values from a bounded lattice L), there is a growing interest in t-norms and t-conorms
on bounded lattices, in particular in ordinal sum constructions.

In general topology [14], closure and interior operators on the powerset P (X) of a nonempty set X are common
tools to construct topologies on X. Actually, there is a one-to-one correspondence between the set of all closure and
interior operators on P (X) and that of all topologies on X. Note that closure and interior operators on P (X) are
essentially defined on the inherent lattice structure on P (X) with set inclusion, set intersection and set union as the
partial order, the meet and the join on P (X), respectively.

In 1996, Drossos and Navara [11] studied a class of t-norms and t-conorms on any bounded lattice was generated
by the use of interior operators and closure operators, respectively. In 2006, Saminger [25] focused on ordinal sums
of t-norms acting on some particular bounded lattice which is not necessarily a chain or an ordinal sum of lattices.
Also, it was provided necessary and sufficient conditions for an ordinal sum operation yielding again a t-norm on some
bounded lattice whereas the operation is determined by an arbitrary selection of subintervals as carriers for arbitrary
summand t-norms. In 2012, Medina [21] presented several necessary and sufficient conditions for ensuring whether an
ordinal sum on a bounded lattice of arbitrary t-norms is a t-norm.

In 2015, a modification of ordinal sums of t-norms and t-conorms resulting to a t-norms and t-conorms on an
arbitrary bounded lattice was shown by Ertuğrul, Karaçal, Mesiar [15]. Further modifications were proposed by Aşıcı,
Mesiar [3, 4], Aşıcı [2], Çaylı [8, 9], Ouyang, Zhang, Baets [23] and Dan, Hu, Qiao [10]. In 2020, a new ordinal sum
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construction of t-norms and t-conorms on bounded lattices based on interior and closure operators was proposed by
Dvor̆ák, Holc̆apek [13]. Also, the proposed method generalized several known constructions and provided a simple tool
to introduce new classes of t-norms and t-conorms.

In this paper, we introduce some new constructions of t-norms and t-conorms by using interior and closure operators
on bounded lattices, respectively. The rest of this paper is organized as follows. In Section 2, some basic concepts and
results about t-norms, t-conorms, lattices are given. In Section 3, we propose a new method for constructing t-norms on
bounded lattices. Using this method, in Corollary 3.10 and Corollary 3.8, we obtain the methods proposed by Ertuğrul,
Karaçal, Mesiar [15] and Çaylı [8], respectively. In Section 4, we propose a new method for constructing t-conorms on
bounded lattices. Using this method, in Corollary 4.8 and Corollary 4.10, we obtain the methods proposed by Ertuğrul,
Karaçal, Mesiar [15] and Çaylı [8], respectively. In Section 5, we show that the introduced construction methods can
not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices.

2 Preliminaries

In this section, we present some basic facts about lattices, t-norms and t-conorms.
A lattice [6] is a partially ordered set (L,≤) in which each two element subset {x, y} has an infimum, denoted as

x∧y, and a supremum, denoted as x∨y. A bounded lattice (L,≤, 0, 1) is a lattice that has the bottom and top elements
written as 0 and 1, respectively. For short, we use the notation L instead of (L,≤, 0, 1) throughout all of the paper.

Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b are incomparable, in this case, we use the notation a ∥ b.
We denote the set of elements which are incomparable with a by Ia. So Ia = {x ∈ L | x ∥ a}.

Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b, a subinterval [a, b] of L is defined as [19]

[a, b] = {x ∈ L | a ≤ x ≤ b}.

Similarly, [a, b) = {x ∈ L | a ≤ x < b}, (a, b] = {x ∈ L | a < x ≤ b} and (a, b) = {x ∈ L | a < x < b}.

Definition 2.1. [20, 25] Let (L,≤, 0, 1) be a bounded lattice. A triangular norm T (t-norm) is a binary operation on
L which is commutative, associative, increasing with respect to both variables and satisfies T (x, 1) = x for all x ∈ L.

Definition 2.2. [1, 5, 25] Let (L,≤, 0, 1) be a bounded lattice. A triangular conorm S (t-conorm) is a binary operation
on L which is commutative, associative, increasing with respect to both variables and satisfies S(x, 0) = x for all x ∈ L.

Extremal t-norms T∧ and TW on a general bounded lattice L are defined, independently of L, as follows, respectively:

T∧(x, y) = x ∧ y, TW (x, y) =

{
x ∧ y if 1 ∈ {x, y},
0 otherwise.

Similarly, the t-conorms S∨ and SW on L are defined as follows, respectively:

S∨(x, y) = x ∨ y, SW (x, y) =

{
x ∨ y if 0 ∈ {x, y},
1 otherwise.

The following definition of an ordinal sum of t-norms defined on subintervals of a bounded lattice (L,≤, 0, 1) has
been extracted from [25], which generalizes the methods given in [20] on subintervals of [0, 1].

Definition 2.3. [25] Let (L,≤, 0, 1) be a bounded lattice and fix some subinterval [a, b] of L. Let V be a t-norm on
[a, b]. Then T : L2 → L defined by

T (x, y) =

{
V (x, y) if (x, y) ∈ [a, b]2,

x ∧ y otherwise.
(1)

is an ordinal sum (< a, b, V >) of V on L.

Definition 2.4. [25] Let (L,≤, 0, 1) be a bounded lattice and fix some subinterval [a, b] of L. Let W be a t-conorm on
[a, b]. Then S : L2 → L defined by

S(x, y) =

{
W (x, y) if (x, y) ∈ [a, b]2,

x ∨ y otherwise.
(2)

is an ordinal sum (< a, b,W >) of W on L.
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However, the operation T (resp. S) given by Formula (1) (resp. Formula (2)) need not be a t-norm (resp. t-conorm),
in general. Observe that condition ensuring that T (resp. S) given by (1) ((2)) is a t-norm (t-conorm) on L are given
in [25].

Definition 2.5. [16] Let (L,≤, 0, 1) be a bounded lattice. A mapping cl : L → L is said to be a closure operator if for
any x, y ∈ L, it satisfies the following three conditions:
(i) x ≤ cl(x).
(ii) cl(x ∨ y) = cl(x) ∨ cl(y).
(iii) cl(cl(x)) = cl(x).

Definition 2.6. [16] Let (L,≤, 0, 1) be a bounded lattice and b ∈ L be given. Then the mapping clb : L → L defined as
clb(x) = x ∨ b (∀x ∈ L) is a closure operator.

Definition 2.7. [23] Let (L,≤, 0, 1) be a bounded lattice. The set of all universally comparable elements in L, denoted
by UC(L), be defined as

UC(L) = {b ∈ L | ∀c ∈ L, either b ≤ c or c ≤ b }.

Definition 2.8. [23] Let (L,≤, 0, 1) be a complete lattice. The mapping ⇑: L → L defined as, for any x ∈ L,

⇑ (x) =
∧

{b ∈ UC(L) | b ≥ x},

is a closure operator.

Definition 2.9. [23] Let (L,≤, 0, 1) be a bounded lattice. A mapping int : L → L is said to be an interior operator if
for any x, y ∈ L, it satisfies the following three conditions:
(i) int(x) ≤ x,
(ii) int(x ∧ y) = int(x) ∧ int(y),
(iii) int(int(x)) = int(x).

Definition 2.10. [23] Let (L,≤, 0, 1) be a bounded lattice and b ∈ L be given. Then the mapping intb : L → L defined
as

intb(x) = x ∧ b (∀x ∈ L),

is an interior operator.

Definition 2.11. [23] Let (L,≤, 0, 1) be a complete lattice. The mapping ⇓: L → L defined as, for any x ∈ L,

⇓ (x) =
∨

{b ∈ UC(L) | b ≤ x},

is an interior operator.

In the following, it is proposed a method for generating t-norms and t-conorms on bounded lattices based on interior
and closure operators, respectively.

Theorem 2.12. [11, 12] Let (L,≤, 0, 1) be a bounded lattice, int : L → L and cl : L → L be an interior and a closure
operators on L, respectively. Then, the functions T : L2 → L and S : L2 → L are, respectively, a t-norm and a t-conorm
on L, where

T (x, y) =

{
x ∧ y if 1 ∈ {x, y},
int(x) ∧ int(y) otherwise.

(3)

S(x, y) =

{
x ∨ y if 0 ∈ {x, y},
cl(x) ∨ cl(y) otherwise.

(4)

3 New construction method for t-norms on bounded lattices by using
interior operators

In this section, we propose new construction method for t-norms on bounded lattices with the given t-norms by using
interior operators. The main aim of this section is to present a rather effective method to construct t-norms by using
interior operators on a bounded lattice. Using this method, in Corollary 3.8 and Corollary 3.10, we obtain the methods
proposed by Çaylı [8] and Ertuğrul, Karaçal, Mesiar [15], respectively.
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Theorem 3.1. Let (L,≤, 0, 1) be a bounded lattice with a ∈ L and int : L → L be an interior operator such that for
all x ∈ Ia it holds x ∧ a = int(x ∧ a). Given a t-norm V on [a, 1], then the function T : L2 → L defined as follows is a
t-norm on L where

T (x, y) =



V (x, y) if (x, y) ∈ [a, 1)2,

y ∧ a if (x, y) ∈ [a, 1)× Ia,

x ∧ a if (x, y) ∈ Ia × [a, 1),

x ∧ y ∧ a if (x, y) ∈ Ia × Ia,

x ∧ y if x = 1 or y = 1,

int(x) ∧ int(y) otherwise .

Proof. It is easy to see that T is commutative and has 1 as the neutral element.
i) Monotonicity: We prove that if x ≤ y, then T (x, z) ≤ T (y, z) for all z ∈ L. If z = 1, then we have that

T (x, z) = T (x, 1) = x ≤ y = T (y, 1) = T (y, z) for all x, y ∈ L. The proof can be split into all possible cases.

1. x ∈ [0, a),

1.1 y ∈ [0, a),

1.1.1. z ∈ [0, a) or z ∈ [a, 1) or z ∈ Ia,

T (x, z) = int(x) ∧ int(z) ≤ int(y) ∧ int(z) = T (y, z),

1.2. y ∈ [a, 1),

1.2.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ int(y) ∧ int(z) = T (y, z),

1.2.2. z ∈ [a, 1),
T (x, z) = int(x) ∧ int(z) ≤ x ≤ a ≤ V (y, z) = T (y, z),

1.2.3. z ∈ Ia,
T (x, z) = int(x) ∧ int(z) ≤ x ∧ z ≤ a ∧ z = T (y, z),

1.3. y ∈ Ia,

1.3.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ int(y) ∧ int(z) = T (y, z),

1.3.2. z ∈ [a, 1),
T (x, z) = int(x) ∧ int(z) ≤ x ≤ a ∧ y = T (y, z),

1.3.3. z ∈ Ia,
T (x, z) = int(x) ∧ int(z) ≤ x ∧ z ≤ y ∧ z ∧ a = T (y, z),

1.4. y = 1,

1.4.1. z ∈ [0, a) or z ∈ [a, 1) or z ∈ Ia,

T (x, z) = int(x) ∧ int(z) ≤ z = T (1, z),

2. x ∈ [a, 1),

2.1 y ∈ [a, 1),

2.1.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ int(y) ∧ int(z) = T (y, z),

2.1.2. z ∈ [a, 1),
T (x, z) = V (x, z) ≤ V (y, z) = T (y, z),

2.1.3. z ∈ Ia,
T (x, z) = z ∧ a = T (y, z),

2.2 y = 1,
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2.2.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ z = T (1, z),

2.1.2. z ∈ [a, 1),
T (x, z) = V (x, z) ≤ z = T (1, z),

2.1.3. z ∈ Ia,
T (x, z) = z ∧ a ≤ z = T (1, z),

3. x ∈ Ia,

3.1. y ∈ [a, 1),

3.1.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ int(y) ∧ int(z) = T (y, z),

3.1.2. z ∈ [a, 1),
T (x, z) = x ∧ a ≤ a ≤ V (y, z) = T (y, z),

3.1.3. z ∈ Ia,
T (x, z) = x ∧ z ∧ a ≤ z ∧ a = T (y, z),

3.2. y = 1,

3.2.1. z ∈ [0, a),
T (x, z) = int(x) ∧ int(z) ≤ z = T (1, z),

3.2.2. z ∈ [a, 1),
T (x, z) = x ∧ a ≤ a ≤ z = T (1, z),

3.2.3. z ∈ Ia,
T (x, z) = x ∧ z ∧ a ≤ z = T (1, z),

4. x = 1,
Then, it must be y = 1. Clearly, monotonicity holds.

ii) Associativity: We need to prove that T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ L. If at least one of x, y, z in
L is 1, then it is obvious. So, the proof is split into all possible cases.

1. x ∈ [0, a),

1.1 y ∈ [0, a),

1.1.1. z ∈ [0, a) or z ∈ [a, 1) or z ∈ Ia,

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z) = T (int(x) ∧ int(z), z) = T (T (x, y), z),

1.2. y ∈ [a, 1),

1.2.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z) = T (int(x) ∧ int(z), z) = T (T (x, y), z),

1.2.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, V (y, z)) = int(x) ∧ int(V (y, z))

= int(x) = int(x) ∧ int(y) ∧ int(z)

= T (int(x) ∧ int(y), z) = T (T (x, y), z),

1.2.3. z ∈ Ia,

T (x, T (y, z)) = T (x, z ∧ a) = int(x) ∧ int(z ∧ a)

= int(x ∧ z) = int(x) ∧ int(y) ∧ int(z)

= T (int(x) ∧ int(y), z) = T (T (x, y), z),
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1.3. y ∈ Ia,

1.3.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z) = T (int(x) ∧ int(y), z) = T (T (x, y), z),

1.3.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, y ∧ a) = int(x) ∧ int(y ∧ a)

= int(x ∧ y) = int(x) ∧ int(y) ∧ int(z)

= T (int(x) ∧ int(y), z) = T (int(x) ∧ int(y), z)

= T (T (x, y), z),

1.3.3. z ∈ Ia,

T (x, T (y, z)) = T (x, y ∧ z ∧ a) = int(x) ∧ int(y ∧ z ∧ a)

= int(x ∧ y ∧ z ∧ a) = int(x ∧ y ∧ z)

= int(int(x) ∧ int(y)) ∧ int(z) = T (int(x) ∧ int(y), z)

= T (T (x, y), z),

2. x ∈ [a, 1),

2.1 y ∈ [0, a),

2.1.1. z ∈ [0, a) or z ∈ [a, 1) or z ∈ Ia,

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z) = T (int(x) ∧ int(y), z) = T (T (x, y), z),

2.2. y ∈ [a, 1),

2.2.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z)

= int(z) = int(V (x, y)) ∧ int(z)

= T (V (x, y), z) = T (T (x, y), z),

2.2.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, V (y, z)) = V (x, V (y, z)) = V (V (x, y), z) = T (V (x, y), z) = T (T (x, y), z),

2.2.3. z ∈ Ia,
T (x, T (y, z)) = T (x, z ∧ a) = int(z ∧ a) = z ∧ a = T (V (x, y), z) = T (T (x, y), z),

2.3. y ∈ Ia,

2.3.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z)

= int(y ∧ z) = int(y ∧ a) ∧ int(z)

= T (y ∧ a, z) = T (T (x, y), z),

2.3.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, y ∧ a) = int(x) ∧ int(y ∧ a)

= int(y ∧ a) = int(y ∧ a) ∧ int(z)

= T (y ∧ a, z) = T (T (x, y), z),

2.3.3. z ∈ Ia,

T (x, T (y, z)) = T (x, y ∧ z ∧ a) = int(x) ∧ int(y ∧ z ∧ a)

= int(y ∧ z ∧ a) = int(y ∧ a) ∧ int(z)

= T (y ∧ a, z) = T (T (x, y), z),
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3. x ∈ Ia,

3.1 y ∈ [0, a),

3.1.1. z ∈ [0, a) or z ∈ [a, 1) or z ∈ Ia,

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z) = T (int(x) ∧ int(y), z) = T (T (x, y), z),

3.2. y ∈ [a, 1),

3.2.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z)

= int(x ∧ z) = int(x ∧ a) ∧ int(z)

= T (x ∧ a, z) = T (T (x, y), z),

3.2.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, V (y, z)) = x ∧ a = int(x ∧ a) = int(x ∧ a) ∧ int(z) = T (x ∧ a, z) = T (T (x, y), z),

3.2.3. z ∈ Ia,

T (x, T (y, z)) = T (x, z ∧ a) = int(x) ∧ int(z ∧ a) = int(x ∧ a) ∧ int(z) = T (x ∧ a, z) = T (T (x, y), z),

3.3. y ∈ Ia,

3.3.1. z ∈ [0, a),

T (x, T (y, z)) = T (x, int(y) ∧ int(z)) = int(x) ∧ int(y) ∧ int(z)

= int(x ∧ y ∧ a) ∧ int(z) = T (x ∧ y ∧ a, z)

= T (T (x, y), z),

3.3.2. z ∈ [a, 1),

T (x, T (y, z)) = T (x, y ∧ a) = int(x) ∧ int(y ∧ a)

= int(x ∧ y ∧ a) = int(x ∧ y ∧ a) ∧ int(z)

= T (x ∧ y ∧ a, z) = T (T (x, y), z),

3.3.3. z ∈ Ia,

T (x, T (y, z)) = T (x, y ∧ z ∧ a) = int(x) ∧ int(y ∧ z ∧ a)

= int(x ∧ y ∧ z ∧ a) = int(x ∧ y ∧ a) ∧ int(z)

= T (x ∧ y ∧ a, z) = T (T (x, y), z),

So, we have the fact that T is a t-norm on L.

Remark 3.2. Let (L,≤, 0, 1) be a bounded lattice with a ∈ L. In Theorem 3.1, observe that the condition for all x ∈ Ia
it holds x ∧ a = int(x ∧ a) can not be omitted, in general. The following example illustrates this fact that the function
T : L2 → L defined by Theorem 3.1 is not a t-norm.

Example 3.3. Consider the lattice (L1 = {0L1 , b, c, d, a, k,m, 1L1},≤, 0L1 , 1L1) in Figure 1. And we take the t-norm
V (x, y) = x ∧ y on [a, 1L1 ]. The interior operator int : L1 → L1 defined by int(0L1) = 0L1 , int(b) = int(c) = int(d) =
int(a) = int(k) = b, int(m) = m and int(1L1) = 1L1 . For all x ∈ Ia it does not hold x ∧ a = int(x ∧ a). Because,
k ∧ a = c ̸= b = int(c) = int(k ∧ a). Then, the function T on L1 defined by Table 1 is not a t-norm. Indeed, it does not
satisfy the associativity. Because T (k, T (m,m)) = T (k,m) = c ̸= b = T (c,m) = T (T (k,m),m).

Corollary 3.4. Let (L,≤, 0, 1) be a bounded lattice with a, b ∈ L such that for all x ∈ Ia it holds x ∧ a = x ∧ a ∧ b and
V be a t-norm on [a, 1]. Then, the function T : L2 → L defined by

T (x, y) =



V (x, y) if (x, y) ∈ [a, 1)2,

y ∧ a if (x, y) ∈ [a, 1)× Ia,

x ∧ a if (x, y) ∈ Ia × [a, 1),

x ∧ y ∧ a if (x, y) ∈ Ia × Ia,

x ∧ y if x = 1 or y = 1,

x ∧ y ∧ b otherwise .

is a t-norm on L.
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Figure 1: The lattice L1

Table 1: The function T on L1

T 0L1 b c d a k m 1L1

0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1

b 0L1 b b b b b b b
c 0L1 b b b b b b c
d 0L1

b b b b b b d
a 0L1 b b b a c a a
k 0L1

b b b c c c k
m 0L1 b b b a c m m
1L1 0L1 b c d a k m 1L1

We give next construction methods for t-norms on complete lattices from Definition 2.9 and Definition 2.11.

Corollary 3.5. Let (L,≤, 0, 1) be a complete lattice with a ∈ L, ⇓: L → L be defined in Definition 2.9 such that for all
x ∈ Ia it holds x ∧ a =⇓ (x ∧ a) and V be a t-norm on [a, 1]. Then, the binary operation T : L2 → L defined by

T (x, y) =



V (x, y) if (x, y) ∈ [a, 1)2,

y ∧ a if (x, y) ∈ [a, 1)× Ia,

x ∧ a if (x, y) ∈ Ia × [a, 1),

x ∧ y ∧ a if (x, y) ∈ Ia × Ia,

x ∧ y if x = 1 or y = 1,

⇓ (x)∧ ⇓ (y) otherwise .

is a t-norm on L.

We can give an example to illustrate Corollary 3.5.

Example 3.6. Consider the complete lattice (L2 = {0L2 , t, p, q, a, s, n, 1L2},≤, 0L2 , 1L2) in Figure 2. And we take
the t-norm V (x, y) = x ∧ y on [a, 1L2 ]. It is clear that UC(L2) = {0L2 , t, n, 1L2}. So, we obtain ⇓ (0L2) = 0L2 ,
⇓ (t) =⇓ (p) =⇓ (q) =⇓ (a) =⇓ (s) = t, ⇓ (n) = n and ⇓ (1L2) = 1L2 . Since for all x ∈ Ia it holds x ∧ a =⇓ (x ∧ a), L2

satisfies the constraint of Corollary 3.5. That is, q ∧ a = t =⇓ (t) =⇓ (q ∧ a) and s∧ a = t =⇓ (t) =⇓ (s∧ a). Then the
t-norm T : L2

2 → L2 constructed via Corollary 3.5 is given by Table 2.

Remark 3.7. If we take b = 0 in Corollary 3.4, then it must be x ∧ a = 0 for all x ∈ Ia. So, we obtain corresponding
t-norm as follows constructed by Çaylı [8].

Corollary 3.8. [8] Let (L,≤, 0, 1) be a bounded lattice with a ∈ L \ {0, 1} and V be a t-norm on [a, 1]. Then the
function T1 : L2 → L is a t-norm on L, where

T1(x, y) =


V (x, y) if (x, y) ∈ [a, 1)2,

x ∧ y if x = 1 or y = 1,

0 otherwise .
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Figure 2: The lattice L2

Table 2: The t-norm T on L2

T 0L2 t p q a s n 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

t 0L2 t t t t t t t
p 0L2 t t t t t t p
q 0L2 t t t t t t q
a 0L2 t t t a t a a
s 0L2 t t t t t t s
n 0L2 t t t a t n n
1L2 0L2 t p q a s n 1L2

Remark 3.9. If we take b = 1 in Corollary 3.4, then we obtain corresponding t-norm as follows constructed by Ertuğrul,
Karaçal and Mesiar [15].

Corollary 3.10. [15] Let (L,≤, 0, 1) be a bounded lattice and V be a t-norm on [a, 1]. Then the function T2 : L2 → L
is a t-norm on L, where

T2(x, y) =


V (x, y) if (x, y) ∈ [a, 1)2,

x ∧ y if x = 1 or y = 1,

x ∧ y ∧ a otherwise .

Remark 3.11. It should be noted that the t-norms T1 and T2 in Corollary 3.8 and Corollary 3.10, respectively are
different from the t-norm T in Theorem 3.1. To show that this claim, we shall consider the bounded lattice (L2 =
{0L2 , t, p, q, a, s, n, 1L2},≤, 0L2 , 1L2) described in Figure 2., we take the t-norm V (x, y) = x ∧ y on [a, 1L2 ] and the
interior operator int : L2 → L2 defined by int(0L2) = 0L2 , int(t) = int(p) = int(q) = int(a) = int(s) = t, int(n) = n
and int(1L2) = 1L2 . According to the Table 2, Table 3 and Table 4, it is clear that the t-norms T , T1 and T2 different
from each other.

Table 3: The t-norm T1 on L2

T1 0L2 t p q a s n 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

t 0L2 0L2 0L2 0L2 0L2 0L2 0L2 t
p 0L2 0L2 0L2 0L2 0L2 0L2 0L2 p
q 0L2 0L2 0L2 0L2 0L2 0L2 0L2 q
a 0L2 0L2 0L2 0L2 a 0L2 a a
s 0L2 0L2 0L2 0L2 0L2 0L2 0L2 s
n 0L2 0L2 0L2 0L2 a 0L2 n n
1L2 0L2 t p q a s n 1L2
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Table 4: The t-norm T2 on L2

T2 0L2 t p q a s n 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

t 0L2 t t t t t t t
p 0L2 t p t p t p p
q 0L2 t t t t t t q
a 0L2 t p t a t a a
s 0L2 t t t t t t s
n 0L2 t p t a t n n
1L2 0L2 t p q a s n 1L2

4 New construction method for t-conorms on bounded lattices by using
closure operators

In this section, we propose new construction method for t-conorms on bounded lattices with the given t-conorms by
using closure operators. The main aim of this section is to present a rather effective method to construct t-conorms by
using closure operators on a bounded lattice. Using this method, in Corollary 4.8 and Corollary 4.10, we obtain the
methods proposed by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8], respectively.

Theorem 4.1. Let (L,≤, 0, 1) be a bounded lattice with a ∈ L such that for all x ∈ Ia it holds x ∨ a = cl(x ∨ a) and
cl : L → L be a closure operator. Given a t-conorm W on [0, a], then the function S : L2 → L defined as follows is a
t-conorm on L where

S(x, y) =



W (x, y) if (x, y) ∈ (0, a]2 ,

y ∨ a if (x, y) ∈ (0, a]× Ia,

x ∨ a if (x, y) ∈ Ia × (0, a],

x ∨ y ∨ a if (x, y) ∈ Ia × Ia,

x ∨ y if x = 0 or y = 0,

cl(x) ∨ cl(y) otherwise .

Remark 4.2. Let (L,≤, 0, 1) be a bounded lattice with a ∈ L. In Theorem 4.1, observe that the condition for all x ∈ Ia
it holds x ∨ a = cl(x ∨ a) can not be omitted, in general. The following example illustrates this fact that the function
S : L2 → L defined by Theorem 4.1 is not a t-conorm.

Example 4.3. Consider the lattice (L3 = {0L3 , t, a, n, p, s, q, 1L3},≤, 0L3 , 1L3) in Figure 3. And we take the t-conorm
W (x, y) = x ∨ y on [0L3 , a]. The closure operator cl : L3 → L3 defined by cl(0L3) = 0L3 , cl(t) = t, cl(n) = cl(a) =
cl(s) = cl(p) = cl(q) = q, and cl(1L3) = 1L3 . For all x ∈ Ia it does not hold x ∨ a = cl(x ∨ a). Because, n ∨ a = p ̸=
q = cl(p) = cl(n ∨ a). Then, the function S on L3 defined by Table 5 is not a t-conorm. Indeed, it does not satisfy the
associativity. Because S(n, S(t, t)) = S(n, t) = p ̸= q = S(p, t) = S(S(n, t), t).

Figure 3: The lattice L3



Constructing t-norms and t-conorms interior and closure operators on bounded lattices 135

Table 5: The t-function S on L3

S 0L3 t a n p s q 1L3

0L3 0L3 t a n p s q 1L3

t t t a p q q q 1L3

a a a a p q q q 1L3

n n p p p q q q 1L3

p p q q q q q q 1L3

s s q q q q q q 1L3

q q q q q q q q 1L3

1L3 1L3 1L3 1L3 1L3 1L3 1L3 1L3 1L3

Corollary 4.4. Let (L,≤, 0, 1) be a bounded lattice with a, b ∈ L such that for all x ∈ Ia it holds x ∨ a = x ∨ a ∨ b and
W be a t-conorm on [0, a]. Then, the function S : L2 → L defined by

S(x, y) =



W (x, y) if (x, y) ∈ (0, a]2,

y ∨ a if (x, y) ∈ (0, a]× Ia,

x ∨ a if (x, y) ∈ Ia × (0, a],

x ∨ y ∨ a if (x, y) ∈ Ia × Ia,

x ∨ y if x = 0 or y = 0,

x ∨ y ∨ b otherwise .

is a t-conorm on L.

We give next construction methods for t-conorms on complete lattices from Definition 2.5 and Definition 2.8.

Corollary 4.5. Let (L,≤, 0, 1) be a complete lattice with a ∈ L, ⇑: L → L be defined in Definition 2.5 such that for all
x ∈ Ia it holds x ∨ a =⇑ (x ∨ a) and W be a t-conorm on [0, a]. Then, the binary operation S : L2 → L defined by

S(x, y) =



W (x, y) if (x, y) ∈ (0, a]2,

y ∨ a if (x, y) ∈ (0, a]× Ia,

x ∨ a if (x, y) ∈ Ia × (0, a],

x ∨ y ∨ a if (x, y) ∈ Ia × Ia,

x ∨ y if x = 0 or y = 0,

⇑ (x)∨ ⇑ (y) otherwise .

is a t-conorm on L.

We can give an example to illustrate Corollary 4.5.

Example 4.6. Consider the complete lattice (L4 = {0L4 ,m, r, a, k, c, d, 1L4},≤, 0L4 , 1L4) in Figure 4. And we take
the t-conorm W (x, y) = x ∨ y on [0L4 , a]. It is clear that UC(L4) = {0L4 ,m, d, 1L4}. So, we obtain ⇑ (0L4) = 0L4 ,
⇑ (m) = m, ⇑ (r) =⇑ (a) =⇑ (k) =⇑ (c) =⇑ (d) = d, and ⇑ (1L4) = 1L4 . Since for all x ∈ Ia it holds x ∨ a =⇑ (x ∨ a),
L4 satisfies the constraint of Corollary 4.5. That is, k ∨ a = d =⇑ (d) =⇑ (k ∨ a) and r ∨ a = d =⇑ (d) =⇑ (r ∨ a).
Then the t-conorm S : L2

4 → L4 constructed via Corollary 4.5 is given by Table 6.

Remark 4.7. If we take b = 0 in Corollary 4.4, then we obtain corresponding t-conorm as follows constructed by
Ertuğrul, Karaçal and Mesiar [15].

Corollary 4.8. [15] Let (L,≤, 0, 1) be a bounded lattice and W be a t-conorm on [0, a]. Then the function S1 : L2 → L
is a t-conorm on L, where

S1(x, y) =


W (x, y) if (x, y) ∈ (0, a]2,

x ∨ y if x = 0 or y = 0,

x ∨ y ∨ a otherwise .
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Figure 4: The lattice L4

Table 6: The t-conorm S on L4

S 0L4 m r a k c d 1L4

0L4 0L4 m r a k c d 1L4

m m m d a d d d 1L4

r r d d d d d d 1L4

a a a d a d d d 1L4

k k d d d d d d 1L4

c c d d d d d d 1L4

d d d d d d d d 1L4

1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4

Remark 4.9. If we take b = 1 in Corollary 4.4, then it must be x ∨ a = 1 for all x ∈ Ia. So, we obtain corresponding
t-conorm as follows constructed by Çaylı [8].

Corollary 4.10. [8] Let (L,≤, 0, 1) be a bounded lattice and a ∈ L \ {0, 1}. If W be a t-conorm on [0, a], then the
function S2 : L2 → L is a t-conorm on L, where

S2(x, y) =


W (x, y) if (x, y) ∈ (0, a]2,

x ∨ y if x = 0 or y = 0,

1 otherwise .

Remark 4.11. It should be noted that the t-conorms S1 and S2 in Corollary 4.8 and Corollary 4.10, respectively
are different from the t-conorm S in Theorem 4.1. To show that this claim, we consider the bounded lattice (L4 =
{0L4 ,m, r, a, k, c, d, 1L4},≤, 0L4 , 1L4) in Figure 4., we take the t-conorm W (x, y) = x ∨ y on [0L4 , a] and the closure
operator cl : L4 → L4 defined by cl(0L4) = 0L4 , cl(m) = m, cl(r) = cl(a) = cl(k) = cl(c) = cl(d) = d and cl(1L4) = 1L4 .
According to the Table 6, Table 7 and Table 8, it is clear that t-conorms S, S1 and S2 different from each other.

Table 7: The t-conorm S2 on L4

S1 0L4 m r a k c d 1L4

0L4 0L4 m r a k c d 1L4

m m m d a d c d 1L4

r r d d d d d d 1L4

a a a d a d c d 1L4

k k d d d d d d 1L4

c c c d c d c d 1L4

d d d d d d d d 1L4

1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4
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Table 8: The t-conorm S1 on L4

S2 0L4 m r a k c d 1L4

0L4 0L4 m r a k c d 1L4

m m m 1L4 a 1L4 1L4 1L4 1L4

r r 1L4 1L4 1L4 1L4 1L4 1L4 1L4

a a a 1L4 a 1L4 1L4 1L4 1L4

k k 1L4 1L4 1L4 1L4 1L4 1L4 1L4

c c 1L4 1L4 1L4 1L4 1L4 1L4 1L4

d d 1L4 1L4 1L4 1L4 1L4 1L4 1L4

1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4 1L4

5 Modified ordinal sum constructions of t-norms and t-conorms on bounded
lattices

From [8] and [15], we know that new t-norms and t-conorms on bounded lattices can be obtained using recursion in
Theorem 5.1, Theorem 5.2 and Theorem 5.5, Theorem 5.6, respectively. In this section, based on the approaches of
constructing t-norms and t-conorms by using interior and closure operators, respectively, proposed in Section 3 and
Section 4, we show that it can not be obtained ordinal sum constructions of t-norms and t-conorms on bounded lattice
L using recursion.

Theorem 5.1. [8] Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 1 = a0 >
a1 > a2 > ... > an = 0. Let V : [a1, 1]

2 → [a1, 1] be a t-norm. Then, the function Tn : L2 → L defined recursively as
follows is a t-norm, where V = T1 and for i ∈ {2, · · · , n}, the function Ti : [ai, 1]

2 → [ai, 1] is given by

Ti(x, y) =


Ti−1(x, y) if (x, y) ∈ [ai−1, 1)

2,

x ∧ y if x = 1 or y = 1,

ai otherwise .

(5)

Theorem 5.2. [15] Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 1 =
a0 > a1 > a2 > ... > an = 0. Let V : [a1, 1]

2 → [a1, 1] be a t-norm. Then, the function Tn : L2 → L defined recursively
as follows is a t-norm, where V = T1 and for i ∈ {2, · · · , n},

Ti(x, y) =


Ti−1(x, y) if (x, y) ∈ [ai−1, 1)

2,

x ∧ y if x = 1 or y = 1,

x ∧ y ∧ ai−1 otherwise .

(6)

Remark 5.3. Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 1 = a0 > a1 >
a2 > ... > an = 0. Let x ∧ ai = int(x ∧ ai) for all x ∈ Iai , let V : [a1, 1]

2 → [a1, 1] be a t-norm and int : L → L be an
interior operator. It should be noted that our construction method in Theorem 3.1 can not be obtained using recursion.
Because, we can not obtain the binary operation Ti : [ai, 1]

2 → [ai, 1] as follows, where T1 = V and for i ∈ {2, · · · , n},

Ti(x, y) =



Ti−1(x, y) if (x, y) ∈ [ai−1, 1)
2,

y ∧ ai−1 if (x, y) ∈ [ai−1, 1)× Iai−1 ,

x ∧ ai−1 if (x, y) ∈ Iai−1 × [ai−1, 1),

x ∧ y ∧ ai−1 if (x, y) ∈ Iai−1 × Iai−1 ,

x ∧ y if x = 1 or y = 1,

int(x) ∧ int(y) otherwise .

(7)

To illustrate this claim we shall give the following example:

Example 5.4. Consider the lattice (L5 = {05, a4, b, c, a3, a2, a1, 1L5},≤, 0L5 , 1L5) described in Figure 5 with the finite
chain 0L5 < a4 < a3 < a2 < a1 < 1L5 in L5. Then, the interior operator int : L5 → L5 defined by int(0L5) = 0L5 ,
int(a4) = int(a3) = int(a2) = int(a1) = int(c) = int(b) = a4, int(1L5) = 1L5 . It is clear that x ∧ ai = int(x ∧ ai) for



138 E. Aşıcı

Figure 5: The lattice L5

all x ∈ Iai . Define the t-norm V : [a1, 1L5 ]
2 → [a1, 1L5 ] by V = T∧. Since int(a1) ∧ int(a2) = a4 /∈ [a2, 1L5 ], we can

not obtain the binary operation T2 on [a2, 1L5 ]. Since int(a3) ∧ int(a1) = a4 /∈ [a3, 1L5 ], we can not obtain the binary
operation T3 on [a3, 1L5 ].

Theorem 5.5. [8] Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 0 = a0 <
a1 < a2 < ... < an = 1. Let W : [0, a1]

2 → [0, a1] be a t-conorm. Then, the function Sn : L2 → L defined recursively as
follows is a t-conorm, where S1 = W and for i ∈ {2, · · · , n}, the binary function Si : [0, ai]

2 → [0, ai] is given by

Si(x, y) =


Si−1(x, y) if (x, y) ∈ (0, ai−1]

2,

x ∨ y if x = 0 or y = 0,

ai otherwise .

(8)

Theorem 5.6. [15] Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 0 =
a0 < a1 < a2 < ... < an = 1. Let W : [0, a1]

2 → [0, a1] be a t-conorm. Then, the function Sn : L2 → L defined
recursively as follows is a t-conorm, where S1 = W and for i ∈ {2, · · · , n},

Si(x, y) =


Si−1(x, y) if (x, y) ∈ (0, ai−1]

2,

x ∨ y if x = 0 or y = 0,

x ∨ y ∨ ai−1 otherwise .

(9)

Remark 5.7. Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, · · · , an} be a finite chain in L such that 0 = a0 <
a1 < a2 < ... < an = 1. Let x ∨ ai = cl(x ∨ ai) for all x ∈ Iai , let W : [0, a1]

2 → [0, a1] be a t-conorm and cl : L → L be
a closure operator. It should be noted that our construction method in Theorem 4.1 can not be obtained using recursion.
Because we can not obtain the binary operation Si : [0, ai]

2 → [0, ai] as follows, where S1 = W and for i ∈ {2, · · · , n},

Si(x, y) =



Si−1(x, y) if (x, y) ∈ (0, ai−1]
2,

y ∨ ai−1 if (x, y) ∈ (0, ai−1]× Iai−1 ,

x ∨ ai−1 if (x, y) ∈ Iai−1 × (0, ai−1],

x ∨ y ∨ ai−1 if (x, y) ∈ Iai−1 × Iai−1 ,

x ∨ y if x = 0 or y = 0,

cl(x) ∨ cl(y) otherwise .

(10)

To illustrate this claim we shall give the following example

Example 5.8. Consider the lattice (L6 = {0L6 , a1, a2, a3,m, n, a4, 1L6},≤, 0L6 , 1L6) described in Figure 6 with the
finite chain 0L6 < a1 < a2 < a3 < a4 < 1L6 in L6. Then, the closure operator cl : L6 → L6 defined by cl(0L6) = 0L6 ,
cl(m) = cl(n) = cl(a1) = cl(a2) = cl(a3) = cl(a4) = a4, cl(1L6) = 1L6 . It is clear that x∨ ai = cl(x∨ ai) for all x ∈ Iai .
Define the t-conorm W : [0L6 , a1]

2 → [0L6 , a1] by W = S∨. Since int(a1) ∨ int(a2) = a4 /∈ [0L6 , a2], we can not obtain
the binary operation S2 on [0L6 , a2]. Since int(a3)∨ int(a1) = a4 /∈ [0L6 , a3], we can not obtain the binary operation S3

on [0L6 , a3].
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Figure 6: The lattice L6

6 Concluding remarks

In this paper, we have proposed the constructions of t-norms and t-conorms on bounded lattices with interior and
closure operators, respectively. The main aim of this paper is to present a rather effective method to construct t-norms
and t-conorms by using interior and closure operators on a bounded lattice, respectively. Also, using these methods,
in Corollary 3.10 and Corollary 4.8, we obtain the methods proposed by Ertuğrul, Karaçal and Mesiar [15]. Also, in
Corollary 3.8 and Corollary 4.10, we obtain the methods proposed by Çaylı [8]. Finally, we have shown that the new
construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on
arbitrary bounded lattice, respectively.
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ی  روی شبکه ها بسته اخلی وای د لگرهبا استفاده از عمها رمنهم -tها و رمن-tایجاد 

 محدود 

 

( ها رمنهم  -tهای )نرمهم( مثلثی و    هارم ن-tهای )  های ساخت برای نرم ما روش  ،این مقاله  در.  دهیچک

براین، کنیم. بناای داخلی و بسته پیشنهاد میهای محدود به ترتیب با استفاده از عملگرهمثلثی روی شبکه 

روش از  پیشنهبرخی  تهای  نتیجه    ] 8  [  Mesiarو    ]Ertugrul    ،Karacal  ]15وسط  ادی  در  را 

های ساخت دهیم که روشسرانجام، نشان میدهیم.  ه میئآوریم. همچنین، چند مثال گویا ارابدست می

به حاصلمعرفی شده را نمی استقراء  به  برای  توان  ترتیبی تعدیل شده  روی    هارم نهم  -tها و  رمن-tجمع 

ت  های شبکه مقاله،    عمیممحدود  این  و  رم ن-tداد.  ن  -tها  شبکه   ها رمهم  از روی  بیشتر  را  محدود  های 

 دیدگاه ریاضی ایجاد کرده است.


