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Abstract

In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms)
on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods by
Ertugrul, Karagal, Mesiar [I5] and Cayl [§] as results. Also, we give some illustrative examples. Finally, we show that
the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and
t-conorms on bounded lattices. This paper has further constructed the t-norms and t-conorms on bounded lattices from
a mathematical viewpoint.
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1 Introduction and motivation

Aggregation operators [I8] play an important role in theories of fuzzy sets and fuzzy logic. Two basic types of aggregation
functions, namely t-norms and t-conorms, were introduced by Schweizer and Sklar [Z6], in 1963. Although the t-norms
and t-conorms were strictly defined on the unit interval [0, 1], they were mostly studied on bounded lattices. The notion
of ordinal sum of semigroups in Clifford’s sense [ was further developed by Mostert and Shields [22] and later used
for introducing new t-norms and conorms on the unit interval [0, 1], see [20]. Note that there is a minor difference in
ordinal sum construction for triangular norms (based on min operator) with those for triangular conorms (based on
max operator). Since Goguen’ s [[7] generalization of the classical fuzzy sets (with membership values from [0, 1]) to
L-fuzzy sets (with membership values from a bounded lattice L), there is a growing interest in t-norms and t-conorms
on bounded lattices, in particular in ordinal sum constructions.

In general topology [I4], closure and interior operators on the powerset P(X) of a nonempty set X are common
tools to construct topologies on X. Actually, there is a one-to-one correspondence between the set of all closure and
interior operators on P(X) and that of all topologies on X. Note that closure and interior operators on P(X) are
essentially defined on the inherent lattice structure on P(X) with set inclusion, set intersection and set union as the
partial order, the meet and the join on P(X), respectively.

In 1996, Drossos and Navara [] studied a class of t-norms and t-conorms on any bounded lattice was generated
by the use of interior operators and closure operators, respectively. In 2006, Saminger [25] focused on ordinal sums
of t-norms acting on some particular bounded lattice which is not necessarily a chain or an ordinal sum of lattices.
Also, it was provided necessary and sufficient conditions for an ordinal sum operation yielding again a t-norm on some
bounded lattice whereas the operation is determined by an arbitrary selection of subintervals as carriers for arbitrary
summand t-norms. In 2012, Medina [21] presented several necessary and sufficient conditions for ensuring whether an
ordinal sum on a bounded lattice of arbitrary t-norms is a t-norm.

In 2015, a modification of ordinal sums of t-norms and t-conorms resulting to a t-norms and t-conorms on an
arbitrary bounded lattice was shown by Ertugrul, Karagal, Mesiar [[5]. Further modifications were proposed by Asici,
Mesiar [8, 4], Asia [2], Cayh [R, ], Ouyang, Zhang, Baets [23] and Dan, Hu, Qiao [I0]. In 2020, a new ordinal sum
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construction of t-norms and t-conorms on bounded lattices based on interior and closure operators was proposed by
Dvotdk, Holcapek [T3]. Also, the proposed method generalized several known constructions and provided a simple tool
to introduce new classes of t-norms and t-conorms.

In this paper, we introduce some new constructions of t-norms and t-conorms by using interior and closure operators
on bounded lattices, respectively. The rest of this paper is organized as follows. In Section 2, some basic concepts and
results about t-norms, t-conorms, lattices are given. In Section 3, we propose a new method for constructing t-norms on
bounded lattices. Using this method, in Corollary B0 and Corollary BR, we obtain the methods proposed by Ertugrul,
Karagal, Mesiar [H] and Cayl [8], respectively. In Section 4, we propose a new method for constructing t-conorms on
bounded lattices. Using this method, in Corollary E=8 and Corollary 10, we obtain the methods proposed by Ertugrul,
Karagal, Mesiar [I5] and Cayh [], respectively. In Section 5, we show that the introduced construction methods can
not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices.

2 Preliminaries

In this section, we present some basic facts about lattices, t-norms and t-conorms.

A lattice [B] is a partially ordered set (L, <) in which each two element subset {x,y} has an infimum, denoted as
x Ay, and a supremum, denoted as xVy. A bounded lattice (L, <,0,1) is a lattice that has the bottom and top elements
written as 0 and 1, respectively. For short, we use the notation L instead of (L, <,0,1) throughout all of the paper.

Given a bounded lattice (L, <,0,1) and a,b € L, if a and b are incomparable, in this case, we use the notation a | b.
We denote the set of elements which are incomparable with a by I,. So I, = {z € L | z || a}.

Given a bounded lattice (L, <,0,1) and a,b € L, a < b, a subinterval [a, b] of L is defined as [I9]

[a,b) ={x € L|a<z<b}.
Similarly, [a,b) ={z € L |a<z <b}, (a,b]={zr € L]a<x<b}and (a,b)={x €L |a<z<b}.

Definition 2.1. [P0, 25] Let (L, <,0,1) be a bounded lattice. A triangular norm T (t-norm) is a binary operation on
L which is commutative, associative, increasing with respect to both variables and satisfies T'(x,1) = x for all x € L.

Definition 2.2. [0, 8, 5] Let (L, <,0,1) be a bounded lattice. A triangular conorm S (t-conorm) is a binary operation
on L which is commutative, associative, increasing with respect to both variables and satisfies S(x,0) = x for all x € L.

Extremal t-norms T\ and Ty, on a general bounded lattice L are defined, independently of L, as follows, respectively:

x Ay ifle{x,y},

Th(z,y) =z Ny, Tw(z,y) = {0 otherwise

Similarly, the t-conorms S\, and Sy on L are defined as follows, respectively:

xVy if0e{x,y},

Sy(z,y) =z Vy, Sw(z,y) =
viz,y)=xVy w(2,9) {1 otherwise.

The following definition of an ordinal sum of t-norms defined on subintervals of a bounded lattice (L, <,0,1) has
been extracted from [Z5], which generalizes the methods given in [20] on subintervals of [0, 1].

Definition 2.3. [25] Let (L, <,0,1) be a bounded lattice and fix some subinterval [a,b] of L. Let V be a t-norm on
[a,b]. Then T : L? — L defined by

V(,y) if (2,y) € [a,b]?,
TAY otherwise.

T(x,y) = { (1)

is an ordinal sum (< a,b,V >) of V on L.

Definition 2.4. [25] Let (L,<,0,1) be a bounded lattice and fixz some subinterval [a,b] of L. Let W be a t-conorm on
[a,b]. Then S : L?> — L defined by

(2)

zVy otherwise.

S(a.y) = {W(w) if (x,y) € [a, b2,

is an ordinal sum (< a,b,W >) of W on L.
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However, the operation T (resp. S) given by Formula (0) (resp. Formula (B)) need not be a t-norm (resp. t-conorm),
in general. Observe that condition ensuring that T’ (resp. S) given by (I) ((2)) is a t-norm (t-conorm) on L are given
in [25].

Definition 2.5. [i6] Let (L, <,0,1) be a bounded lattice. A mapping cl : L — L is said to be a closure operator if for
any x,y € L, it satisfies the following three conditions:

(i) x < cl(z).

(1) cl(z Vy) =cl(z) Vl(y).

(1) cl(cl(z)) = cl(x).

Definition 2.6. [06] Let (L,<,0,1) be a bounded lattice and b € L be given. Then the mapping cly : L — L defined as
cp(x) =x Vb (Vx € L) is a closure operator.

Definition 2.7. [23] Let (L,<,0,1) be a bounded lattice. The set of all universally comparable elements in L, denoted
by UC(L), be defined as
UC(L)y={be L|Vce L, eitherb<corec<b}.

Definition 2.8. [23] Let (L,<,0,1) be a complete lattice. The mapping : L — L defined as, for any x € L,

t(z) = \{beUCL)|b>a},
is a closure operator.

Definition 2.9. [23] Let (L,<,0,1) be a bounded lattice. A mapping int : L — L is said to be an interior operator if
for any x,y € L, it satisfies the following three conditions:

(1) int(z) < z,

(#4) int(x A y) = int(z) A int(y),

(i31) int(int(z)) = int(z).

Definition 2.10. [23] Let (L, <,0,1) be a bounded lattice and b € L be given. Then the mapping inty : L — L defined
as
inty(z) =z Ab (Vx € L),

is an interior operator.

Definition 2.11. [23] Let (L, <,0,1) be a complete lattice. The mapping |: L — L defined as, for any x € L,

Y (z)=\/{beUC(L)|b<a},
1S an interior operator.

In the following, it is proposed a method for generating t-norms and t-conorms on bounded lattices based on interior
and closure operators, respectively.

Theorem 2.12. [0, 0] Let (L, <,0,1) be a bounded lattice, int : L — L and ¢l : L — L be an interior and a closure
operators on L, respectively. Then, the functions T : L> = L and S : L?> — L are, respectively, a t-norm and a t-conorm

on L, where
T Ay if 1€ {x,y},
T(z,y) =, , 123} (3)
int(x) Nint(y)  otherwise.

B zVy Zf0€{$,y}a
S(x,y) = {01(3;) Vel(y)  otherwise. W

3 New construction method for t-norms on bounded lattices by using
interior operators

In this section, we propose new construction method for t-norms on bounded lattices with the given t-norms by using
interior operators. The main aim of this section is to present a rather effective method to construct t-norms by using
interior operators on a bounded lattice. Using this method, in Corollary B8 and Corollary B0, we obtain the methods
proposed by Cayl [R] and Ertugrul, Karagal, Mesiar [I5], respectively.



128 E. Asice

Theorem 3.1. Let (L,<,0,1) be a bounded lattice with a € L and int : L — L be an interior operator such that for
all © € I, it holds x A a = int(x A a). Given a t-norm V on [a,1], then the function T : L?> — L defined as follows is a
t-norm on L where

Vie,y) 7 (2.9) € o, 112
yAa if (z,y) € [a,1) X Iq,
T(w,y) = rAa if (z,y) €I, X [a,1),
' TAYyANa if (x,y) €I, x I,
TAY ift=1o0ry=1,
int(x) Nint(y)  otherwise .

Proof. 1t is easy to see that T' is commutative and has 1 as the neutral element.
i) Monotonicity: We prove that if x < y, then T'(z,2) < T(y,z) for all z € L. If z = 1, then we have that
T(x,2) =T(z,1) =2z <y=T(y,1) =T(y,2) for all x,y € L. The proof can be split into all possible cases.

1. z € [0,a),
1.1 y €[0,a),
1.1.1. z €[0,a) or z € [a,1) or z € I,
T(x,z) =int(z) Aint(z) < int(y) Aint(z) = T(y, 2),

1.2. y € [a, 1),

1.2.1. z € [0,a),
T(z,2) = int(x) Nint(z) <int(y) Nint(z) = T(y, 2),

1.2.2. z € [a,1),
T(z,2z) =int(z) Nint(z) <z <a <V(y,z) =T(y,z2),
1.2.3. z €1,
T(x,2) =int(zx) Nint(z) <z Az<aAz=T(y,z),
1.3. y € I,
1.3.1. z €[0,a),
T(z,2) = int(x) Nint(z) <int(y) Nint(z) = T(y, 2),
1.3.2. z € [a,1),
T(z,z) =int(z) Nint(z) <z <aAy=T(y,z2),
1.33. z €I,
T(x,z) =int(zx) Nint(z) <z Az<yAzANa=T(y,z2),
14. y=1,

14.1. z €[0,a) or z € [a,1) or z € I,
T(z,z) =int(z) Nint(z) < z=T(1, z),
2. z€a,l),

2.1 y € [a,1),

2.1.1. z €[0,a),
T(x,2) = int(z) Nint(z) <int(y) Nint(z) = T(y, 2),

2.1.2. z €a,1),
T(x,z) =V(z,2) <V(y,2) = T(y,2),

21.3. z €I,
T(x,z) =zNa=T(y,z2),

2.2 y=1,



Constructing t-norms and t-conorms interior and closure operators on bounded lattices

2.2.1. z €[0,a),
2.1.2. z € [a,1),

2.1.3. z € 1,,

3. x €l,,

3.1. y € [a,1),
3.1.1. 2 €0,a),

3.1.2. z €a,1),
313. z€l,,

32 y=1,
3.2.1. z€[0,a),

3.2.2. z€la,l),

323. 2€1,,

4. =1,

T(x,z) =int(z) Nint(z) < z=T(1, 2),
T(x,z) =V(z,2) <z=T(1,2),

T(x,z)=2Na<z=T(1,z),

T(x,z) =int(x) ANint(z) < int(y) Aint(z) = T(y, 2),
T(x,z)=xha<a<V(yz)=T(y,z2),

T(z,z)=xzAzNa<zha=T(y,z),

T(x,z) =int(x) Nint(z) < z=T(1, 2),
T(x,z)=zNa<a<z=T(1,z2),

T(x,z)=xzANzha<z=T(1,2),

Then, it must be y = 1. Clearly, monotonicity holds.

129

ii) Associativity: We need to prove that T'(x,T(y,2)) = T(T(x,y), z) for all z,y,z € L. If at least one of x,y, z in
L is 1, then it is obvious. So, the proof is split into all possible cases.

1. z €10,a),

1.1 y € [0,a),

1.1.1. 2 €[0,a) or z € [a,1) or z € I,

T(x,T(y,2)) = T(x,int(y) Nint(z)) = int(x) Aint(y) Aint(z) = T(int(x) Nint(2), z) = T(T(z,y), 2),

1.2. y € [a,1),
1.2.1. z € [0,a),

T(z,T(y,2)) = T(x,int(y) Aint(z)) = int(x) Aint(y) Aint(z) = T(int(z) Nint(z2),z) = T(T(z,y), 2),

1.2.2. z € [a,1),

1.2.3. z € I,

T(x,T(y,2)) =T(x,V(y,2)) =int(xz) ANint(V(y, 2))
= int(x) = int(x) Aint(y) Aint(z)
— T(int(z) A int(y), 2) = T(T(z,y), 2)

T(x,T(y,2)) =T(x,z A a) =int(z) Nint(z A a)
= nt(x A z) = int(x) Nint(y) Aint(z)
= T(int(x) Nint(y), z) = T(T(z,y), 2),



130 E. Asicr

1.3. y € 1,,
1.3.1. z€[0,a),

T(x,T(y,2)) = T(x,int(y) A int(z)) = int(x) Aint(y) Aint(z) = T(int(x) Aint(y), z) = T(T(z,y), 2),

1.3.2. z € [a,1),
T(x,T(y,2)) =T (x,y Na) = int(x) ANint(y A a)
=int(x Ay) = int(x) Aint(y) Aint(z)
= T(int(x) Nint(y), z) = T (int(z) A int(y), z)
=T(T(x,y), ),
1.33. z ¢ I,
T(x,T(y,2)) =T(x,y Az Aa) =int(x) Nint(y Az A a)
=int(x AyAzAa)=int(x Ay A 2)
= int(int(x) Aint(y)) Aint(z) = T(int(z) Aint(y), 2)
=T(T(z,y),2),
2. z € [a,1),
2.1 y €[0,a),

2.1.1. z€[0,a) or z € [a,1) or z € I,
T(x,T(y,2)) = T(x,int(y) A int(z)) = int(x) Aint(y) Aint(z) = T(int(x) Aint(y), z) = T(T(z,y), 2),
2.2. y € [a,1),
2.2.1. z €[0,a),
T(x,T(y,2)) = T(x,int(y) Aint(z)) = int(x) Aint(y) A int(z)
= int(z) = int(V(x,y)) Aint(z)
=T(V(x,y),2) =T(T(x,y), 2),
2.2.2. z €a,1),

T(IrT(y’ Z)) = T(I’ V(y’ Z)) = V(‘T7 V(y,z)) = V(V(I7y)7 Z) = T(V(z7y)7 Z) = T(T(Iay)a Z)a

223, z €1,
T(x,T(y,2)) =T(x,zNa) =int(zNa) =zNa=T(V(x,y),z) =T(T(x,y), 2),
2.3. y € l,,
23.1. z€0,a),
T(x,T(y,2)) =T (x,int(y) ANint(z)) = int(x) Aint(y) Aint(z)
=int(y A z) =int(y A a) A int(z)
= T(y Na, Z) = T(T(Z‘, y)’ Z)7
2.3.2. z €a,1),
T(x,T(y,2)) =T(x,y A a) =int(z) Aint(y A a)
=int(y A a) = int(y A a) Aint(z)
= T(y Na, Z) = T(T(l’,y), Z)v
2.33. z €1,

T(x,T(y,2)) =T(x,y Az ANa) = int(x) Nint(y Az A a)
=int(y Az Aa) = int(y A a) A\int(z)
= T(y A a, Z) = T(T(IE, y)7 Z)a
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3. v€l,,
3.1 y€[0,a),
3.1.1. z€[0,a) or z € [a,1) or z € I,
T(x,T(y,2)) = T(x,int(y) Aint(z)) = int(x) Aint(y) A int(z) = T(int(z) Aint(y),z) = T(T(x,y), 2),

3.2. y € [a,1),
3.2.1. z€[0,a),
T(x,T(y,2)) = T(x,int(y) Aint(z)) = int(x) Aint(y) A int(z)

= int(x A z) = int(xz A a) Aint(z)

=T(xANa,z) =T(T(z,y), 2),
3.2.2. z €a,1),

T(x,T(y,2)) =T(x,V(y,2)) =x Aa=int(x Aa) = int(x Aa) Nint(z) =T(x ANa,z) =T(T(x,y), 2),
32.3. z¢ 1,
T(x,T(y,2)) =T(x,z Aa) =int(x) Nint(z ANa) =int(x Aa) ANint(z) =T(x ANa,z) =TT (x,y), 2),
3.3. y € l,,
3.3.1. z€0,a),
T(x,T(y,z)) = T(x,int(y) A int(z)) = int(x) Aint(y) Aint(z)

=imt(x AyANa)Nint(z) =T(x ANy Aa,z)

=T(T(x,y),2),
3.3.2. z €a,1),

T(x,T(y,2)) =T(x,y Aa) =int(x) Nint(y A a)
=int(x Ay Aa)=int(zx Ay Aa) Aint(z)
=T(xANyANa,z) =TT (z,y), 2),
3.3.3. z € 1,,
T(x,T(y,2)) =T(x,y ANz Aa) =int(z) Nint(y A z A a)
=imt(x AyAzAa)=int(zx Ay Aa)Aint(z)
=T(@ANyNa,z)=TT(z,y),2),
So, we have the fact that T is a t-norm on L. O

Remark 3.2. Let (L, <,0,1) be a bounded lattice with a € L. In Theorem B, observe that the condition for all x € I,
it holds x A a = int(x A a) can not be omitted, in general. The following example illustrates this fact that the function
T : L? — L defined by Theorem E is not a t-norm.

Example 3.3. Consider the lattice (L1 = {0r,,b,¢,d,a,k,m,11,},<,01,,11,) in Figure 1. And we take the t-norm
V(z,y) =x Ay on [a,1r,]. The interior operator int : L1 — Ly defined by int(0r,) = Og,, int(b) = int(c) = int(d) =
int(a) = int(k) = b, int(m) = m and int(lg,) = 1g,. For all x € I, it does not hold x A a = int(x A a). Because,
kENa=c#b=int(c) =int(kANa). Then, the function T on L defined by Table 1 is not a t-norm. Indeed, it does not
satisfy the associativity. Because T'(k,T(m,m)) =T (k,m)=c#b=T(c,m) =T(T(k,m),m).

Corollary 3.4. Let (L,<,0,1) be a bounded lattice with a,b € L such that for all x € I, it holds x Na =x ANaAb and
V be a t-norm on [a,1]. Then, the function T : L? — L defined by

Vi) if (a,y) € [0,1)?,
yAa if (z,y) € [a,1) X Iy,
T(z,y) = rxAa (x,y) € I X [a,1),
xAyANa if (z,y) €I, X I,
T Ay ifx=1o0ry=1,
xAyANb  otherwise .

is a t-norm on L.
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1,

0.,

Figure 1: The lattice L

Table 1: The function T on L4

T |0, b c d a k m 1,
Oz, | 0, Oz, Or, Op, Or, Op, O, O
b | 0g, b b b b b b b
¢ | Op, b b b b b b c
d | O, b b b b b b d
a | Og, b b b a c a a
k | 0g, b b b c c c k
m | Og, b b b a c m m
1L1 OL1 b C d a k m 1L1

We give next construction methods for t-norms on complete lattices from Definition 29 and Definition .

Corollary 3.5. Let (L,<,0,1) be a complete lattice with a € L, ||: L — L be defined in Definition 22 such that for all
x €1, it holds x Na =l (x Aa) and V be a t-norm on [a,1]. Then, the binary operation T : L?> — L defined by

V(z,y) if (z,y) € [a, 1),
yAa if (z,y) €la,1) x I,
_Jzna if (z,y) €I, x[a,1),
Tle,y) = TAYyAa Zf(7y)61a><lu,
TNy ifx=1o0ry=1,
J(@)Ad (y)  otherwise .

is a t-norm on L.

We can give an example to illustrate Corollary B=3.
Example 3.6. Consider the complete lattice (Lo = {0p,,t,p,q,a,8,n,11,},<,01,,11,) in Figure 2. And we take
the t-norm V(z,y) = x Ay on [a,1,]. It is clear that UC(Ly) = {0p,,t,n,11,}. So, we obtain | (0r,) = Or,,
@)= =t@=@=06)=t4n) =nandl (1,) = 1L,. Since for all x € I, it holds x N a =| (x A a), Ly

satisfies the constraint of Corollary @A. That is, gha=t=| (t) =} (¢Aa) and sha =1t =] (t) = (s Aa). Then the
t-norm T : L3 — Lo constructed via Corollary @ is given by Table 2.

Remark 3.7. If we take b = 0 in Corollary B4, then it must be x ANa =0 for all x € 1,. So, we obtain corresponding
t-norm as follows constructed by Cayl [§].

Corollary 3.8. [§] Let (L,<,0,1) be a bounded lattice with a € L\ {0,1} and V be a t-norm on [a,1]. Then the
function Ty : L?> — L is a t-norm on L, where

Viz,y) if (z,y) €la,1)?
Ti(z,y) = x Ay fr=1ory=1,

0 otherwise .
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1;,

0,

Figure 2: The lattice Lo

Table 2: The t-norm T on Lo

T | Of, t p q a s n 1,
0r, | 0z, Oz, Op, Op, Op, Op, O, O,
t | O, t t 13 t t 13 t
p |0, t t ¢ t t t p
q |0, t t ¢ t t t q
a | Og, t t t a t a a
s | Op, t t t t t t s
n Oz, t t t a t n n
1z, | Op, t p q a s n 1,

Remark 3.9. If we take b = 1 in Corollary B4, then we obtain corresponding t-norm as follows constructed by Ertugrul,
Karagal and Mesiar [T35).

Corollary 3.10. [15] Let (L,<,0,1) be a bounded lattice and V be a t-norm on [a,1]. Then the function Ty : L? — L
is a t-norm on L, where
To(z,y) =<z Ay ife=1lory=1,

rAyANa otherwise .

Remark 3.11. It should be noted that the t-norms 11 and Ty in Corollary B8 and Corollary BID, respectively are
different from the t-norm T in Theorem B3. To show that this claim, we shall consider the bounded lattice (Lo =
{0L,,t,p,q,a,8,m,11,},<,0L,,11,) described in Figure 2., we take the t-norm V(x,y) = x Ay on [a,1L,] and the
interior operator int : Lo — Lo defined by int(0p,) = Or,, int(t) = int(p) = int(q) = int(a) = int(s) =t, int(n) =n
and int(1p,) = 1p,. According to the Table 2, Table 3 and Table 4, it is clear that the t-norms T, Ty and Ty different
from each other.

Table 3: The t-norm T on Lo
Ty | O, ¢t D q a s n 1,

0z, | 0z, Oz, Oz, 0Oz, Or, Oz, Oz, Or,
t 0, Oz, Or, Or, O, Op, O, t
0, Oz, Op, Oz, Op, 0, 0,
q |0z, Oz, Oz, Or, O, Oz, Oz, ¢
a 0L2 OL2 0L2 0L2 a 0L2 a a
S 0L2 0L2 OL2 0[,2 OL2 OL2 0L2 S
n OL2 0L2 OL2 0L2 a OL2 n n
17, | Or, t p q a s n 1,
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Table 4: The t-norm T5 on Lo

Ty | Op, t P q a s n 1r,
O0r, | 0z, Oz, Op, Op, Op, Op, Op, O,
t | Oz, t t t t t t t

Op, ¢ p t D t P p

q | Og, t t 13 t t t q
a | Og, t p t a t a a
s |0p, t t t t t t s
n | Og, t D t a t n n
1z, | Oz, t p q a s n 1,

4 New construction method for t-conorms on bounded lattices by using
closure operators

In this section, we propose new construction method for t-conorms on bounded lattices with the given t-conorms by
using closure operators. The main aim of this section is to present a rather effective method to construct t-conorms by
using closure operators on a bounded lattice. Using this method, in Corollary EZ8 and Corollary E-10, we obtain the
methods proposed by Ertugrul, Karacal, Mesiar [I5] and Cayli [§], respectively.

Theorem 4.1. Let (L, <,0,1) be a bounded lattice with a € L such that for all v € I, it holds x V a = cl(x V a) and
cl: L — L be a closure operator. Given a t-conorm W on [0, a], then the function S : L? — L defined as follows is a
t-conorm on L where

Wy i @) € 0a?,
yVa if (@) € (0,0] x L,
S, y) = zVa if (z,y) € I, x (0,d],
zVyVa if (z,y) €1, x 1,
xVy if t=0o0ry=0,
cd(z)Velly) otherwise .

Remark 4.2. Let (L, <,0,1) be a bounded lattice with a € L. In Theorem F1, observe that the condition for all x € I,
it holds © vV a = cl(xz V a) can not be omitted, in general. The following example illustrates this fact that the function
S : L? = L defined by Theorem B is not a t-conorm.

Example 4.3. Consider the lattice (Ls = {0p,,t,a,m,p0,8,¢, 11, }, <,01,,11,) in Figure 3. And we take the t-conorm
W(x,y) = x Vy on [0rs,a]. The closure operator cl : Ly — Lg defined by cl(0p,) = Or,, cl(t) = ¢t, cl(n) = cl(a) =
c(s) =cl(p) = cl(q) = q, and (1y,) = 1p,. For all z € 1, it does not hold x V a = cl(x V a). Because, nV a =p #
q=cl(p) =cl(nVa). Then, the function S on Ls defined by Table 5 is not a t-conorm. Indeed, it does not satisfy the
associativity. Because S(n,S(t,t)) = S(n,t) =p # q= S(p,t) = S(S(n,t),1).

1,

a

0.,

Figure 3: The lattice Lg
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Table 5: The t-function S on L3
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Corollary 4.4. Let (L,<,0,1) be a bounded lattice with a,b € L such that for all x € I, it holds x Va=xVaVb and
W be a t-conorm on [0,a]. Then, the function S : L?> — L defined by

W(z,y) if (x,y) € (0,a)?,
yVa  if (@) € (0,0 x L,
S y) = xVa if (z,y) €I, x(0,a],
xVyVa if (x,y) €I, x I,
xVy ifx=0o0ry=0,
xVyVb otherwise .

s a t-conorm on L.
We give next construction methods for t-conorms on complete lattices from Definition EZ3 and Definition EZ3.

Corollary 4.5. Let (L,<,0,1) be a complete lattice with a € L, ft: L — L be defined in Definition 23 such that for all
x € I, it holds x V a =1 (x V a) and W be a t-conorm on [0,a]. Then, the binary operation S : L? — L defined by

W(z,y) (z,y) € (0,a?,
yVa if (z,y) € (0,a] x Lo,
_JxVa (z,y) € I, x (0,qal,
Se.y) = xrVyVa if (z,y) €I, X I,
zVy if t=0o0ry=0,
f ()V 1 (y)  otherwise .

15 a t-conorm on L.
We can give an example to illustrate Corollary E=3.

Example 4.6. Consider the complete lattice (Ly = {0p,,m,r,a,k,c,d,1,},<,0r,,11,) in Figure 4. And we take
the t-conorm W(x,y) =« Vy on [0r,,a]. It is clear that UC(Ls) = {01,,m,d,11,}. So, we obtain t (0r,) = Oz,,
f(m)=m,  (r) =f (a) =0 (k) =0 (¢) =0 (d) = d, and { (11,) = 11,. Since for all x € I, it holds x V a =f} (z V a),
Ly satisfies the constraint of Corollary G=d. That is, kVa=d = (d) =ft (kVa) and rVa=d =1 (d) = (r Va).
Then the t-conorm S : L2 — Ly constructed via Corollary B-g is given by Table 6.

Remark 4.7. If we take b = 0 in Corollary B4, then we obtain corresponding t-conorm as follows constructed by
Ertugrul, Karagal and Mesiar [13].

Corollary 4.8. [15] Let (L, <,0,1) be a bounded lattice and W be a t-conorm on [0,a]. Then the function Sy : L> — L
is a t-conorm on L, where

W(z.y) if (z,y) € (0,a)?,
Si(z,y) =< zVy if xt=0o0ry=0,
zVyVa otherwise .
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0y,

Figure 4: The lattice Ly

Table 6: The t-conorm S on L4

S |0, m r a k c d 1z,
Op, | O, m r a k c d 1,
m | m m d a d d d 1,
r r d d d d d d 1,
a a a d a d d d 1,
k k d d d d d d 1p,
c c d d d d d d 1p,
d d d d d d d d 1,
g, | 1oy gy gy 1y 1py 1p, g, 1,

Remark 4.9. If we take b =1 in Corollary G4, then it must be x V a =1 for all x € 1,. So, we obtain corresponding
t-conorm as follows constructed by Cayl [R].

Corollary 4.10. [8] Let (L,<,0,1) be a bounded lattice and a € L\ {0,1}. If W be a t-conorm on [0,a], then the

)y —

function Sy : L? — L is a t-conorm on L, where

W(x,y) if (z,y) € (0,a]?,
Sa(z,y) =<z Vy if t=0o0ry=0,
1 otherwise .

Remark 4.11. [t should be noted that the t-conorms S1 and Sy in Corollary B=8 and Corollary G-10, respectively
are different from the t-conorm S in Theorem G—1. To show that this claim, we consider the bounded lattice (Ly =
{0p,,m,r,a,k,c,d, 11, },<,0r,,11,) in Figure 4., we take the t-conorm W(z,y) = x Vy on [01,,a] and the closure
operator cl : Ly — Ly defined by cl(0,) =0p,, cl(m) =m, cl(r) = cl(a) = cl(k) = cl(c) = c(d) =d and l(1,) = 11,.
According to the Table 6, Table 7 and Table 8, it is clear that t-conorms S, S1 and Sy different from each other.

Table 7: The t-conorm S5 on Ly

S1 10, m r a k c d 1z,
0z, | 0, m r a k c d 1z,
m m m d a d c d 1z,
r r d d d d d d 1,
a a a d a d c d 1,
k k d d d d d d 1,
c c c d c d c d 1z,
d d d d d d d d 1,
1p, | 1z, 1z, 1p, 1p, 1, 1p, 1z, 1,
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Table 8: The t-conorm S; on Ly

Sy | 0, m r a k c d 1z,
Or, | O, m r a k c d 1,
m m m 1L4 a 1L4 1L4 1L4 1L4
r r 1L4 1L4 1L4 1L4 1L4 1L4 1L4
a a a 1L4 a 1L4 1L4 1L4 1L4
k| k1, 1p, 1z, 1, 1z, 1z, 1,
C C ]-L4 1L4 1L4 ]-L4 1L4 1L4 1L4
d | d 1y, 1, 1z, 1, 15, 1, 1g,
1p, | 1z, 1z, 1z, 1z, 1z, 1z, 1z, 1z,

5 Modified ordinal sum constructions of t-norms and t-conorms on bounded
lattices

From [R] and [0H], we know that new t-norms and t-conorms on bounded lattices can be obtained using recursion in
Theorem B, Theorem and Theorem B34, Theorem B, respectively. In this section, based on the approaches of
constructing t-norms and t-conorms by using interior and closure operators, respectively, proposed in Section 3 and
Section 4, we show that it can not be obtained ordinal sum constructions of t-norms and t-conorms on bounded lattice
L using recursion.

Theorem 5.1. [§] Let (L, <,0,1) be a bounded lattice and {ag, a1,az2, - ,an} be a finite chain in L such that 1 = ag >
a; > ag > ... >a, =0. Let V : [a1,1]?> — [a1,1] be a t-norm. Then, the function T, : L?> — L defined recursively as
follows is a t norm, where V.="Ty and fori € {2,--- ,n}, the function T; : [a;, 1]> — [a;, 1] is given by

Tioa(z,y) if (x,y) € [ai—1,1)%,

Ti(z,y) = qx Ay ifr=1ory=1, (5)
a; otherwise .
Theorem 5.2. [Iﬁ] Let (L,<,0,1) be a bounded lattice and {ag, a1, a2, -+ ,an} be a finite chain in L such that 1 =
ap > ai > as > ... > a, =0. Let V : a1, 1]? = [a1,1] be a t-norm. Then, the function T, : L?> — L defined recursively
as follows is a t-norm, where V.="T, and fori € {2,--- ,n},

Ti—l(xay) Zf (x,y) € [ai—17 I)Qa
Ti(z,y) = qz Ay ifz=1ory=1, (6)
T AYyANa;_1 otherwise .

Remark 5.3. Let (L, <,0,1) be a bounded lattice and {ag,a1,as, -+ ,a,} be a finite chain in L such that 1 = ag > a; >

ag > ... >ap, =0. Let x Na; = int(x Aa;) for allx € I, let V : [al, 1)2 = [a1,1] be a t-norm and int : L — L be an
interior operator. It should be noted that our construction method in Theorem B can not be obtained using recursion.

Because, we can not obtain the binary operation T; : [a;, 1] — [a;, 1] as follows, where Ty =V and fori € {2,--- n},
Ti-1(z,y) if (z,y) € [ai-1,1)?,
YNai—1 if (‘Tvy) [az 1y ) X Ia1 1)
T Aa;_1 f (x,y a;—1,1),
Ti(a,y) = S ) € doy x| ™)
x/\y/\ai—l Zf (x,y) € Iai—l XI(I‘L 1
TNy ifx=1o0ry=1,
int(x) Nint(y)  otherwise .

To illustrate this claim we shall give the following example:

Example 5.4. Consider the lattice (Ls = {05, a4,b,c,a3,a2,a1,11.},<,0r.,11.) described in Figure 5 with the finite
chain Op, < a4 < az < az < ay < 1p, in Ls. Then, the interior operator int : Ly — Ls defined by int(0r,) = Or,,
int(as) = int(as) = int(az) = int(ar) = int(c) = int(b) = aq, int(lp,) = 1. It is clear that x A a; = int(x A a;) for
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1,
a;
a, c b
as
ay
0,

s

Figure 5: The lattice Ls

all © € I,,. Define the t-norm V : [a1,11.]* — [a1,11,] by V = Th. Since int(a1) Aint(as) = ag ¢ [az,11.], we can
not obtain the binary operation Ta on [az, 1L.]. Since int(as) Aint(a1) = as ¢ [as, 1L,], we can not obtain the binary
operation T3 on [a3, 1r.].

Theorem 5.5. [§] Let (L, <,0,1) be a bounded lattice and {ag, a1,az2,- - ,an} be a finite chain in L such that 0 = ag <
a; < ag < ..<ap,=1. Let W:1[0,a1]*> — [0,a1] be a t-conorm. Then, the function S, : L?> — L defined recursively as

follows is a t-conorm, where Sy = W and for i € {2,--- ,n}, the binary function S; : [0,a;]* — [0, a;] is given by
Si—l(xvy) Zf (Ivy) € (07 ai—1]27
Si(z,y) =z Vy if x=0o0ry=0, (8)
a; otherwise .

Theorem 5.6. [15] Let (L,<,0,1) be a bounded lattice and {ag,a1,az2, -+ ,an} be a finite chain in L such that 0 =
ap < ay < ay < ... < ap, = 1. Let W : [0,a1]®> — [0,a1] be a t-conorm. Then, the function S, : L> — L defined

recursively as follows is a t-conorm, where S; =W and fori € {2,--- ,n},
Si—l(xvy) Zf (l‘,y) € (Ova'i—l]27
Silw,y) = a vy if =0 0ry=0, (9)

rVyVa,_1 otherwise .

Remark 5.7. Let (L,<,0,1) be a bounded lattice and {ag,a1,as,--- ,a,} be a finite chain in L such that 0 = ag <
a; < ag <..<a,=1. LetxVa;=cl(xVa;) for allx € I,,, let W : [0,a1]*> — [0,a1] be a t-conorm and cl : L — L be
a closure operator. It should be noted that our construction method in Theorem B4 can not be obtained using recursion.

Because we can not obtain the binary operation S; : [0, a;]?> — [0, a;] as follows, where Sy = W and fori € {2,--- ,n},
Si—l(x7y) Zf (xay) € (Oaai—l]Qa
yVai—i Zf (Qf,y) € (Oaai—l] X Iaq,_la
Si(z,y) =" 4 Z.f (2,9) € Lo,y (0, 03] (10)
TVyYVai Zf (x,y) e‘lai—l X Iai—17
zVy ifx=0o0ry=0,
c(z) Velly) otherwise .

To illustrate this claim we shall give the following example

Example 5.8. Consider the lattice (Lg = {04, a1,az2,a3,m,n,a4,11,},<,0r,,11,) described in Figure 6 with the
finite chain Op, < a1 < az < az < aq < lp, in Lg. Then, the closure operator cl : Lg — Lg defined by cl(0r,) = OL,,
cl(m) = cl(n) = cl(a1) = cl(az) = cl(as) = cl(as) = aq, cl(1ry) = 11,. It is clear that ©V a; = cl(z V a;) for all x € 1,,.
Define the t-conorm W : [0r,,a1]®> — [0r,,a1] by W = Sy. Since int(a1) V int(az) = a4 ¢ [0L,, a2, we can not obtain
the binary operation Sy on [0L,,az]. Since int(as) Vint(a1) = as ¢ (0L, as], we can not obtain the binary operation Ss
on [0rg,asl.
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0,
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Figure 6: The lattice Lg

6 Concluding remarks

In this paper, we have proposed the constructions of t-norms and t-conorms on bounded lattices with interior and
closure operators, respectively. The main aim of this paper is to present a rather effective method to construct t-norms
and t-conorms by using interior and closure operators on a bounded lattice, respectively. Also, using these methods,
in Corollary B0 and Corollary B8, we obtain the methods proposed by Ertugrul, Karagal and Mesiar [15]. Also, in
Corollary B and Corollary B0, we obtain the methods proposed by Cayl [8]. Finally, we have shown that the new
construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on
arbitrary bounded lattice, respectively.
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