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Abstract

We investigate the stability problems of the n-dimensional Cauchy-Jensen type and the n-dimensional Pexiderized
Cauchy-Jensen type fuzzy number-valued functional equations in Banach spaces by using the metric defined on a fuzzy
number space. Under some suitable conditions, some properties of the solutions for these equations such as existence
and uniqueness are discussed. Our results can be regarded as important extensions of stability results corresponding to
single-valued functional equations and set-valued functional equations, respectively.
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1 Introduction

In set-valued analysis, a functional inclusion is called stable if any function which satisfies this inclusion approximately
is near to a true solution of the functional inclusion (see [7, 8, 15, 21, 37]). Nikodem and Popa [28] considered the
general solution of set-valued functions satisfying linear inclusion relation, which can be regarded as a generalization
of the additive single-valued functional equation. By means of the inclusion relation, Park et al. [23, 30] investigated
the stability of some set-valued functional equations. Jang et al. [19] and Chu et al. [13] studied the stability of
an n-dimensional additive set-valued functional equation and an n-dimensional cubic set-valued functional equation,
respectively.

Some interesting results concerning the Cauchy-Jensen functional equation
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(
x+ y

2

)
+ f

(
x− y

2

)
= f(x),

and the general linear functional equation with real constants a, b, A,B,

f(ax+ by) = Af(x) +Bf(y), (1)

have been obtained in [6, 17, 20, 23, 24, 29, 32, 39]. In particular, the equation (1) includes the linear equation for
A = a and B = b. If t ∈ (0, 1), a = A = t and b = B = 1− t, then (1) has the form

f(tx+ (1− t)y) = tf(x) + (1− t)f(y),

and its solution is called an affine function (see, among others, [29, 33]). Clearly, the equation (1) also includes the
Cauchy equation for a = b = A = B = 1 and the Jensen equation for a = b = A = B = 1

2 .
The functional equation

f(x+ y) = g(x) + h(y),

with three unknown functions f, g, h treated by Pexider [31], which is known as the Pexiderized Cauchy equation.
In the case f = g = h, this equation reduces to Cauchy equation. The Pexiderized Cauchy equation has a simple
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interpretation: The value of f at x + y is the sum of two values, of which one depends only on x, and the other only
on y (separation of variables).

In 1991, Nikodem [27] investigated the stability of the Pexider Cauchy equation. This paper seems to be the first
one concerning the stability problem of the Pexider Cauchy equation. Solutions and the stability of various Pexiderized
Cauchy and Pexiderized Cauchy-Jensen functional equations in several variables have been investigated by several
authors (see, among others, [12, 14, 16, 22, 25, 26]).

The stability of the Cauchy-Jensen and the general linear type fuzzy number-valued functional equations in Banach
spaces by using the metric defined on a fuzzy number space investigated by Wu and Jin [39], which are generalizations
of the main results obtained in [17, 23]. We refer the reader to [1, 5, 9, 10, 11, 35, 36, 38] for some recent works and
discussions on this topic.

The purpose of this paper is to extend the single-valued and set-valued functional equations to fuzzy number-valued
functional equations and investigate the stability problems of the n-dimensional Cauchy-Jensen type fuzzy number-
valued functional equation
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(∑n
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n

)
+
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j=2

f

(∑n
i=1,i ̸=j xi − (n− 1)xj

n

)
= f(x1). (2)

and the n-dimensional Pexiderized Cauchy-Jensen type fuzzy number-valued functional equation

f1

(∑n
i=1 xi

n

)
+

n∑
j=2

fj

(∑n
i=1,i ̸=j xi − (n− 1)xj

n

)
= fn+1(x1), (3)

in Banach spaces via the metric defined on a fuzzy number space. Under some suitable conditions, some properties of
the solutions for these equations such as existence and uniqueness are discussed. Notice that the supremum metric, as
a generalization of the Hausdorff metric, is applied to characterize the fuzzy number-valued functional inequality.
It has been shown that the stability of Cauchy, Jensen, Cauchy-Jensen, Pexiderized Cauchy, Pexiderized Jensen,
Pexiderized affine, Pexiderized linear and Pexiderized general linear type fuzzy number-valued functional equations
can be obtained as special cases from our results. Therefore, the results obtained in the present paper improve and
extend the corresponding results in previous works [12, 17, 23, 27, 30, 39].

2 Preliminaries

In this section, we consider some basic concepts and results (see [3, 39]) which will be used in the sequel. From now
on, assume that X, Y are Banach spaces and B is a subspace of Y .

Suppose a function u : X → [0, 1] satisfies the following conditions:

1. [u]α = {x ∈ X : u(x) ≥ α} is a non-empty compact convex subset of X, for all α ∈ (0, 1],

2. [u]0 = {x : u(x) > 0} is compact, where A denotes the closure of A.

Then u is called a fuzzy number on X. The set of all fuzzy numbers on X is denoted by XF .
For u, v ∈ XF and λ ∈ R, by Zadeh extension principle, we obtain the following properties about addition u+ v and

scalar multiplication λ · u (see [3, 39]):
(i) [u+ v]α = [u]α + [v]α,
(ii) [λ · u]α = λ[u]α.

Note that 0̃ is the zero element in XF ; i.e., 0̃ + u = u+ 0̃ = u, for all u ∈ XF .
Defining the mapping D : XF ×XF → [0,∞) by

D(u, v) = sup
α∈[0,1]

dH([u]α, [vα]),

where dH is Hausdorff metric. Then D satisfies the following properties:
(P1) D(λ · u, λ · v) = |λ|D(u, v),
(P2) D(u+ w, v + w) = D(u, v),
(P3) D(u+ v, w + e) ≤ D(u,w) +D(v, e)

for all λ ∈ R and u, v, w, e ∈ XF , and (XF , D) is a complete metric space.
Let u, v ∈ XF . If there exists w ∈ XF such that u = v +w, then w is called the Hukuhara difference (H-difference)

of u and v, and it is denoted by u− v (see [18, 34]).
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Notation 2.1. Let λ ∈ R and u, v ∈ RF . If we denote ∥u∥F = D(u, 0̃), then ∥ · ∥F has the properties of a usual norm
on RF ; i.e., ∥u∥F = 0 iff u = 0̃, ∥λ ·u∥F = |λ|∥u∥F and ∥u+ v∥F ≤ ∥u∥F + ∥v∥F . Moreover, note that (RF ,+, ·) is not
a linear space over R and consequently (RF , ∥ · ∥F ) cannot be a normed space (see [2] and [4, Theorem 1 and Remark
2]).

3 Stability of the Cauchy-Jensen type fuzzy number-valued functional
equation in n variables

In this section, the stability of the equation (2) is established, in which f indicates a fuzzy number-valued mapping.
Several special cases are also considered.

Theorem 3.1. Let f : B → XF be a fuzzy number-valued mapping such that

D

f

(∑n
i=1 xi

n

)
+

n∑
j=2

f

(∑n
i=1,i̸=j xi − (n− 1)xj

n

)
, f(x1)

 < ε, (4)

for some ε > 0 and for all x1, . . . , xn ∈ B. Then there exists a unique additive mapping G : B → XF such that

D (f(x),G(x)) ≤ ε

n− 1
,

for all x ∈ B.

Proof. Setting x1 = nx and xi = 0 (2 ≤ i ≤ n) in (4), we obtain

D

(
f(x),

1

n
f(nx)

)
<

ε

n
,

for all x ∈ B. Then, by induction on m, we have

D

(
f(x),

1

nm
f(nmx)

)
<
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j=1

(
1

n
)jε. (5)

Let f0(x) = f(x) and fm(x) = 1
nm f(nmx), where m ∈ N and x ∈ B. Then, by (5) and the properties (P2) and (P3) of

D, we obtain

D (fm(x), fm−1(x)) = D

(
1

nm
f(nmx) + f(x), f(x) +

1

nm−1
f(nm−1x)

)
≤ D

(
1

nm
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)
+D
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1
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)
<
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(
1

n
)jε+

m−1∑
j=1

(
1

n
)jε,

for all x ∈ B. Thus the sequence {fm(x)} is Cauchy in XF . Since (XF , D) is complete, we can define G(x) =
limm→∞ fm(x) for any x ∈ B.

The next step is to show that G is additive. By (4), we can conclude that
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for all x1, . . . , xn ∈ B. Hence,

lim
m→∞

D
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+
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 = 0.
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By the continuity of the metric D, we obtain

D

G
(∑n

i=1 xi

n

)
+

n∑
j=2

G

(∑n
i=1,i ̸=j xi − (n− 1)xj

n

)
,G(x1)

 = 0,

meaning

G
(∑n

i=1 xi

n

)
+

n∑
j=2

G

(∑n
i=1,i ̸=j xi − (n− 1)xj

n

)
= G(x1), (6)

for all x1, . . . , xn ∈ B. Letting xi = 0 (1 ≤ i ≤ n) in (6), we obtain G(0) = 0̃. Setting x1 = x and xi = 0 (2 ≤ i ≤ n)
in (6), we get

nG
(x
n

)
= G(x), (7)

for all x ∈ B. Setting xi = 0 (3 ≤ i ≤ n) in (6) and using (7), we have

n− 1

n
G (x1 + x2) +

1

n
G (x1 − (n− 1)x2) = G(x1), (8)

for all x1, x2 ∈ B. Putting x1 = x1 + (n− 1)x2 in (8), one finds

n− 1

n
G (x1 + nx2) +

1

n
G (x1) = G (x1 + (n− 1)x2) , (9)

for all x1, x2 ∈ B. Replacing x1 by 0 and x2 by x into (9) and using (7), one gets

G ((n− 1)x) = (n− 1)G(x), (10)

for all x ∈ B. Replacing x1 by 0 and x2 by x into (8) and using (10), we obtain G(−x) = −G(x) for all x ∈ B; that is,
G is odd. Setting x2 = x2 − x1 in (8), we get

n− 1

n
G (x2) +

1

n
G (nx1 − (n− 1)x2) = G (x1) , (11)

for all x1, x2 ∈ B. Replacing x1 by x1

n and x2 by − x2

n−1 into (11) and using (7), (10) and the oddness of G, we have

G(x1 + x2) = G(x1) + G(x2),

for all x1, x2 ∈ B; that is, G is additive.

By letting m → ∞ in (5), we immediately achieve D (f(x),G(x)) ≤ ε

n− 1
for all x ∈ B.

Finally, we prove the uniqueness of G. Assume that there exist additive mappings G1,G2 : B → XF satisfying the
last inequality. Then,

D (G1(x),G2(x)) =
1

m
D (mG1(x),mG2(x))

≤ 1

m
(D (G1(mx), f(mx)) +D (f(mx), nG2(mx)))

<
2ε

m(n− 1)
,

for all x ∈ B and for any m ∈ N. Since the right-hand side of the last inequality tends to zero as m → ∞, we conclude
that G1(x) = G2(x) for all x ∈ B, as desired.

From Theorem 3.1, we easily obtain the following.

Corollary 3.2. ([39, Theorem 1]) If a fuzzy number-valued mapping f : B → XF satisfes the inequality (4) with n = 2,
then there exists a unique additive mapping G : B → XF such that

D (f(x),G(x)) ≤ ε, (12)

for all x ∈ B.
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In the next result, we establish the stability of the Cauchy type fuzzy number-valued functional equation.

Corollary 3.3. Let f : B → XF be a fuzzy number-valued mapping such that

D (f(x) + f(y), f(x+ y)) < ε, (13)

for some ε > 0 and for all x, y ∈ B. Then there exists a unique additive mapping G : B → XF such that (12) holds for
all x ∈ B.

Proof. Substituting x = x+y
2 and y = x−y

2 in (13) gives

D

(
f

(
x+ y

2

)
+ f

(
x− y

2

)
, f(x)

)
< ε,

for all x, y ∈ B. Then f satisfies the inequality (4) with n = 2. Then, by Theorem 3.1, we find a unique additive
mapping G : B → XF such that (12) holds for all x ∈ B.

Now, we obtain the stability of the Jensen type fuzzy number-valued functional equation.

Corollary 3.4. If a fuzzy number-valued mapping f : B → XF satisfes the inequality

D

(
2f(

x+ y

2
), f(x) + f(y)

)
< ε, (14)

for some ε > 0 and for all x, y ∈ B, then there exists a unique additive mapping G : B → XF such that

D (f(x)− f(0),G(x)) ≤ 2ε,

for all x ∈ B.

Proof. Let g(x) := f(x)− f(0) for all x ∈ B. Then g(0) = 0̃ and (14) yields that

D

(
2g(

x+ y

2
), g(x) + g(y)

)
< ε, (15)

for all x, y ∈ B. Replacing x by x+ y and y by 0 in (15), we get

D

(
2g(

x+ y

2
), g(x+ y)

)
< ε, (16)

for all x, y ∈ B. It follows from (15) and (16) that

D (g(x+ y), g(x) + g(y)) = D

(
g(x+ y) + 2g(

x+ y

2
), 2g(

x+ y

2
) + g(x) + g(y)

)
≤ D

(
g(x+ y), 2g(

x+ y

2
)

)
+D

(
2g(

x+ y

2
), g(x) + g(y)

)
< 2ε,

for all x, y ∈ B. Using the same method as in the proof of Corollary 3.3, we find a unique additive mapping G : X → Y
such that

D (g(x),G(x)) ≤ 2ε,

holds for all x ∈ B. This completes the proof of this result.

4 Stability of the Pexiderized Cauchy-Jensen type fuzzy number-valued
functional equation in n variables

In this section, the stability of the equation (3) is established, in which f indicates a fuzzy number-valued mapping.
Some special cases involving the stability of Pexiderized Cauchy, Pexiderized Jensen, Pexiderized affine, Pexiderized
linear and Pexiderized general linear type fuzzy number-valued functional equations are also presented.
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Theorem 4.1. Let f1, . . . , fn+1 : B → XF be fuzzy number-valued mappings with f1(0) = · · · = fn(0) = 0̃ such that

D

f1

(∑n
i=1 xi

n

)
+

n∑
j=2

fj

(∑n
i=1,i̸=j xi − (n− 1)xj

n

)
, fn+1(x1)

 < ε, (17)

for some ε > 0 and for all x1, . . . , xn ∈ B. Then there exists a unique additive mapping G : B → XF such that

D (fk(x),G(x)) ≤
2n

n− 1
ε, (k = 1, 2, ..., n), (18)

D (fn+1(x),G(x)) ≤
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n− 1
ε, (19)

for all x ∈ B.

Proof. Letting x1 = x and xi =
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2n−2 (2 ≤ i ≤ n) in (17), we get

D

f1

(
x+ y

2

)
+

n∑
j=2

fj

(
x− y

2n− 2

)
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 < ε, (20)

for all x, y ∈ B. Setting x = x+y
2 and y = x−y

2 in (20), we have

D
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(x
2

)
+
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y
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)
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x+ y

2
)

 < ε, (21)

for all x, y ∈ B. Letting xj = −x (j = 2, ..., n) separately, x1 = x and xi = 0 (i = 2, ..., n and i ̸= j) in (17), we get

D (fj (x) , fn+1 (x)) < ε, (22)

for all x ∈ B, where j ∈ {2, ..., n}. Setting x = 2x and y = 0 in (21), we have

D (f1 (x) , fn+1(x)) < ε, (23)

for all x ∈ B. It follows from (22), (23) and the property (P3) of D that

D

 n∑
j=1,j ̸=k

fj (x) , (n− 1)fn+1(x)

 < (n− 1)ε, (24)

for all x ∈ B, where k ∈ {1, ..., n}. Putting x = 2x and y = (2n− 2)x in (21), we obtain

D
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fj (x) , fn+1(nx)

 < ε, (25)

for all x ∈ B. Using the inequalities (22) to (25) and the properties (P1) to (P3) of D, we conclude that

D (fk(nx), nfk(x))

= D (fk (nx) + fn+1(nx), fn+1(nx) + nfk(x))

≤ D (fk (nx) , fn+1(nx)) +D (fn+1(nx), nfk(x))

< ε+D

fn+1(nx) +
n∑

j=1,j ̸=k

fj (x) ,
n∑
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fj (x) + fk(x) + (n− 1)fk(x)
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≤ ε+D
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n∑
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 n∑
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fj (x) , (n− 1)fk(x)


< ε+ ε+D

 n∑
j=1,j ̸=k

fj (x) , (n− 1)fk(x)


= 2ε+D

 n∑
j=1,j ̸=k
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for all x ∈ B, where k ∈ {1, ..., n}. Rewriting the above, we obtain
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for all x ∈ B, where k ∈ {1, ..., n}. Then, by induction on m, it follows that
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1
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≤
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2

nj
ε,

for all x ∈ B, where k ∈ {1, ..., n}. Using the same method as in the proof of Theorem 3.1, we find a unique additive
mapping G : X → Y such that (18) holds for k ∈ {1, ..., n}.

It follows from (23), (24), (25) and the properties (P2) and (P3) of D that
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= D
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for all x ∈ B. We deduce from the last inequality that
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)
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n
ε,

for all x ∈ B. Then, by induction on m, we get
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)
≤
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nj
ε,

for all x ∈ B. Using the same method as in the proof of Theorem 3.1, we find a unique additive mapping G : X → Y
such that (19) holds.
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Now, we investigate the stability problem for the Pexiderized general linear type fuzzy number-valued functional
equation in n variables.

Corollary 4.2. Let f1, . . . , fn+1 : B → XF be fuzzy number-valued mappings with f1(0) = · · · = fn(0) = 0̃ such that

D

(
n∑

i=1

Aifi(xi), fn+1(
n∑

i=1

aixi)

)
< ε, (26)

for all x1, ..., xn ∈ B, where ε, ai, Ai > 0. Then there exists a unique additive mapping G : B → XF such that

D(fk(x),G(x)) ≤
2n

Ak(n− 1)
ε, (k = 1, 2, ..., n), (27)

D(fn+1(x),G(x)) ≤
n+ 1

n− 1
ε, (28)

for all x ∈ B.

Proof. Setting xi =
xi

ai
for i = 1, ..., n in (26), we get
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(
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), fn+1(

n∑
i=1

xi)

)
< ε, (29)

for all x1, ..., xn ∈ B. For i = 1, ..., n, define
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(
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ai

)
, (30)

for all xi ∈ B. Then, by (29),

D

(
n∑

i=1

Gi(xi), fn+1(

n∑
i=1

xi)

)
< ε, (31)

for all x1, ..., xn ∈ B. Letting x1 =
∑n

i=1 xi

n and xi =
∑n

j=1,j ̸=i xj−(n−1)xi

n for i = 2, ..., n in (31), we get
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(
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i=1 xi

n
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i=2

Gi(

∑n
j=1,j ̸=i xj − (n− 1)xi

n
), fn+1(x1)

)
< ε,

for all x1, ..., xn ∈ B. Using the same method as in the proofs of Theorems 3.1 and 4.1, the limits

lim
m→∞

1

nm
G1(n

mx) = · · · = lim
m→∞

1

nm
Gn(n

mx) = lim
m→∞

1

nm
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exist for all x ∈ B and are unique additive mappings satisfying

D

(
Gk(x), lim

m→∞

1

nm
Gk(n

mx)
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≤ 2n

n− 1
ε, (32)

D

(
fn+1(x), lim

m→∞

1

nm
fn+1(n

mx)

)
≤ n+ 1

n− 1
ε, (33)

for all x ∈ B, where k ∈ {1, ..., n}. Now, (27) and (28) follow from (30), (32), (33) and the property (P1) of D.

Corollary 4.2 with n = 2 implies the following.

Corollary 4.3. (Compare with [39, Theorem 2]). If fuzzy number-valued mappings f, g, h : B → XF with f(0) =
g(0) = 0̃ satisfy the inequality

D (Af(x) +Bg(y), h(ax+ by)) < ε, (34)

for all x, y ∈ B, where ε, a, b, A,B > 0, then there exists a unique additive mapping G : B → XF such that

D (f(x),G(x)) ≤ 4

A
ε, (35)
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D (g(x),G(x)) ≤ 4

B
ε, (36)

D (h(x),G(x)) ≤ 3ε, (37)

for all x ∈ B.

Notation 4.4. Let f, g, h : B → XF be fuzzy number-valued mappings with f(0) = g(0) = 0̃. Then
(i) If f, g, h satisfy the inequality (34) with A = B = a = b = 1, then there exists a unique additive mapping

G : B → XF such that (35) to (37) hold for A = B = 1.
(ii) If f, g, h satisfy the inequality (34) with A = B = a = b = 1

2 , then there exists a unique additive mapping
G : B → XF such that (35) to (37) hold for A = B = 1

2 .
(iii) If f, g, h satisfy the inequality (34) with A = a = t ∈ (0, 1) and B = b = 1 − t, then there exists a unique

additive mapping G : B → XF such that (35) to (37) hold for A = t and B = 1− t.
(iv) If f, g, h satisfy the inequality (34) with A = a and B = b, then there exists a unique additive mapping

G : B → XF such that (35) to (37) hold for A = a and B = b.

5 Conclusions

In this paper, we proved the stability of several types of additive fuzzy number-valued functional equations, including
Cauchy, Jensen, Cauchy-Jensen, Pexiderized Cauchy, Pexiderized Jensen, Pexiderized affine, Pexiderized linear and
Pexiderized general linear type fuzzy number-valued functional equations. Our results generalized certain important
results obtained by other authors for these equations when they are a single-valued or a set-valued one. Obviously, this
paper provided us a novel idea to discuss the stability of functional equations from a more unified perspective. Certainly,
further work will focus on the stability of other types of (functional, difference, differential, integral) equations by using
this idea.
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 هاینگاشت  ینسن پکسیدر شده-عی کوشیایداری برای معادلات تابله پأمس 

 مقدار فازی-عددی

 

معاد  .دهیچک پایداری  تابعی عددیما مسائل  فازی کوشی-لات  و کوشی-nینسن  -مقدار  ینسن -بعدی 

ای اعدد فازی را بعدی در فضاهای باناخ با استفاده متریک تعریف شده روی یک فض-n  پکسیدر شده 

م برکنیبررسی  مناسب،  یکتایی حل خی ویژگییم. تحت شرایط  و  قبیل وجود  از  معادلات ها  این  های 

ترتیب از نتایج پایداری مربوط های مهمی به عنوان توسیعتوان به یج ما را میگیرند. نتامورد بحث قرار می

 ر درنظر گرفت.مقدا-مقدار و معادلات تابعی مجموعه-به معادلات تابعی تک


