

Volume 19, Number 1, (2022), pp. 125-140

Original paper

Constructing t-norms and t-conorms by using interior and closure operators on bounded lattices

 $E.$ Asici¹

¹*Department of Software Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Trabzon, Turkey*

emelkalin@hotmail.com

Abstract

In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we show that the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices. This paper has further constructed the t-norms and t-conorms on bounded lattices from a mathematical viewpoint.

Keywords: Bounded lattice, t-norms, t-conorms.

1 Introduction and motivation

Aggregation operators [18] play an important role in theories of fuzzy sets and fuzzy logic. Two basic types of aggregation functions, namely t-norms and t-conorms, were introduced by Schweizer and Sklar [26], in 1963. Although the t-norms and t-conorms were strictly defined on the unit interval [0*,* 1], they were mostly studied on bounded lattices. The notion of ordinal sum of semigroups in Clifford's sense [7] was further developed by Mostert and Shields [22] and later used for introducing new t-norms and conorms on the unit interval [0*,* 1], see [20]. Note that there is a minor difference in ordinal sum construction for triangular norms (based on min operator) with those for triangular conorms (based on max operator). Since Goguen' s [17] generalization of the classical fuzzy sets (with membership values from [0*,* 1]) to *L*-fuzzy sets (with membership values from a bounded lattice *L*), there is a growing interest in t-norms and t-conorms on bounded lattices, in particular in ordinal sum constructions.

In general topology [14], closure and interior operators on the powerset $P(X)$ of a nonempty set X are common tools to construct topologies on *X*. Actually, there is a one-to-one correspondence between the set of all closure and interior operators on $P(X)$ and that of all topologies on X. Note that closure and interior operators on $P(X)$ are essentially defined on the inherent lattice structure on $P(X)$ with set inclusion, set intersection and set union as the partial order, the meet and the join on $P(X)$, respectively.

In 1996, Drossos and Navara [11] studied a class of t-norms and t-conorms on any bounded lattice was generated by the use of interior operators and closure operators, respectively. In 2006, Saminger [25] focused on ordinal sums of t-norms acting on some particular bounded lattice which is not necessarily a chain or an ordinal sum of lattices. Also, it was provided necessary and sufficient conditions for an ordinal sum operation yielding again a t-norm on some bounded lattice whereas the operation is determined by an arbitrary selection of subintervals as carriers for arbitrary summand t-norms. In 2012, Medina [21] presented several necessary and sufficient conditions for ensuring whether an ordinal sum on a bounded lattice of arbitrary t-norms is a t-norm.

In 2015, a modification of ordinal sums of t-norms and t-conorms resulting to a t-norms and t-conorms on an arbitrary bounded lattice was shown by Ertuğrul, Karaçal, Mesiar [15]. Further modifications were proposed by Aşıcı, Mesiar [3, 4], Aşıcı [2], Çaylı [8, 9], Ouyang, Zhang, Baets [23] and Dan, Hu, Qiao [10]. In 2020, a new ordinal sum

Corresponding Author: Emel Aşıcı

Received: February 2021; Revised: July 2021; Accepted: September 2021.

construction of t-norms and t-conorms on bounded lattices based on interior and closure operators was proposed by Dvořák, Holčapek [13]. Also, the proposed method generalized several known constructions and provided a simple tool to introduce new classes of t-norms and t-conorms.

In this paper, we introduce some new constructions of t-norms and t-conorms by using interior and closure operators on bounded lattices, respectively. The rest of this paper is organized as follows. In Section 2, some basic concepts and results about t-norms, t-conorms, lattices are given. In Section 3, we propose a new method for constructing t-norms on bounded lattices. Using this method, in Corollary 3.10 and Corollary 3.8, we obtain the methods proposed by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8], respectively. In Section 4, we propose a new method for constructing t-conorms on bounded lattices. Using this method, in Corollary 4.8 and Corollary 4.10, we obtain the methods proposed by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8], respectively. In Section 5, we show that the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices.

2 Preliminaries

In this section, we present some basic facts about lattices, t-norms and t-conorms.

A lattice [6] is a partially ordered set (L, \leq) in which each two element subset $\{x, y\}$ has an infimum, denoted as $x \land y$, and a supremum, denoted as $x \lor y$. A bounded lattice (*L*, \leq , 0*,* 1) is a lattice that has the bottom and top elements written as 0 and 1, respectively. For short, we use the notation *L* instead of $(L, \le 0, 1)$ throughout all of the paper.

Given a bounded lattice $(L, \leq, 0, 1)$ and $a, b \in L$, if a and b are incomparable, in this case, we use the notation $a \parallel b$. We denote the set of elements which are incomparable with *a* by I_a . So $I_a = \{x \in L \mid x \parallel a\}$.

Given a bounded lattice $(L, \leq, 0, 1)$ and $a, b \in L$, $a \leq b$, a subinterval $[a, b]$ of L is defined as [19]

$$
[a, b] = \{x \in L \mid a \le x \le b\}.
$$

Similarly, $[a, b) = \{x \in L \mid a \le x < b\}$, $(a, b) = \{x \in L \mid a < x \le b\}$ and $(a, b) = \{x \in L \mid a < x < b\}$.

Definition 2.1. [20, 25] *Let* $(L, \leq 0, 1)$ *be a bounded lattice. A triangular norm* T *(t-norm) is a binary operation on L* which is commutative, associative, increasing with respect to both variables and satisfies $T(x, 1) = x$ for all $x \in L$.

Definition 2.2. [1, 5, 25] *Let* $(L, \leq, 0, 1)$ *be a bounded lattice. A triangular conorm S (t-conorm) is a binary operation on L* which is commutative, associative, increasing with respect to both variables and satisfies $S(x, 0) = x$ for all $x \in L$.

Extremal t-norms T_\wedge and T_W on a general bounded lattice L are defined, independently of L, as follows, respectively:

$$
T_{\wedge}(x,y) = x \wedge y, \qquad T_W(x,y) = \begin{cases} x \wedge y & \text{if } 1 \in \{x,y\}, \\ 0 & \text{otherwise.} \end{cases}
$$

Similarly, the t-conorms S_V and S_W on L are defined as follows, respectively:

$$
S_{\vee}(x,y) = x \vee y, \qquad S_W(x,y) = \begin{cases} x \vee y & \text{if } 0 \in \{x,y\}, \\ 1 & \text{otherwise.} \end{cases}
$$

The following definition of an ordinal sum of t-norms defined on subintervals of a bounded lattice $(L, \leq, 0, 1)$ has been extracted from [25], which generalizes the methods given in [20] on subintervals of [0*,* 1].

Definition 2.3. [25] Let $(L, \leq, 0, 1)$ be a bounded lattice and fix some subinterval $[a, b]$ of L. Let V be a t-norm on $[a, b]$ *. Then* $T: L^2 \to L$ *defined by*

$$
T(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,b]^2, \\ x \wedge y & \text{otherwise.} \end{cases}
$$
 (1)

is an ordinal sum $(*a, b, V>*$ *) of V on L.*

Definition 2.4. [25] Let $(L, \leq, 0, 1)$ be a bounded lattice and fix some subinterval [a, b] of L. Let W be a t-conorm on $[a, b]$ *. Then* $S: L^2 \to L$ *defined by*

$$
S(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in [a,b]^2, \\ x \vee y & \text{otherwise.} \end{cases}
$$
 (2)

is an ordinal sum $(*a, b, W>*$ *) of W on L.*

However, the operation *T* (resp. *S*) given by Formula (1) (resp. Formula (2)) need not be a t-norm (resp. t-conorm), in general. Observe that condition ensuring that *T* (resp. *S*) given by (1) ((2)) is a t-norm (t-conorm) on *L* are given in [25].

Definition 2.5. [16] *Let* $(L, \leq, 0, 1)$ *be a bounded lattice. A mapping* $cl: L \to L$ *is said to be a closure operator if for any* $x, y \in L$ *, it satisfies the following three conditions:*

 (i) $x \leq cl(x)$. (iii) $cl(x \vee y) = cl(x) \vee cl(y)$. (iii) $cl(cl(x)) = cl(x)$.

Definition 2.6. [16] Let $(L, \leq, 0, 1)$ be a bounded lattice and $b \in L$ be given. Then the mapping $cl_b: L \to L$ defined as $cl_b(x) = x \vee b \ (\forall x \in L)$ *is a closure operator.*

Definition 2.7. [23] *Let* $(L, \leq 0, 1)$ *be a bounded lattice. The set of all universally comparable elements in L, denoted by* $UC(L)$ *, be defined as*

 $UC(L) = \{b \in L \mid \forall c \in L, \text{ either } b \leq c \text{ or } c \leq b \}.$

Definition 2.8. [23] *Let* $(L, \leq, 0, 1)$ *be a complete lattice. The mapping* $\Uparrow : L \to L$ *defined as, for any* $x \in L$ *,*

$$
\Uparrow(x) = \bigwedge \{ b \in UC(L) \mid b \ge x \},
$$

is a closure operator.

Definition 2.9. [23] Let $(L, \leq 0, 1)$ be a bounded lattice. A mapping int : $L \to L$ is said to be an interior operator if *for any* $x, y \in L$ *, it satisfies the following three conditions:*

 (i) *int* $(x) \leq x$, (iii) $int(x \wedge y) = int(x) \wedge int(y)$, (iii) $int(int(x)) = int(x)$.

Definition 2.10. [23] Let $(L, \leq, 0, 1)$ be a bounded lattice and $b \in L$ be given. Then the mapping $int_b : L \to L$ defined *as*

$$
int_b(x) = x \wedge b \ (\forall x \in L),
$$

is an interior operator.

Definition 2.11. [23] *Let* $(L, \leq, 0, 1)$ *be a complete lattice. The mapping* $\Downarrow: L \to L$ *defined as, for any* $x \in L$ *,*

$$
\Downarrow (x) = \bigvee \{ b \in UC(L) \mid b \le x \},
$$

is an interior operator.

In the following, it is proposed a method for generating t-norms and t-conorms on bounded lattices based on interior and closure operators, respectively.

Theorem 2.12. [11, 12] Let $(L, \le 0, 1)$ be a bounded lattice, int : $L \to L$ and $cl : L \to L$ be an interior and a closure *operators on L*, respectively. Then, the functions $T: L^2 \to L$ and $S: L^2 \to L$ are, respectively, a t-norm and a t-conorm *on L, where*

$$
T(x,y) = \begin{cases} x \wedge y & \text{if } 1 \in \{x,y\}, \\ int(x) \wedge int(y) & otherwise. \end{cases}
$$
 (3)

$$
S(x,y) = \begin{cases} x \lor y & \text{if } 0 \in \{x,y\}, \\ cl(x) \lor cl(y) & otherwise. \end{cases}
$$
 (4)

3 New construction method for t-norms on bounded lattices by using interior operators

In this section, we propose new construction method for t-norms on bounded lattices with the given t-norms by using interior operators. The main aim of this section is to present a rather effective method to construct t-norms by using interior operators on a bounded lattice. Using this method, in Corollary 3.8 and Corollary 3.10, we obtain the methods proposed by Çaylı [8] and Ertuğrul, Karaçal, Mesiar [15], respectively.

Theorem 3.1. Let $(L, \leq 0, 1)$ be a bounded lattice with $a \in L$ and int : $L \to L$ be an interior operator such that for all $x \in I_a$ it holds $x \wedge a = int(x \wedge a)$. Given a t-norm V on [a, 1], then the function $T: L^2 \to L$ defined as follows is a *t-norm on L where*

$$
T(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,1)^2, \\ y \wedge a & \text{if } (x,y) \in [a,1) \times I_a, \\ x \wedge a & \text{if } (x,y) \in I_a \times [a,1), \\ x \wedge y \wedge a & \text{if } (x,y) \in I_a \times I_a, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ int(x) \wedge int(y) & otherwise. \end{cases}
$$

Proof. It is easy to see that *T* is commutative and has 1 as the neutral element.

i) Monotonicity: We prove that if $x \leq y$, then $T(x, z) \leq T(y, z)$ for all $z \in L$. If $z = 1$, then we have that $T(x, z) = T(x, 1) = x \leq y = T(y, 1) = T(y, z)$ for all $x, y \in L$. The proof can be split into all possible cases.

1. $x \in [0, a),$ 1.1 $y \in [0, a)$, 1.1.1. $z \in [0, a)$ or $z \in [a, 1)$ or $z \in I_a$, $T(x, z) = int(x) \land int(z) \leq int(y) \land int(z) = T(y, z)$, 1.2. $y \in [a, 1)$, 1.2.1. $z \in [0, a)$, $T(x, z) = int(x) \land int(z) \leq int(y) \land int(z) = T(y, z)$, 1.2.2. $z \in [a, 1)$, $T(x, z) = int(x) \land int(z) \leq x \leq a \leq V(y, z) = T(y, z)$, 1.2.3. $z \in I_a$, $T(x, z) = int(x) \land int(z) \leq x \land z \leq a \land z = T(y, z)$, 1.3. $y \in I_a$, 1.3.1. $z \in [0, a),$ $T(x, z) = int(x) \land int(z) \leq int(y) \land int(z) = T(y, z)$, 1.3.2. $z \in [a, 1)$, $T(x, z) = int(x) \land int(z) \leq x \leq a \land y = T(y, z)$, 1.3.3. $z \in I_a$, $T(x, z) = int(x) \land int(z) \leq x \land z \leq y \land z \land a = T(y, z)$, 1.4. $y = 1$, 1.4.1. $z \in [0, a)$ or $z \in [a, 1)$ or $z \in I_a$, $T(x, z) = int(x) \land int(z) \leq z = T(1, z)$, 2. $x \in [a, 1)$, 2.1 $y \in [a, 1)$, 2.1.1. $z \in [0, a)$, $T(x, z) = int(x) \land int(z) \leq int(y) \land int(z) = T(y, z)$,

2.1.2. $z \in [a, 1)$, $T(x, z) = V(x, z) \leq V(y, z) = T(y, z)$, 2.1.3. $z \in I_a$, $T(x, z) = z \wedge a = T(y, z)$

2.2 $y = 1$,

- 2.2.1. $z \in [0, a)$, $T(x, z) = int(x) \land int(z) \leq z = T(1, z)$, 2.1.2. $z \in [a, 1)$, $T(x, z) = V(x, z) \leq z = T(1, z)$, 2.1.3. $z \in I_a$, $T(x, z) = z \land a \leq z = T(1, z)$ 3. $x \in I_a$, 3.1. $y \in [a, 1)$, 3.1.1. $z \in [0, a),$
	- $T(x, z) = int(x) \land int(z) \leq int(y) \land int(z) = T(y, z)$, 3.1.2. $z \in [a, 1)$, $T(x, z) = x \land a \leq a \leq V(y, z) = T(y, z)$, 3.1.3. $z \in I_a$, $T(x, z) = x \land z \land a \leq z \land a = T(y, z)$, 3.2. $y=1$, 3.2.1. $z \in [0, a),$ $T(x, z) = int(x) \land int(z) \leq z = T(1, z)$, 3.2.2. $z \in [a, 1),$ $T(x, z) = x \land a \leq a \leq z = T(1, z),$ 3.2.3. $z \in I_a$, $T(x, z) = x \land z \land a \leq z = T(1, z)$,

4. $x = 1$,

Then, it must be $y = 1$. Clearly, monotonicity holds.

ii) Associativity: We need to prove that $T(x,T(y,z)) = T(T(x,y),z)$ for all $x, y, z \in L$. If at least one of x, y, z in *L* is 1, then it is obvious. So, the proof is split into all possible cases.

1.
$$
x \in [0, a)
$$
,
\n1.1 $y \in [0, a)$,
\n1.1.1. $z \in [0, a)$ or $z \in [a, 1)$ or $z \in I_a$,
\n $T(x, T(y, z)) = T(x, int(y) \land int(z)) = int(x) \land int(y) \land int(z) = T(int(x) \land int(z), z) = T(T(x, y), z),$
\n1.2.1. $z \in [0, a)$,
\n $T(x, T(y, z)) = T(x, int(y) \land int(z)) = int(x) \land int(y) \land int(z) = T(int(x) \land int(z), z) = T(T(x, y), z),$
\n1.2.2. $z \in [a, 1)$,
\n $T(x, T(y, z)) = T(x, V(y, z)) = int(x) \land int(V(y, z))$

$$
T(x,T(y,z)) = T(x,V(y,z)) = int(x) \wedge int(V(y,z))
$$

= $int(x) = int(x) \wedge int(y) \wedge int(z)$
= $T(int(x) \wedge int(y), z) = T(T(x,y), z),$

1.2.3. $z \in I_a$,

$$
T(x,T(y,z)) = T(x, z \wedge a) = int(x) \wedge int(z \wedge a)
$$

= $int(x \wedge z) = int(x) \wedge int(y) \wedge int(z)$
= $T(int(x) \wedge int(y), z) = T(T(x, y), z),$

1.3. $y \in I_a$, 1.3.1. $z \in [0, a),$ $T(x,T(y,z)) = T(x, int(y) \wedge int(z)) = int(x) \wedge int(y) \wedge int(z) = T(int(x) \wedge int(y), z) = T(T(x,y), z),$ 1.3.2. $z \in [a, 1)$, $T(x, T(y, z)) = T(x, y \wedge a) = int(x) \wedge int(y \wedge a)$ $= int(x \land y) = int(x) \land int(y) \land int(z)$ $T(int(x) \land int(y), z) = T(int(x) \land int(y), z)$ $=T(T(x, y), z),$ 1.3.3. $z \in I_a$, $T(x, T(y, z)) = T(x, y \land z \land a) = int(x) \land int(y \land z \land a)$ $=$ $int(x \land y \land z \land a) = int(x \land y \land z)$ $= int(int(x) \land int(y)) \land int(z) = T(int(x) \land int(y), z)$ $=T(T(x,y),z),$ 2. $x \in [a, 1),$ 2.1 $y \in [0, a)$, 2.1.1. $z \in [0, a)$ or $z \in [a, 1)$ or $z \in I_a$, $T(x,T(y,z)) = T(x, int(y) \wedge int(z)) = int(x) \wedge int(y) \wedge int(z) = T(int(x) \wedge int(y), z) = T(T(x,y), z),$ 2.2. $y \in [a, 1)$, 2.2.1. $z \in [0, a)$, $T(x,T(y,z)) = T(x, int(y) \wedge int(z)) = int(x) \wedge int(y) \wedge int(z)$ $= int(z) = int(V(x, y)) \wedge int(z)$ $T(V(x, y), z) = T(T(x, y), z),$ 2.2.2. $z \in [a, 1),$ $T(x,T(y,z)) = T(x,V(y,z)) = V(x,V(y,z)) = V(V(x,y),z) = T(V(x,y),z) = T(T(x,y),z),$ 2.2.3. $z \in I_a$, $T(x,T(y,z)) = T(x,z \wedge a) = int(z \wedge a) = z \wedge a = T(V(x,y),z) = T(T(x,y),z),$ 2.3. $y \in I_a$, 2.3.1. $z \in [0, a),$ $T(x,T(y,z)) = T(x, int(y) \wedge int(z)) = int(x) \wedge int(y) \wedge int(z)$ $= int(y \wedge z) = int(y \wedge a) \wedge int(z)$ $T(y \wedge a, z) = T(T(x, y), z),$ 2.3.2. $z \in [a, 1)$, $T(x,T(y,z)) = T(x, y \wedge a) = int(x) \wedge int(y \wedge a)$ $= int(y \wedge a) = int(y \wedge a) \wedge int(z)$ $T(y \wedge a, z) = T(T(x, y), z),$ 2.3.3. $z \in I_a$, $T(x, T(y, z)) = T(x, y \wedge z \wedge a) = int(x) \wedge int(y \wedge z \wedge a)$ $= int(y \wedge z \wedge a) = int(y \wedge a) \wedge int(z)$ $T(y \wedge a, z) = T(T(x, y), z),$

3.
$$
x \in I_a
$$
,
\n3.1 $y \in [0, a)$,
\n3.1.1. $z \in [0, a)$ or $z \in [a, 1)$ or $z \in I_a$,
\n $T(x, T(y, z)) = T(x, int(y) \land int(z)) = int(x) \land int(y) \land int(z) = T(int(x) \land int(y), z) = T(T(x, y), z)$,
\n3.2. $y \in [a, 1)$,
\n3.2.1. $z \in [0, a)$,
\n $T(x, T(y, z)) = T(x, int(y) \land int(z)) = int(x) \land int(y) \land int(z)$
\n $= int(x \land z) = int(x \land a) \land int(z)$
\n $= T(x \land a, z) = T(T(x, y), z)$,
\n3.2.2. $z \in [a, 1)$,
\n $T(x, T(y, z)) = T(x, V(y, z)) = x \land a = int(x \land a) = int(x \land a) \land int(z) = T(x \land a, z) = T(T(x, y), z)$,
\n3.3.3. $y \in I_a$,
\n $T(x, T(y, z)) = T(x, z \land a) = int(x) \land int(z \land a) = int(x \land a) \land int(z) = T(x \land a, z) = T(T(x, y), z)$,
\n3.3.1. $z \in [0, a)$,
\n $T(x, T(y, z)) = T(x, int(y) \land int(z)) = int(x) \land int(y) \land int(z)$
\n $= int(x \land y \land a) \land int(z) = T(x \land y \land a, z)$
\n $= T(T(x, y), z)$,
\n3.3.2. $z \in [a, 1)$,
\n $T(x, T(y, z)) = T(x, y \land a) = int(x) \land int(y \land a)$
\n $= int(x \land y \land a) = int(x \land y \land a) \land int(z)$
\n $= T(x \land y \land a, z) = T(T(x, y), z)$,
\n3.3.3. $z \in I_a$,
\n $T(x, T(y, z)) = T(x, y \land a) = int(x \land y \land a) \land int(z)$
\n $= T(x \$

$$
T(x,T(y,z)) = T(x, y \wedge z \wedge a) = int(x) \wedge int(y \wedge z \wedge a)
$$

= $int(x \wedge y \wedge z \wedge a) = int(x \wedge y \wedge a) \wedge int(z)$
= $T(x \wedge y \wedge a, z) = T(T(x, y), z),$

So, we have the fact that *T* is a t-norm on *L*.

Remark 3.2. Let $(L, \leq, 0, 1)$ be a bounded lattice with $a \in L$. In Theorem 3.1, observe that the condition for all $x \in I_a$ *it holds* $x \wedge a = int(x \wedge a)$ *can not be omitted, in general. The following example illustrates this fact that the function* $T: L^2 \to L$ *defined by Theorem 3.1 is not a t-norm.*

Example 3.3. Consider the lattice $(L_1 = \{0_{L_1}, b, c, d, a, k, m, 1_{L_1}\}, \leq, 0_{L_1}, 1_{L_1})$ in Figure 1. And we take the t-norm $V(x,y) = x \wedge y$ on $[a,1_{L_1}]$. The interior operator int : $L_1 \to L_1$ defined by $int(0_{L_1}) = 0_{L_1}$, $int(b) = int(c) = int(d)$ $int(a) = int(k) = b$, $int(m) = m$ and $int(1_{L_1}) = 1_{L_1}$. For all $x \in I_a$ it does not hold $x \wedge a = int(x \wedge a)$. Because, $k \wedge a = c \neq b = int(c) = int(k \wedge a)$. Then, the function T on L_1 defined by Table 1 is not a t-norm. Indeed, it does not *satisfy the associativity. Because* $T(k, T(m, m)) = T(k, m) = c \neq b = T(c, m) = T(T(k, m), m)$ *.*

Corollary 3.4. Let $(L, \leq, 0, 1)$ be a bounded lattice with $a, b \in L$ such that for all $x \in I_a$ it holds $x \wedge a = x \wedge a \wedge b$ and *V be a t-norm on* [*a,* 1]*. Then, the function* $T: L^2 \to L$ *defined by*

$$
T(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,1)^2, \\ y \wedge a & \text{if } (x,y) \in [a,1) \times I_a, \\ x \wedge a & \text{if } (x,y) \in I_a \times [a,1), \\ x \wedge y \wedge a & \text{if } (x,y) \in I_a \times I_a, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ x \wedge y \wedge b & \text{otherwise.} \end{cases}
$$

is a t-norm on L.

 \Box

Figure 1: The lattice *L*¹

We give next construction methods for t-norms on complete lattices from Definition 2.9 and Definition 2.11.

Corollary 3.5. Let $(L, \leq 0, 1)$ be a complete lattice with $a \in L$, \Downarrow : $L \to L$ be defined in Definition 2.9 such that for all $x \in I_a$ it holds $x \wedge a = \Downarrow (x \wedge a)$ and V be a t-norm on [a, 1]. Then, the binary operation $T: L^2 \to L$ defined by

$$
T(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,1)^2, \\ y \wedge a & \text{if } (x,y) \in [a,1) \times I_a, \\ x \wedge a & \text{if } (x,y) \in I_a \times [a,1), \\ x \wedge y \wedge a & \text{if } (x,y) \in I_a \times I_a, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ \Downarrow (x) \wedge \Downarrow (y) & \text{otherwise.} \end{cases}
$$

is a t-norm on L.

We can give an example to illustrate Corollary 3.5.

Example 3.6. Consider the complete lattice $(L_2 = \{0_{L_2}, t, p, q, a, s, n, 1_{L_2}\}, \leq 0_{L_2}, 1_{L_2})$ in Figure 2. And we take the t-norm $V(x,y) = x \wedge y$ on $[a,1_{L_2}]$. It is clear that $UC(L_2) = \{0_{L_2}, t, n, 1_{L_2}\}$. So, we obtain $\Downarrow (0_{L_2}) = 0_{L_2}$, $\Downarrow(t) = \Downarrow(p) = \Downarrow(q) = \Downarrow(a) = \Downarrow(s) = t$, $\Downarrow(n) = n$ and $\Downarrow(1_{L_2}) = 1_{L_2}$. Since for all $x \in I_a$ it holds $x \wedge a = \Downarrow (x \wedge a)$, L_2 satisfies the constraint of Corollary 3.5. That is, $q \wedge a = t = \Downarrow (t) = \Downarrow (q \wedge a)$ and $s \wedge a = t = \Downarrow (t) = \Downarrow (s \wedge a)$. Then the *t*-norm $T: L_2^2 \to L_2$ constructed via Corollary 3.5 is given by Table 2.

Remark 3.7. *If we take* $b = 0$ *in Corollary* 3.4, then *it must be* $x \wedge a = 0$ *for all* $x \in I_a$ *. So, we obtain corresponding t-norm as follows constructed by* Cayl_i [8].

Corollary 3.8. [8] Let $(L, \leq, 0, 1)$ be a bounded lattice with $a \in L \setminus \{0, 1\}$ and V be a t-norm on [a, 1]. Then the $function T_1: L^2 \to L$ *is a t-norm on L, where*

$$
T_1(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,1)^2, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Figure 2: The lattice *L*²

Remark 3.9. *If we take* $b = 1$ *in Corollary* 3.4, *then we obtain corresponding t-norm as follows constructed by Ertuğrul, Kara¸cal and Mesiar* [15]*.*

Corollary 3.10. [15] *Let* $(L, \leq, 0, 1)$ *be a bounded lattice and V be a t-norm on* [a, 1]*. Then the function* $T_2: L^2 \to L$ *is a t-norm on L, where*

$$
T_2(x,y) = \begin{cases} V(x,y) & \text{if } (x,y) \in [a,1)^2, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ x \wedge y \wedge a & \text{otherwise.} \end{cases}
$$

Remark 3.11. *It should be noted that the t-norms T*¹ *and T*² *in Corollary 3.8 and Corollary 3.10, respectively are different from the t-norm* T *in Theorem 3.1. To show that this claim, we shall consider the bounded lattice* $(L_2 =$ $\{0_{L_2}, t, p, q, a, s, n, 1_{L_2}\}, \leq 0_{L_2}, 1_{L_2}\}\;$ described in Figure 2., we take the t-norm $V(x, y) = x \wedge y$ on $[a, 1_{L_2}]$ and the interior operator int : $L_2 \to L_2$ defined by $int(0_{L_2}) = 0_{L_2}$, $int(t) = int(p) = int(q) = int(a) = int(s) = t$, $int(n) = n$ and $int(1_{L_2}) = 1_{L_2}$. According to the Table 2, Table 3 and Table 4, it is clear that the t-norms *T*, *T*₁ and *T*₂ different *from each other.*

Table 4: The t-norm T_2 on L_2

$\scriptstyle T_2$	0_{L_2}		\mathcal{p}	q	\boldsymbol{a}	\boldsymbol{s}	$\it n$	1_{L_2}
0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}	0_{L_2}
$\,t\,$	0_{L_2}	t	t	\boldsymbol{t}	t			t
\boldsymbol{p}	0_{L_2}	t	$\boldsymbol{\eta}$	t	\boldsymbol{p}		\boldsymbol{p}	\boldsymbol{p}
q	0_{L_2}	t	t	t	t	t,	t	\boldsymbol{q}
$\it a$	0_{L_2}	t	\boldsymbol{p}	t	α	t	\boldsymbol{a}	\boldsymbol{a}
\boldsymbol{s}	0_{L_2}	t			t		t	S
$\, n$	0_{L_2}	t	ŋ	t	\boldsymbol{a}	t	$\it n$	$\it n$
1_{L_2}	U_{L_2}	t	$\boldsymbol{\eta}$		\boldsymbol{a}	S	$\it n$	1_{L_2}

4 New construction method for t-conorms on bounded lattices by using closure operators

In this section, we propose new construction method for t-conorms on bounded lattices with the given t-conorms by using closure operators. The main aim of this section is to present a rather effective method to construct t-conorms by using closure operators on a bounded lattice. Using this method, in Corollary 4.8 and Corollary 4.10, we obtain the methods proposed by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8], respectively.

Theorem 4.1. Let $(L, \leq, 0, 1)$ be a bounded lattice with $a \in L$ such that for all $x \in I_a$ it holds $x \vee a = cl(x \vee a)$ and $cl: L \to L$ be a closure operator. Given a t-conorm W on $[0,a]$, then the function $S: L^2 \to L$ defined as follows is a *t-conorm on L where* 24×22

$$
S(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in (0,a]^2 \\ y \vee a & \text{if } (x,y) \in (0,a] \times I_a, \\ x \vee a & \text{if } (x,y) \in I_a \times (0,a], \\ x \vee y \vee a & \text{if } (x,y) \in I_a \times I_a, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ cl(x) \vee cl(y) & \text{otherwise} \end{cases}
$$

Remark 4.2. Let $(L, \leq, 0, 1)$ be a bounded lattice with $a \in L$. In Theorem 4.1, observe that the condition for all $x \in I_a$ *it holds* $x \vee a = cl(x \vee a)$ *can not be omitted, in general. The following example illustrates this fact that the function* $S: L^2 \to L$ *defined by Theorem 4.1 is not a t-conorm.*

Example 4.3. Consider the lattice $(L_3 = \{0_{L_3}, t, a, n, p, s, q, 1_{L_3}\}, \leq, 0_{L_3}, 1_{L_3})$ in Figure 3. And we take the t-conorm $W(x,y) = x \vee y$ on $[0_{L_3},a]$. The closure operator $cl: L_3 \to L_3$ defined by $cl(0_{L_3}) = 0_{L_3}$, $cl(t) = t$, $cl(n) = cl(a)$ $cl(s) = cl(p) = cl(q) = q$, and $cl(1_{L_3}) = 1_{L_3}$. For all $x \in I_a$ it does not hold $x \vee a = cl(x \vee a)$. Because, $n \vee a = p \neq$ $q = cl(p) = cl(n \vee a)$. Then, the function *S* on L_3 defined by Table 5 is not a t-conorm. Indeed, it does not satisfy the *associativity. Because* $S(n, S(t,t)) = S(n,t) = p \neq q = S(p,t) = S(S(n,t), t)$.

Figure 3: The lattice *L*³

							\cdot	
S	0_{L_3}	t	\boldsymbol{a}	$\it n$	р	S	q	1_{L_3}
0_{L_3}	0_{L_3}	t	\boldsymbol{a}	$\it n$	\boldsymbol{p}	S	\boldsymbol{q}	1_{L_3}
\boldsymbol{t}	t	t	\boldsymbol{a}	р	q	q	q	1_{L_3}
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	$\it a$	р	q	q	q	1_{L_3}
$\it n$	$\it n$	р	р	р	q	\overline{q}	q	1_{L_3}
\boldsymbol{p}	\boldsymbol{p}	q	q	q	q	q	\boldsymbol{q}	1_{L_3}
\boldsymbol{s}	S	q	q	q	q	q	\boldsymbol{q}	1_{L_3}
\boldsymbol{q}	a	a	q	\boldsymbol{q}	q	q	q	1_{L_3}
1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}	1_{L_3}

Table 5: The t-function *S* on *L*³

Corollary 4.4. Let $(L, \leq 0, 1)$ be a bounded lattice with $a, b \in L$ such that for all $x \in I_a$ it holds $x \vee a = x \vee a \vee b$ and *W* be a t-conorm on $[0, a]$. Then, the function $S: L^2 \to L$ defined by

$$
S(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in (0,a]^2, \\ y \vee a & \text{if } (x,y) \in (0,a] \times I_a, \\ x \vee a & \text{if } (x,y) \in I_a \times (0,a], \\ x \vee y \vee a & \text{if } (x,y) \in I_a \times I_a, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ x \vee y \vee b & \text{otherwise.} \end{cases}
$$

is a t-conorm on L.

We give next construction methods for t-conorms on complete lattices from Definition 2.5 and Definition 2.8.

Corollary 4.5. Let $(L, \leq, 0, 1)$ be a complete lattice with $a \in L$, $\Uparrow: L \to L$ be defined in Definition 2.5 such that for all $x \in I_a$ it holds $x \vee a = \Uparrow (x \vee a)$ and W be a t-conorm on $[0, a]$. Then, the binary operation $S: L^2 \to L$ defined by

$$
S(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in (0,a]^2, \\ y \vee a & \text{if } (x,y) \in (0,a] \times I_a, \\ x \vee a & \text{if } (x,y) \in I_a \times (0,a], \\ x \vee y \vee a & \text{if } (x,y) \in I_a \times I_a, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ \Uparrow (x) \vee \Uparrow (y) & \text{otherwise.} \end{cases}
$$

is a t-conorm on L.

We can give an example to illustrate Corollary 4.5.

Example 4.6. Consider the complete lattice $(L_4 = \{0_{L_4}, m, r, a, k, c, d, 1_{L_4}\}, \leq 0_{L_4}, 1_{L_4})$ in Figure 4. And we take the t-conorm $W(x,y) = x \vee y$ on $[0_{L_4}, a]$. It is clear that $UC(L_4) = \{0_{L_4}, m, d, 1_{L_4}\}$. So, we obtain $\Uparrow (0_{L_4}) = 0_{L_4}$, $\Uparrow(m) = m$, $\Uparrow(r) = \Uparrow(a) = \Uparrow(k) = \Uparrow(c) = \Uparrow(d) = d$, and $\Uparrow(1_{L_4}) = 1_{L_4}$. Since for all $x \in I_a$ it holds $x \vee a = \Uparrow(x \vee a)$, L_4 satisfies the constraint of Corollary 4.5. That is, $k \vee a = d = \Uparrow (d) = \Uparrow (k \vee a)$ and $r \vee a = d = \Uparrow (d) = \Uparrow (r \vee a)$. *Then the t-conorm* $S: L_4^2 \to L_4$ *constructed via Corollary* 4.5 *is given by Table 6.*

Remark 4.7. If we take $b = 0$ in Corollary 4.4, then we obtain corresponding t-conorm as follows constructed by *Ertu˘grul, Kara¸cal and Mesiar* [15]*.*

Corollary 4.8. [15] *Let* $(L, \leq, 0, 1)$ *be a bounded lattice and W be a t-conorm on* [0*, a*]*. Then the function* $S_1 : L^2 \to L$ *is a t-conorm on L, where*

$$
S_1(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in (0,a]^2, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ x \vee y \vee a & \text{otherwise.} \end{cases}
$$

Figure 4: The lattice *L*⁴

		Table 6: The t-conorm S on L_4						
S	0_{L_4}	\boldsymbol{m}	\boldsymbol{r}	\boldsymbol{a}	k	\mathfrak{c}	d	1_{L_4}
0_{L_4}	0_{L_4}	$\,m$	r	α	\boldsymbol{k}	\mathfrak{c}	d	1_{L_4}
\boldsymbol{m}	\boldsymbol{m}	m	d	\boldsymbol{a}	d	d	\boldsymbol{d}	1_{L_4}
\boldsymbol{r}	\boldsymbol{r}	d	d	d	d	\boldsymbol{d}	\boldsymbol{d}	1_{L_4}
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	d	\boldsymbol{a}	d	\boldsymbol{d}	\boldsymbol{d}	1_{L_4}
\boldsymbol{k}	k	d	d	d	d	d	\boldsymbol{d}	1_{L_4}
\mathfrak{c}	\overline{c}	d	d	d	d	d	d	1_{L_4}
\boldsymbol{d}	d.	d	d	d	d	d	\boldsymbol{d}	1_{L_4}
$1_{L_{4}}$	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}

Remark 4.9. *If we take* $b = 1$ *in Corollary* 4.4, then it must be $x \vee a = 1$ for all $x \in I_a$. So, we obtain corresponding *t*-conorm as follows constructed by $Cayl₁ [8]$.

Corollary 4.10. [8] Let $(L, \leq, 0, 1)$ be a bounded lattice and $a \in L \setminus \{0, 1\}$. If W be a t-conorm on $[0, a]$, then the *function* $S_2: L^2 \to L$ *is a t-conorm on L, where*

$$
S_2(x,y) = \begin{cases} W(x,y) & \text{if } (x,y) \in (0,a]^2, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ 1 & \text{otherwise.} \end{cases}
$$

Remark 4.11. *It should be noted that the t-conorms S*¹ *and S*² *in Corollary 4.8 and Corollary 4.10, respectively* are different from the t-conorm *S* in Theorem 4.1. To show that this claim, we consider the bounded lattice $(L_4 =$ $\{0_{L_4},m,r,a,k,c,d,1_{L_4}\},\leq,0_{L_4},1_{L_4}\}$ in Figure 4., we take the t-conorm $W(x,y)=x\vee y$ on $[0_{L_4},a]$ and the closure operator $cl: L_4 \to L_4$ defined by $cl(0_{L_4}) = 0_{L_4}$, $cl(m) = m$, $cl(r) = cl(a) = cl(k) = cl(c) = cl(d) = d$ and $cl(1_{L_4}) = 1_{L_4}$. *According to the Table 6, Table 7 and Table 8, it is clear that t-conorms S, S*¹ *and S*² *different from each other.*

		rable t. The e-conorm ω_2 on μ_4						
S_1	0_{L_4}	\boldsymbol{m}	r	\boldsymbol{a}	\boldsymbol{k}	\boldsymbol{c}	d	1_{L_4}
0_{L_4}	0_{L_4}	$_{m}$	\boldsymbol{r}	α	$_{k}$	\mathfrak{c}	d	1_{L_4}
$\,m$	\boldsymbol{m}	$\,m$	d	\boldsymbol{a}	\boldsymbol{d}	с	d	1_{L_4}
\boldsymbol{r}	\boldsymbol{r}	d	d	\boldsymbol{d}	\boldsymbol{d}	\boldsymbol{d}	d	1_{L_4}
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	d	\boldsymbol{a}	\boldsymbol{d}	\boldsymbol{c}	d	1_{L_4}
\boldsymbol{k}	\boldsymbol{k}	\boldsymbol{d}	d	\boldsymbol{d}	d	\boldsymbol{d}	d	1_{L_4}
\mathfrak{c}	\overline{c}	\overline{c}	d	\mathfrak{c}	\boldsymbol{d}	\boldsymbol{c}	d	1_{L_4}
d	\boldsymbol{d}	d	d	d	\boldsymbol{d}	\boldsymbol{d}	d	1_{L_4}
1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}

Table 7 ^c The t-conorm S_2 on L_4

	$S_2 \,\mid\, 0_{L_4}$	m	r		\overline{a} k c d 1_{L_4}					
0_{L_4}	0_{L_4}	m	r and r	\boldsymbol{a}	\boldsymbol{k}		$c \t d$	1_{L_4}		
$\,m$	$\mid m$	m	1_{L_4}	a	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}		
\boldsymbol{r}	\mathcal{r}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}		1_{L_4} 1_{L_4}	1_{L_4}		
\overline{a}	α	a	1_{L_4}	$a=1_{L_4}$			1_{L_4} 1_{L_4}	1_{L_4}		
\boldsymbol{k}	\boldsymbol{k}	1_{L_4}	1_{L_4}		1_{L_4} 1_{L_4}		1_{L_4} 1_{L_4}	1_{L_4}		
\boldsymbol{c}	\boldsymbol{c}	1_{L_4}	1_{L_4}		1_{L_4} 1_{L_4}		1_{L_4} 1_{L_4}	1_{L_4}		
d	d	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}	1_{L_4}		
1_{L_4}	1_{L_4}	1_{L_4}		1_{L_4} 1_{L_4} 1_{L_4} 1_{L_4} 1_{L_4}				1_{L_4}		

Table 8: The t-conorm *S*¹ on *L*⁴

5 Modified ordinal sum constructions of t-norms and t-conorms on bounded lattices

From [8] and [15], we know that new t-norms and t-conorms on bounded lattices can be obtained using recursion in Theorem 5.1, Theorem 5.2 and Theorem 5.5, Theorem 5.6, respectively. In this section, based on the approaches of constructing t-norms and t-conorms by using interior and closure operators, respectively, proposed in Section 3 and Section 4, we show that it can not be obtained ordinal sum constructions of t-norms and t-conorms on bounded lattice *L* using recursion.

Theorem 5.1. [8] Let $(L, \leq, 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $1 = a_0$ $a_1 > a_2 > ... > a_n = 0$. Let $V : [a_1, 1]^2 \to [a_1, 1]$ be a t-norm. Then, the function $T_n : L^2 \to L$ defined recursively as follows is a t-norm, where $V = T_1$ and for $i \in \{2, \dots, n\}$, the function $T_i : [a_i, 1]^2 \to [a_i, 1]$ is given by

$$
T_i(x, y) = \begin{cases} T_{i-1}(x, y) & \text{if } (x, y) \in [a_{i-1}, 1)^2, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ a_i & \text{otherwise.} \end{cases}
$$
 (5)

Theorem 5.2. [15] Let $(L, \leq, 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $1 =$ $a_0 > a_1 > a_2 > ... > a_n = 0$. Let $V : [a_1, 1]^2 \to [a_1, 1]$ be a t-norm. Then, the function $T_n : L^2 \to L$ defined recursively *as follows is a t-norm, where* $V = T_1$ *and for* $i \in \{2, \dots, n\}$,

$$
T_i(x, y) = \begin{cases} T_{i-1}(x, y) & \text{if } (x, y) \in [a_{i-1}, 1)^2, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ x \wedge y \wedge a_{i-1} & \text{otherwise.} \end{cases}
$$
(6)

Remark 5.3. Let $(L, \leq, 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $1 = a_0 > a_1 > a_2$ $a_2 > ... > a_n = 0$. Let $x \wedge a_i = int(x \wedge a_i)$ for all $x \in I_{a_i}$, let $V : [a_1,1]^2 \rightarrow [a_1,1]$ be a t-norm and int $:L \rightarrow L$ be an *interior operator. It should be noted that our construction method in Theorem 3.1 can not be obtained using recursion. Because, we can not obtain the binary operation* $T_i : [a_i, 1]^2 \to [a_i, 1]$ *as follows, where* $T_1 = V$ *and for* $i \in \{2, \dots, n\}$ *,*

$$
T_i(x,y) = \begin{cases} T_{i-1}(x,y) & \text{if } (x,y) \in [a_{i-1},1)^2, \\ y \wedge a_{i-1} & \text{if } (x,y) \in [a_{i-1},1) \times I_{a_{i-1}}, \\ x \wedge a_{i-1} & \text{if } (x,y) \in I_{a_{i-1}} \times [a_{i-1},1), \\ x \wedge y \wedge a_{i-1} & \text{if } (x,y) \in I_{a_{i-1}} \times I_{a_{i-1}}, \\ x \wedge y & \text{if } x = 1 \text{ or } y = 1, \\ \text{int}(x) \wedge \text{int}(y) & \text{otherwise.} \end{cases} \tag{7}
$$

To illustrate this claim we shall give the following example:

Example 5.4. Consider the lattice $(L_5 = \{0_5, a_4, b, c, a_3, a_2, a_1, 1_{L_5}\}, \leq, 0_{L_5}, 1_{L_5})$ described in Figure 5 with the finite chain $0_{L_5} < a_4 < a_3 < a_2 < a_1 < 1_{L_5}$ in L_5 . Then, the interior operator int: $L_5 \rightarrow L_5$ defined by $int(0_{L_5}) = 0_{L_5}$, $int(a_4) = int(a_3) = int(a_2) = int(a_1) = int(c) = int(b) = a_4$, $int(1_{L_5}) = 1_{L_5}$. It is clear that $x \wedge a_i = int(x \wedge a_i)$ for

Figure 5: The lattice *L*⁵

all $x \in I_{a_i}$. Define the t-norm $V : [a_1, 1_{L_5}]^2 \to [a_1, 1_{L_5}]$ by $V = T_{\wedge}$. Since $int(a_1) \wedge int(a_2) = a_4 \notin [a_2, 1_{L_5}]$, we can not obtain the binary operation T_2 on $[a_2, 1_{L_5}]$. Since $int(a_3) \wedge int(a_1) = a_4 \notin [a_3, 1_{L_5}]$, we can not obtain the binary *operation* T_3 *on* $[a_3, 1_{L_5}]$ *.*

Theorem 5.5. [8] Let $(L, \leq 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $0 = a_0 <$ $a_1 < a_2 < ... < a_n = 1$. Let $W : [0, a_1]^2 \to [0, a_1]$ be a t-conorm. Then, the function $S_n : L^2 \to L$ defined recursively as follows is a t-conorm, where $S_1 = W$ and for $i \in \{2, \dots, n\}$, the binary function $S_i : [0, a_i]^2 \to [0, a_i]$ is given by

$$
S_i(x, y) = \begin{cases} S_{i-1}(x, y) & \text{if } (x, y) \in (0, a_{i-1}]^2, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ a_i & \text{otherwise.} \end{cases}
$$
 (8)

Theorem 5.6. [15] Let $(L, \leq, 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $0 =$ $a_0 < a_1 < a_2 < \ldots < a_n = 1$. Let $W : [0, a_1]^2 \to [0, a_1]$ be a t-conorm. Then, the function $S_n : L^2 \to L$ defined *recursively as follows is a t-conorm, where* $S_1 = W$ *and for* $i \in \{2, \dots, n\}$,

$$
S_i(x, y) = \begin{cases} S_{i-1}(x, y) & \text{if } (x, y) \in (0, a_{i-1}]^2, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ x \vee y \vee a_{i-1} & \text{otherwise.} \end{cases}
$$
(9)

Remark 5.7. Let $(L, \leq, 0, 1)$ be a bounded lattice and $\{a_0, a_1, a_2, \dots, a_n\}$ be a finite chain in L such that $0 = a_0$ $a_1 < a_2 < ... < a_n = 1$. Let $x \vee a_i = cl(x \vee a_i)$ for all $x \in I_{a_i}$, let $W : [0, a_1]^2 \to [0, a_1]$ be a t-conorm and $cl : L \to L$ be *a closure operator. It should be noted that our construction method in Theorem 4.1 can not be obtained using recursion. Because we can not obtain the binary operation* $S_i : [0, a_i]^2 \to [0, a_i]$ *as follows, where* $S_1 = W$ *and for* $i \in \{2, \dots, n\}$,

$$
S_i(x,y) = \begin{cases} S_{i-1}(x,y) & \text{if } (x,y) \in (0, a_{i-1}]^2, \\ y \vee a_{i-1} & \text{if } (x,y) \in (0, a_{i-1}] \times I_{a_{i-1}}, \\ x \vee a_{i-1} & \text{if } (x,y) \in I_{a_{i-1}} \times (0, a_{i-1}], \\ x \vee y \vee a_{i-1} & \text{if } (x,y) \in I_{a_{i-1}} \times I_{a_{i-1}}, \\ x \vee y & \text{if } x = 0 \text{ or } y = 0, \\ cl(x) \vee cl(y) & \text{otherwise.} \end{cases} \tag{10}
$$

To illustrate this claim we shall give the following example

Example 5.8. Consider the lattice $(L_6 = \{0_{L_6}, a_1, a_2, a_3, m, n, a_4, 1_{L_6}\}, \leq, 0_{L_6}, 1_{L_6})$ described in Figure 6 with the finite chain $0_{L_6} < a_1 < a_2 < a_3 < a_4 < 1_{L_6}$ in L_6 . Then, the closure operator $cl: L_6 \to L_6$ defined by $cl(0_{L_6}) = 0_{L_6}$, $cl(m) = cl(n) = cl(a_1) = cl(a_2) = cl(a_3) = cl(a_4) = a_4,$ $cl(1_{L_6}) = 1_{L_6}$. It is clear that $x \vee a_i = cl(x \vee a_i)$ for all $x \in I_{a_i}$. Define the t-conorm $W:[0_{L_6},a_1]^2\to[0_{L_6},a_1]$ by $W=S_{\vee}$. Since $int(a_1)\vee int(a_2)=a_4\notin[0_{L_6},a_2]$, we can not obtain the binary operation S_2 on $[0_{L_6}, a_2]$. Since $int(a_3) \vee int(a_1) = a_4 \notin [0_{L_6}, a_3]$, we can not obtain the binary operation S_3 *on* $[0_{L_6}, a_3]$.

Figure 6: The lattice *L*⁶

6 Concluding remarks

In this paper, we have proposed the constructions of t-norms and t-conorms on bounded lattices with interior and closure operators, respectively. The main aim of this paper is to present a rather effective method to construct t-norms and t-conorms by using interior and closure operators on a bounded lattice, respectively. Also, using these methods, in Corollary 3.10 and Corollary 4.8, we obtain the methods proposed by Ertuğrul, Karaçal and Mesiar [15]. Also, in Corollary 3.8 and Corollary 4.10, we obtain the methods proposed by Caylı [8]. Finally, we have shown that the new construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on arbitrary bounded lattice, respectively.

Acknowledgement

We are grateful to the anonymous reviewers and editors for their valuable comments, which helped to improve the original version of our manuscript greatly.

References

- [1] E. Aşıcı, *Equivalence classes of uninorms*, Filomat, **33**(2) (2019), 571-582.
- [2] E. A¸sıcı, *Construction methods for triangular norms and triangular conorms on appropriate bounded lattices*, Iranian Journal of Fuzzy Systems, **18** (2021), 81-98.
- [3] E. A¸sıcı, R. Mesiar, *New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice*, International Journal of General Systems, **49** (2020), 143-160.
- [4] E. A¸sıcı, R. Mesiar, *Alternative approaches to obtain t-norms and t-conorms on bounded lattices*, Iranian Journal of Fuzzy Systems, **17** (2020), 121-138.
- [5] E. A¸sıcı, R. Mesiar, *On generating uninorms on some special classes of bounded lattices*, Fuzzy Sets and Systems, (2021), Doi:10.1016/j.fss.2021.06.010.
- [6] G. Birkhoff, *Lattice theory*, American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
- [7] A. Clifford, *Naturally totally ordered commutative semigroups*, American Journal of Mathematics, **76** (1954), 631- 646.
- [8] G. D. Çaylı, *On a new class of t-norms and t-conorms on bounded lattices*, Fuzzy Sets and Systems, **332** (2018), 129-143.
- [9] G. D. Cayli, *Some methods to obtain t-norms and t-conorms on bounded lattices*, Kybernetika, **55** (2019), 273-294.
- [10] Y. Dan, B. Q. Hu, J. Qiao, *New construction of t-norms and t-conorms on bounded lattices*, Fuzzy Sets and Systems, **395** (2020), 40-70.
- [11] C. A. Drossos, *Generalized t-norm structures*, Fuzzy Sets and Systems, **104** (1999), 53-59.
- [12] C. A. Drossos, M. Navara, *Generalized t-conorms and closure operators*, In Proceedings EUFIT 96, Aachen, 1996, pages 22-26.
- [13] A. Dvořák, M. Holčapek, *New construction of an ordinal sum of t-norms and t-conorms on bounded lattices*, Information Sciences, **515** (2020), 116-131.
- [14] R. Engelking, *General topology*, Heldermann Verlag, Berlin, 1989.
- [15] U. Ertuğrul, F. Karaçal, R. Mesiar, *Modified ordinal sums of triangular norms and triangular conorms on bounded lattices*, International Journal of Intelligent Systems, **30** (2015), 807-817.
- [16] C. J. Everett, *Closure operators and Galois theory in lattices*, Transactions of the American Mathematical Society, **55** (1944), 514-525.
- [17] J. A. Goguen, *L-fuzzy sets*, Journal of Mathematical Analysis and Applications, **18** (1967), 145-174.
- [18] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, *Aggregation functions*, In: Encyclopedia of Mathematics and its Applications, **127**, Cambridge University Press, 2009.
- [19] F. Kara¸cal, M. A. Ince, R. Mesiar, *Nullnorms on bounded lattices*, Information Sciences, **325** (2015), 227-235.
- [20] E. P. Klement, R. Mesiar, E. Pap, *Triangular norms*, Kluwer Academic Publishers, Dordrecht, 2000.
- [21] J. Medina, *Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices*, Fuzzy Sets and Systems, **202** (2012), 75-88.
- [22] P. S. Mostert, A. L. Shields, *On the structure of semi-groups on a compact manifold with boundary*, Annals of Mathematics, II. Ser. **65** (1957), 117-143.
- [23] Y. Ouyang, H. P. Zhang, *Constructing uninorms via closure operators on a bounded lattice*, Fuzzy Sets and Systems, **395** (2020), 93-106.
- [24] Y. Ouyang, H. P. Zhang, B. De Baets, *Ordinal sums of triangular norms on a bounded lattice*, Fuzzy Sets and Systems, **408** (2021), 1-12.
- [25] S. Saminger, *On ordinal sums of triangular norms on bounded lattices*, Fuzzy Sets and Systems, **325** (2006), 1403-1416.
- [26] B. Schweizer, A. Sklar, *Statistical metric spaces*, Pacific Journal of Mathematics, **10** (1960), 313-334.

Constructing t-norms and t-conorms by using interior and closure operators on bounded lattices

E. Aşıcı

ایجاد t-نرمها و t- همنرمها با استفاده از عملگرهای د اخلی و بسته روی شبکه های محدود

چکیده. در این مقاله، ما روشهای ساخت برای نرم های) t-نرم ها (مثلثی و همنرمهای)t- همنرمها (مثلثی روی شبکه های محدود به ترتیب با استفاده از عملگرهای داخلی و بسته پیشنهاد میکنیم. بنابراین، برخی از روشهای پیشنهادی توسط Ertugrul ، Karacal] 15 [و Mesiar] 8 [را در نتیجه بدست میآوریم. همچنین، چند مثال گویا ارائه میدهیم. سرانجام، نشان میدهیم که روشهای ساخت معرفی شده را نمیتوان به استقراء به حاصلجمع ترتیبی تعدیل شده برای t-نرمها و t- همنرم ها روی شبکههای محدود تعمیم داد. این مقاله، t-نرم ها و t- هم نرمها روی شبکه های محدود را بیشتر از دیدگاه ریاضی ایجاد کرده است.