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Abstract

This paper presents an efficient and straightforward method with less computational complexities to address the linear
fractional programming with fuzzy coefficients (FLFPP). To construct the approach, the concept of α-cut is used to
tackle the fuzzy numbers in addition to rank them. Accordingly, the fuzzy problem is changed into a bi-objective linear
fractional programming problem (BOLFPP) by the use of interval arithmetic. Afterwards, an equivalent BOLFPP
is defined in terms of the membership functions of the objectives, which is transformed into a bi-objective linear
programming problem (BOLPP) applying suitable non-linear variable transformations. Max-min theory is utilized to
alter the BOLPP into a linear programming problem (LPP). It is proven that the optimal solution of the LPP is an
ϵ-optimal solution for the fuzzy problem. Four numerical examples are given to illustrate the method and comparisons
are made to show the efficiency.
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1 Introduction

The linear fractional programming problem (LFPP) represents an optimization problem that can be used in mathe-
matical modeling or other applications. In [33], applications of the LFPP were demonstrated in economy, business,
engineering, management, and etc. [31] addressed a solid transportation problem with interval cost by the use of frac-
tional goal programming method.[40] developed a framework of bi-level multi-objective linear fractional programming
problem to optimize water consumption structure. [1] investigated the fractional-order tumour-immune-vitamin model
trough fixed point results. [16] presented an application of the LFPP with fuzzy nature in industry sector. [10] proposed
the best ever method dealing with the LFPP in which the fractional problem is transformed into a LPP by the use
of variable transformation technique. [19] showed that any fractional programming problem (FPP) can be replaced
by a series of non-fractional problems. Based on this principle, many approaches have been developed [7, 20, 26]. [4]
designed a non-iterative method to obtain the global optimal solution of the sum of linear fractional programming
problem (S-LFPP) by the use of variable transformation. [23] constructed an iterative algorithm for the large scale
S-LFPP using a branch and bound technique.

The notion of fuzzy sets has played a significant rule in optimization for different disciplines such as engineering,
business, and management [5, 13, 14, 22, 30, 32, 41]. Specifically, one can use fuzzy numbers when there exists an
ambiguity to specify coefficients. In the LFPP, we deal with the fuzzy linear fractional programming problem (FLFPP)
if the coefficients are fuzzy numbers. One way of addressing the FLFPP is to use fuzzy ranking approaches. In
this manner, a fuzzy number is changed into fixed number(s). Therefore, multiple LFPPs may be considered instead
of the main fuzzy problem. Although these kinds of approaches are easy and straightforward, representing a fuzzy
number with fixed numbers may not be as comprehensive as we expected generally. On the other hand, using the
concept of α-cut has been considered by many researchers as an efficient and comprehensive approach dealing with
fuzzy numbers [2, 15, 38, 39]. In general, when the concept of α-cut is used, maximizing of the FLFPP is changed
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into a BOLFPP of the form Maximize
X∈S

{
FL(X), FU (X)

}
. [24] developed a method treating this bi-objective problem in

which only FU (X) is used. Ignoring FL(X) can be considered as a drawback of their approach. In order to overcome
this shortcoming, convex combinations of the solutions of problems Maximize

X∈S
FL(X) and Maximize

X∈S
FU (X) were

suggested by Stanojevi and Stanojevi [34]. However, their method increases the computational expenses since there is
no rule to recognize which combination gives the best result. The methodology of [24] was developed by Chinnadurai
and Muthukumar [12] to address the LFPP with positive fuzzy coefficients and positive fuzzy decision variables.[6]
presented an approach to deal with the LFPP with interval coefficients. In their method, the original problem is
transformed into a LPP using suitable variable transformations. In the literature, there are several methods to deal
with the multi objective linear fractional programming problem (MOLFPP). These approaches can be also employed
to tackle Maximize

X∈S

{
FL(X), FU (X)

}
where FL(X) and FU (X) are linear fractional functions and S is a polyhedral

set. [9] developed a method to address MOLFPP. In their method, the multi objective problem is transformed into
a multi objective linear programming problem (MOLPP). Subsequently, the membership functions are specified after
identifying the fuzzy aspiration levels of the linear objectives. Finally, the MOLPP is changed into a LPP using max-
min technique. Their method was designed such that it has not been possible to prove that the outcome is efficient,
which is a drawback. Motivated by [9], Veeramani and Sumathi[36], and De and Deb [18] introduced approaches to
deal with LFPP with fuzzy coefficients and MOLFPP, respectively. [28] transformed the MOLFPP into a LPP using
a fuzzy goal programming approach in addition to suitable variable transformations. [35] introduced an approach to
tackle the MOLFPP where the membership functions of the objectives are defined and then linearized by using the
first order Taylor series about the individual optimal solutions. For some examples, [8] reported that the results of
using the first order Taylor series proposed by Toksari are to some extent more accurate than the results of the fuzzy
goal programming used by Pal et al. Nayak and Ojha [27] introduced a method dealing with the MOLFPP with fuzzy
coefficients where the fuzzy problem is altered into an interval valued LFPP using the concept of α-cut. In their method,
the fuzzy problem is reduced into the MOLFPP. Afterwards, they reach a MOLPP employing the first order Taylor
series. Finally, weighted sum technique is utilized to reach a LPP. In general, there exists a drawback to the methods
which use first order Taylor expansion since this expansion reduces the accuracy. As we mentioned above, to the best of
our known, there is a drawback to the existing approaches which are used to address the FLFPP. In this paper, we aim
to present an efficient and easy approach with less computational cost and complexities to cope with the FLFPP. To
reach this aim, the concept of α-cut is used to tackle the fuzzy numbers. As the consequence, a BOLFPP is obtained
which is changed into a BOLPP using suitable non-linear variable transformations. Finally, the BOLPP is altered into
a LPP employing the max-min technique. It is proven that the unique optimal solution of the LPP is an ϵ-optimal
solution for the fuzzy problem. Numerical examples are solved to illustrate the proposed approach in addition to make
comparison with different methods.

This article is organized in 5 sections. Following the introduction, in section 2, some basic notions and preliminaries
are given for convenience. In section3, the main outcome of this survey is released. In section 4, some illustrative
examples are solved and comparisons are made to evaluate the approach. Finally, section 5 concludes the paper.

2 Preliminaries

2.1 Fuzzy numbers and intervals

Definition 2.1. [37] Let Ã be a normalized fuzzy set. A triangular fuzzy number Ã is defined as:

µÃ(x) = µÃ(x, a, b, c) =


(x − a)/(b − a), x ∈ [a, b)
(c − x)/(c − b), x ∈ [b, c]

0, otherwise.

]

Figure 1: Triangular fuzzy number
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Definition 2.2. [37] Let Ã be a fuzzy set in X and α ∈ [0, 1]. The α-cut of the fuzzy set Ã is the crisp set Ãα given by:

[Ã]α = {x ∈ X : µÃ(x) ≥ α} .

Let Ã be a triangular fuzzy number with the membership function µÃ (x; a, b, c), then [Ã]α = [a+α (b− a), c− α (c− b)] .

Definition 2.3. (Ranking of fuzzy numbers) Let Ã, B̃, C̃ be fuzzy numbers with α-cuts [Ã]α = [aα
−, aα

+], [B̃]α =
[bα

−, bα
+], [C̃]α = [cα

−, cα
+]. According to [21], possibility and necessity theories can be used to rank fuzzy numbers

based on their α-cuts as follows:
Method 1. We say Ã is smaller than B̃ and denoted by Ã ≤ B̃ if and only if aα

− ≤ bα
−, and aα

+ ≤ bα
+ for

α ∈ (0, 1]. Moreover, from [42] , for k1, k2 ≥ 0, we say k1Ã + k2B̃ ≤ C̃ if and only if k1aα
− + k2bα

− ≤ cα
−, and

k1aα
+ + k2bα

+ ≤ cα
+.

Method 2. We say Ã is smaller than B̃ and denoted by Ã ≤ B̃ if and only if aα
+ ≤ bα

+ for α ∈ (0.5, 1]. Furthermore,
for k1, k2 ≥ 0, we say k1Ã+ k2B̃ ≤ C̃ if and only if k1aα

+ + k2bα
+ ≤ cα

+.

Remark 2.4. In spite of method 1, method 2 can be applied to rank any two fuzzy numbers. However, method 2 is
weaker since only the upper bounds of the intervals are utilized. Therefore, in this paper, we use method 1 as long as
this method works successfully. Otherwise, method 2 is examined.

Definition 2.5. [25] Assume that A = [AL, AU ], B = [BL, BU ] and k ≥ 0 is a scalar. Therefore, addition, multiplica-
tion, and division on the intervals are defined as follows:

A+B =
[
AL +BL, AU +BU

]
,−A =

[
−AU ,−AL

]
, kA =

[
kAL, kAU

]
,

AB =
[
min{ALBL, ALBU , AUBL, AUBU},max{ALBL, ALBU , AUBL, AUBU}

]
,

A/B = [min{AL/BL,AL/BU ,AU/BL,AU/BU},max{AL/BL,AL/BU ,AU/BL,AU/BU}] .

2.2 Linear fractional programming problem

Consider the general form of the LFPP as follows:

Maximize
CTX + α

DTX + β
(1)

s.t AX ≤ b, DTX + β > 0, X ≥ 0.

The (1) is changed into the following linear programming problem by the use of variable transformations t =
1

DTX+β
, Y = tX.

Maximize CTY + αt (2)

s.t AY − bt ≥ 0, DTY + βt = 1, Y, t ≥ 0.

Theorem 2.6. [10] Let(Y ∗, t∗) be the optimal solution of (2), then the optimal solution of (1) is: X∗ = Y ∗

t∗ .

2.3 Multi objective programming problem

Let us consider the general form of the multi objective programming (MOPP) as follows:

Maximize {F1(X), ..., Fk(X)} s.t X ∈ S. (3)

Definition 2.7. [3] For (3), a solution X∗ ∈ S is called efficient if and only if @X ∈ S such that Fj(X∗) ≤ Fj(X), j =
1, ..., k, and ∃l ∈ {1, ..., k} such that Fj(X

∗) < Fj(X).

Max-min approach is a classical method which is used to scalarize the MOPP as follows:

Maximize β s.t X ∈ S, β ≤ Fi(x) for i = 1, ..., k. (4)

Definition 2.8. Consider the single objective problem Maximize
X∈S

G(X). The point X∗ ∈ S is called an ϵ-optimal

solution if G(X) ≤ G(X∗) + ϵ,∀X ∈ S.

In this article, the word ”Maximize” is used when we aim to maximize an optimization problem, and the abbreviation
”max” is used when we are going to determine the maximum value of an specific set. In addition, for convenience, a
triangular fuzzy number given by definition 1 is denoted by (a, b, c).
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3 Main results

In this section, we alter the LFPP with fuzzy coefficients into a LPP. Moreover, it is proven that the solution resulted
by the LPP is an ϵ-optimal solution for the fuzzy problem. To design our method, variable transformations, max-min
technique in addition to α-cut are utilized. Consider the general form of the LFPP with fuzzy coefficients as follows:

Maximize
C̃TX + d̃

P̃TX + q̃
s.t ÃX ≤ b̃, X ≥ 0, (5)

where X = (X1, , Xn), Ã is an m × n matrix with fuzzy element ãij , and b̃ is an m × 1 matrix with fuzzy element

b̃i, i = 1, ,m, j = 1, , n. By the use of α-cut, (5) is changed into:

Maximize

[
C
−

T ,
−
C

T
]
X +

[
d
−
,
−
d

]
[
P
−

T ,
−
P

T
]
X +

[
q
−
,
−
q

] , s.t

[
A
−
,
−
A

]
X ≤

[
b
−
,
−
b

]
, X ≥ 0. (6)

Using operations on intervals and ranking of fuzzy numbers, (6) is altered into:

Maximize F̄ (X) =

[
F
−
(X),

−
F (X)

]
(7)

s.t S = {A
−
X ≤ b

−
,

−
AX ≤

−
b,

−
P

T

X +
−
q, P

−
TX + q

−
> 0, X ≥ 0},

where F
−
(X) =

C
−

T+d
−

−
P

T

X+
−
q

if Minimize
X∈S

C
−

TX + d
−
≥ 0. Otherwise, F

−
(X) =

C
−

T+d
−

P
−

TX+q
−

. And,

−
F (X) =

−
C

T

+
−
d

P
−

TX+q
−

if Maximize
X∈S

−
C

T

X +
−
d ≥ 0. Otherwise,

−
F (X) =

−
C

T

X+
−
d

−
P

T

X+
−
q

.

It is additionally assumed that S is a regular set i.e. a non-empty and bounded feasible region.

Remark 3.1. Without loss of generality, we assume that: F
−
(X) =

C
−

T+d
−

−
P

T

X+
−
q

,
−
F (X) =

−
C

T

+
−
d

P
−

TX+q
−

in the rest of the paper.

According to [11], (7) can be represented as:

Maximize
X∈S

{F
−
(X),

−
F (X)} =


C
−

TX + d
−

−
P

T

X +
−
q

,

−
C

T

X +
−
d

P
−

TX + q
−

 . (8)

To change (8) into a problem by non-negative numerators and positive denominators, the membership functions of the
objectives are defined, and an equivalent bi-objective problem is considered in terms of the membership functions. In
fact, these non-negativities conditions help us to prove that this method yields an efficient solution. For this purpose, let:

Maximize
X∈S

F
−
(X) = F

−
max, Minimize

X∈S
F
−
(X) = F

−
min, Maximize

X∈S

−
F (X) =

−
F

max

, Minimize
X∈S

−
F (X) =

−
F

min

.

Therefore, the membership functions related to the objective functions F
−
(X),

−
F (X) are: µ

−
(x) = ETX+f

−
P

T

X+
−
q

, and

−
µ(x) = GTX+h

P
−

T+q
−

, respectively, where

E =

 C
−

F
−

max − F
−

min
− F

−
min

−
P

 , f =

 d
−

F
−

max − F
−

min
− F

−
min−q

 ,

G =

 −
C

−
F

max

−
−
F

min
−

−
F

min

P
−

 , h =

 −
d

−
F

max

−
−
F

min
−

−
F

min

q
−

 , ∀X ∈ S.
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Since µ
−
(X),

−
µ(X) ∈ [0, 1], P

−
TX + q

−
,

−
P

T

X +
−
q > 0, then ETX + f, GTX + h ≥ 0,∀X ∈ S.

The equivalent of (8) in terms of the membership functions is as follows:

Maximize
X∈S

µ
−
(X) =

ETX + f

−
P

T

X +
−
q

,
−
µ(X) =

GTX + h

P
−

TX + q
−

 . (9)

By setting:

λ = min

 1

−
P

T

X +
−
q

,
1

P
−

TX + q
−

 , λX = Y, ∀X ∈ S, (10)

the (9) is transformed into:
Maximize

{
ETY + λf, GTY + λh

}
(11)

s.t Ω = {A
−
Y − λb

−
≤ 0,

−
AY − λ

−
b ≤ 0,

−
P

T

Y + λ
−
q, P

−
TY + λq

−
≤ 1, Y, λ ≥ 0},

where Ω is assumed to be a regular set.

Proposition 3.2. In (11), variable λ cannot be zero.

Proof. Let
(
Ŷ , 0

)
∈ Ω, then A

−
Ŷ ≤ 0,

−
AŶ ≤ 0. Therefore, X̂ ∈ S results in A

−

(
X̂ + βŶ

)
= A

−
X̂ + βA

−
Ŷ ≤ A

−
X̂ ≤ 0,

−
A
(
X̂ + βŶ

)
=

−
AX̂ + β

−
AŶ ≤ 0, ∀β ≥ 0; this means X̂ + βŶ is feasible point of S, ∀β ≥ 0. Thus, S must be

unbounded. This is a contradiction to the fact that S is a regular set.

Proposition 3.3. If
(
Ȳ , λ̄

)
∈ Ω, then Ȳ

λ̄
∈ S.

Proof. Since

(
−
Y ,

−
λ

)
∈ Ω, then

−
Y ≥ 0,

−
λ > 0, A

−

−
Y −

−
λb
−
,

−
A

−
Y −

−
λ
−
b ≤ 0. Thus,

−
Y
−
λ

≥ 0, A
−

 −
Y
−
λ

− b
−

 =
1
−
λ

(
A
−

−
Y −

−
λb
−

)
≤ 0,

−
A

 −
Y
−
λ

−
−
b =

1
−
λ

(
−
A

−
Y −

−
λ
−
b

)
≤ 0.

Let us assume β ≤ ETY + λf, β ≤ GTY + λh,∀ (Y, λ) ∈ Ω. Then,(11) is changed into:

Maximize β (12)

s.t f =

{
A
−
Y − λb

−
≤ 0,

−
AY − λ

−
b ≤ 0,

−
P

T

Y + λ
−
q ≤ 1, P

−
TY + λq

−
≤ 1, β ≤ ETY + λf, β ≤ GTY + λh, Y, λ, β ≥ 0

}
,

where f is a regular set.

Lemma 3.4. The optimal solution of (12) is unique.

Proof. Let (Y ∗, λ∗, β∗) be the optimal solution and is not unique; this means constraint β ≥ 0 is active at the optimum
i.e. β∗ = 0. In the other word, if (Y, λ, β) ∈ f, then β = 0. Therefore, either ETY +λf = 0 or GT y+λh = 0,∀(Y, λ, 0) ∈
f. Without loss of generality, let ETY + λf = 0, ∀(Y, λ, 0) ∈ f. Since λ > 0, then ETX + f = 0, ∀X ∈ S; this means
µ
−
(X) = 0, ∀X ∈ S. As the consequence, (9) is reduced into a single objective LFPP. This is a contradiction.

Theorem 3.5. Let (Y ∗, λ∗, β∗) be the optimal solution of (12). Then, X∗ = Y ∗

λ∗ is an efficient solution for (9).
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Proof. Let X∗ = Y ∗

λ∗ not be an efficient solution for (9), then ∃X̄ ∈ S such that:

ETX∗ + f

−
P

T

X∗ +
−
q

≤ ET X̄ + f

−
P

T

X̄ +
−
q

,
GTX∗ + h

P
−

TX∗ + q
−

<
GT X̄ + h

P
−

T X̄ + q
−

or
ETX∗ + f

−
P

T

X∗ +
−
q

<
ET X̄ + f

−
P

T

X̄ +
−
q

,
GTX∗ + h

P
−

TX∗ + q
−

≤ GT X̄ + h

P
−

T X̄ + q
−

(13)

Without loss of generality, let:

ETX∗ + f

−
P

T

X∗ +
−
q

≤ ET X̄ + f

−
P

T

X̄ +
−
q

,
GTX∗ + h

P
−

TX∗ + q
−

<
GT X̄ + h

P
−

T X̄ + q
−

, (14)

(Y ∗, λ∗, β∗) ∈ f ⇒

λ∗ ≤ λ∗
1 =

1

−
P

T

X∗ +
−
q

, λ∗ ≤ λ∗
2 =

1

−
P

T

X∗ + q
−

, 0 ≤ β∗, β∗ ≤ ETY ∗ + λ∗f, β∗ ≤ GTY ∗ + λ∗h. (15)

Let us define:

θ̄ = max

λ̄1 =
1

−
P

T

X̄ +
−
q

, λ̄2 =
1

P
−

T X̄ + q
−

 , λ̄ = θ̄ − ϵ, (16)

where

θ̄ − λ̄1 ≤ ϵ ≤ θ̄ − λ∗
(
ETX∗ + f

ET X̄ + f

)
, θ̄ − λ̄2 ≤ ϵ ≤ θ̄ − λ∗

(
GTX∗ + h

GT X̄ + h

)
, (17)

We aim to show that (17) is well defined. In the other word, there must exist ϵ satisfying (17.) To ensure this, two
below conditions must hold true.
(I) ET X̄ + f, GT X̄ + h > 0,

(II) θ̄ − λ̄1 ≤ θ̄ − λ∗
(

ETX∗+f
ET X̄+f

)
, θ̄ − λ̄2 ≤ θ̄ − λ∗

(
GTX∗+h
GT X̄+h

)
.

Since µ
−
(X) = ETX+f

−
P

T

X+
−
q

∈ [0, 1],
−
P

T

X +
−
q > 0, then ETX + f ≥ 0, ∀X ∈ S. Now, let us set: ETX + f = 0. Then,

µ
−
(X∗) = ETX∗+f

−
P

T

X∗+
−
q

< ET X̄+f
−
P

T

X̄+
−
q

= 0 possibly happens due to (13).This is a contradiction since µ
−
(X∗) ≥ 0. In a similar

way, it can be shown that GT X̄ + h > 0. Thus, the (I) is demonstrated. It follows directly from (14) and (15) that:

λ∗(ETX∗ + f) ≤ λ∗
1(E

TX∗ + f) =
ETX∗ + f

−
P

T

X∗ +
−
q

≤ ET X̄ + f

−
P

T

X̄ +
−
q

= λ̄1(E
T X̄ + f).

Thus, λ∗(E
TX∗+f

ET X̄+f
) ≤ λ̄1. As the direct result: θ̄ − λ̄1 ≤ θ̄ − λ∗(E

TX∗+f
ET X̄+f

). Following the same process, it can be also

demonstrated that:

θ̄ − λ̄2 ≤ θ̄ − λ∗(
GTX∗ + h

GT X̄ + h
).

Thus, the (II) is proved.
According to (17), we aim to prove the followings are true statements.

λ̄(
−
P

T

X̄ +
−
q) ≤ 1, λ̄(P

−
T X̄ + q

−
) ≤ 1, (18)

λ∗(ETX∗ + f) ≤ λ̄(ET X̄ + f), λ∗(GTX∗ + h) ≤ λ̄(GT X̄ + h). (19)

To ensure the (18), it is resulted from θ̄ − λ̄1 ≤ ϵ that:

λ̄(
−
P

T

X̄ +
−
q) = (θ̄ − ϵ)(

−
P

T

X̄ +
−
q) ≤ (θ̄ − (θ̄ − λ̄1))(

−
P

T

X̄ +
−
q) = λ̄1(

−
P

T

X̄ +
−
q).



An approach based on α-cuts and max-min technique to linear fractional programming with fuzzy coefficients 159

It follows directly from (10) that: λ̄1(
−
P

T

X̄+ q̄) ≤ 1. Thus, λ̄(
−
P

T

X̄+
−
q) ≤ 1. Following a similar way, θ̄− λ̄2 ≤ ϵ implies

λ̄(P
−

T X̄ + q
−
) ≤ 1. Therefore, (18) is verified.

To ensure (19), It is concluded from ϵ ≤ θ̄ − λ∗(E
TX∗+f

ET X̄+f
) that: λ∗(E

TX∗+f
ET X̄+f

≤ θ̄ − ϵ. Thus,

λ∗(ETX∗ + f) ≤ (θ̄ − ϵ)(ET X̄ + f) = λ̄(ET X̄ + f).

In a similar way, ϵ ≤ θ̄ − λ∗(G
TX∗+h

GT X̄+h
) results in λ∗(GTX∗ + h) ≤ λ̄(GT X̄ + h). Thus, the (19) is proved.

Let us set: Ȳ = λ̄X̄. We need to show that (Ȳ , λ̄) ∈ f. To do this, the followings must hold true.
a) λ̄ ≥ 0.
Without loss of generality, let:

θ̄ − λ∗(
GTX∗ + h

GT X̄ + h
) = max ϵ = max{θ̄ − λ∗(

ETX∗ + f

ET X̄ + f
), θ̄ − λ∗(

GTX∗ + h

GT X̄ + h
)}.

Therefore, λ̄ ≥ θ̄ −
(
θ̄ − λ∗

(
GTX∗+h
GT X̄+h

))
= λ∗

(
GTX∗+h
GT X̄+h

)
≥ 0.

b) Ȳ ≥ 0.
Since X̄ ∈ S, then X̄ ≥ 0. Consequently, Ȳ = λ̄X̄ ≥ 0.

c)

(
−
P

T

Ȳ + λ̄
−
q

)
≤ 1.

Considering Ȳ = λ̄X̄ and (18) prove c.

d) A
−
Ȳ − λ̄b

−
≤ 0,

−
AȲ − λ̄

−
b ≤ 0.

A
−
X̄ − b

−
≤ 0,

−
AX̄ −

−
b ≤ 0 since X̄ ∈ S. Thus, A

−
Ȳ − λ̄b

−
= λ̄(A

−
X̄ − b

−
) ≤ 0,

−
AȲ − λ̄

−
b = λ̄(

−
AX̄ −

−
b) ≤ 0.

In what follows we aim to create a β̄ such that β̄ ≥ β∗ and (Ȳ , λ̄, β̄) ∈ f.
(19) ⇒

ETY ∗ + λ∗f = λ∗(ETX∗ + f) ≤ λ̄(ET X̄ + f) = ET + λ̄f,

GTY ∗ + λ∗h = λ∗(GTX∗ + h) ≤ λ̄(GT X̄ + h) = GT Ȳ + λ̄h. (20)

Feasibility of (Y ∗, λ∗, β∗)
and (20) ⇒

β∗ ≤ ET Ȳ + λ̄f, β∗ ≤ GT Ȳ + λ̄h. (21)

Let γ = min{ET Ȳ + λ̄f − β∗, GT Ȳ + λ̄h− β∗}, β̄ = β∗ + γ. (22)

(21) and (22) indicate γ ≥ 0, and as a consequence β∗ ≤ β̄. (23)

(22) ⇒
0 ≤ β̄, β̄ ≤ ET Ȳ + λ̄f, β̄ ≤ GT Ȳ + λ̄h. (24)

(24) besides (Ȳ , λ̄) ∈ Ω results in (Ȳ , λ̄, β̄) ∈ f.
In brief, we created (Ȳ , λ̄, β̄) ∈ f in such a way that β̄ ≥ β∗. This contradicts the unique optimality of (Y ∗, λ∗, β∗).
The proof is then complete.

Theorem 3.6. Let (Y ∗, λ∗, β∗) be the optimal solution for (12), then Y ∗

λ∗ is an ϵ-optimal solution for (7), where

ϵ = max

{
F
−

max − F
−

(
Y ∗

λ∗

)
,

−
F

max

−
−
F

(
Y ∗

λ∗

)}
.

Proof. Theorem 3.5 demonstrates Y ∗

λ∗ is efficient for (9). Thus,

Case 1. µ
−
(X) < µ

−
(Y

∗

λ∗ ),∀X ∈ S. Thus, F
−
(X) < F

−

(
Y ∗

λ∗

)
, ∀X ∈ S. Let us st: ϵ1 =

−
F

max

−
−
F
(

Y ∗

λ∗

)
. Therefore,

−
F (X) =

[
F
−
(X),

−
F (X)

]
≤
[
F
−

(
Y ∗

λ∗

)
+ ϵ1,

−
F

(
Y ∗

λ∗

)
+ ϵ1

]
=

−
F

(
Y ∗

λ∗

)
+ ϵ1, ∀X ∈ S.
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This indicates Y ∗

λ∗ is an ϵ1-efficient solution for (7).

Case 2.
−
µ(X) <

−
µ(Y

∗

λ∗ ),∀X ∈ S. As the result,
−
F (X) <

−
F
(

Y ∗

λ∗

)
, ∀X ∈ S. Let us st: ϵ2 = F

−
max − F

−

(
Y ∗

λ∗

)
. Therefore,

−
F (X) =

[
F
−
(X),

−
F (X)

]
≤
[
F
−

(
Y ∗

λ∗

)
+ ϵ2,

−
F
(

Y ∗

λ∗

)
+ ϵ2

]
=

−
F
(

Y ∗

λ∗

)
+ ϵ2, ∀X ∈ S. This indicates Y ∗

λ∗ is an ϵ2-efficient

solution for (7).
If we set ϵ = max{ϵ1, ϵ2}, then

−
F (X) =

[
F
−
(X),

−
F (X)

]
≤
[
F
−

(
Y ∗

λ∗

)
+ ϵ,

−
F

(
Y ∗

λ∗

)
+ ϵ

]
=

−
F

(
Y ∗

λ∗

)
+ ϵ,∀X ∈ S.

Algorithm

This algorithm summarizes the procedure of finding ϵ-optimal solution for the linear fractional programming problem
with fuzzy coefficients.
Initial step. Determine α ∈ (0, 1].
Step 1. Formulate (6), then by using interval arithmetic, formulate (7).
Step 2. Formulate (8), then define the membership functions.
Step 3. Formulate (9), and then (11).
Step 4. Formulate (12), then find (Y ∗, λ∗, β∗) as the optimal solution. Afterwards, set X∗ = Y ∗

λ∗ .

Final step. Calculate ϵ = max

{
F
−

max − F
−
(X∗),

−
F

max

−
−
F (X∗)

}
. Then, introduce the solution X∗ as the ϵ-optimal

solution for the fuzzy problem 5.

4 Numerical example

4.1 Example 1

Maximize F̃ (X) =
−(0.5, 1, 1.25)X1 + (2.5, 3, 4)X2 + (1, 2, 3)

(0.5, 1, 1.25)X1 + (1, 2, 3)X2 + (0.5, 1, 1.25)
, (25)

s.t

(1, 2, 3)X1 + (5, 1, 1.25)X2 ≤ (3.5, 4, 4.5), (2.5, 3, 4)X1 − (1, 2, 3)X2 ≤ (4, 5, 6),

(0.5, 1, 1.25)X1 + (1, 2, 3)X2 ≤ (2.5, 3, 4), −(0.5, 1, 1.25)X1 − (2.5, 3, 4)X2 ≤ −(1, 2, 3),

X1, X2 ≥ 0.

Let us set α = 0.8. The (6) is then formulated as follows:

Maximize F̄ (X) =
[−1.05,−0.9]X1 + [2.9, 3.2]X2 + [1.8, 2.2]

[0.9, 1.05]X1 + [1.8, 2.2]X2 + [0.9, 1.05]
, (26)

s.t

[1.8, 2.2]X1 + [0.9, 1.05]X2 ≤ [3.9, 4.1], [2.9, 3.2]X1 + [−2.2,−1.8]X2 ≤ [4.8, 5.2],

[0.9, 1.05]X1 + [1.8, 2.2]X2 ≤ [2.9, 3.2], [−1.05,−0.9]X1 + [−3.2,−2.9]X2 ≤ [−2.2,−1.8],

X1, X2 ≥ 0.

The (7) is formulated as follows:

Maximize

[
−1.05X1 + 2.9X2 + 1.8

1.05X1 + 2.2X2 + 1.05
,
−0.9X1 + 3.2X2 + 2.2

0.9X1 + 1.8X2 + 0.9

]
, (27)



An approach based on α-cuts and max-min technique to linear fractional programming with fuzzy coefficients 161

s.t S =

{1.8X1 + 0.9x2 ≤ 3.9, 2.2X1 + 1.05X2 ≤ 4.8

2.9X1 − 2.2X2 ≤ 4.8 3.2X1 − 1.8X2 ≤ 5.2

0.9X1 + 1.8X2 ≤ 2.9 1.05X1 + 2.2X2 ≤ 3.2

− 1.05X1 − 3.2X2 ≤ −2.2 − 0.9X1 − 2.9X2 ≤ −1.8

X1, X2 ≥ 0}.

The (8) is then formulated as follows:

Maximize
X∈S

{
F
−
(X),

−
F (X)

}
=

{
−1.05X1 + 2.9X2 + 1.8

1.05X1 + 2.2X2 + 1.05
,
−0.9X1 + 3.2X2 + 2.2

0.9X1 + 1.8X2 + 0.9

}
. (28)

The following individual maxima and minima are obtained using the method of Charnes and Cooper.

F
−

max = 1.4805, F
−

min = 0.1265,
−
F

max

= 2.0585,
−
F

min

= 0.4087. Afterwards, the membership functions are defined as

follows:
µ
−
(X) = −0.8736x1+1.9363X2+1.2313

1.05X1+2.2X2+1.05 ,
−
µ(X) = −0.7685x1+1.4937X2+1.1105

0.9X1+1.8X2+0.9 .

The (11) is formulated as below by setting:

λ = min
{

1
1.05X1+2.2X2+1.05 ,

1
0.9X1+1.8X2+0.9

}
, Y = λX.

Maximize {−0.8736Y1 + 1.9363Y2 + 1.2313 λ, −0.7685Y1 + 1.4937Y2 + 1.1105 λ} , (29)

s.t Ω =

1.8Y1 + 0.9Y2 − 3.9λ ≤ 0 2.2Y1 + 1.05Y2 − 4.1λ ≤ 0

2.9Y1 − 2.2Y2 − 4.8λ ≤ 0 3.2Y1 − 1.8Y2 − 5.2λ ≤ 0

0.9Y1 + 1.8Y2 − 2.9λ ≤ 0 1.05Y1 + 2.2Y2 − 3.2λ ≤ 0

− 1.05Y1 − 3.2Y2 + 2.2λ ≤ 0 − 0.9Y1 − 2.9Y2 + 1.8λ ≤ 0

1.05Y1 + 2.2Y2 + 1.05λ ≤ 0 0.9Y1 + 1.8Y2 + 0.9λ ≤ 0

Y1, Y2, λ ≥ 0.

The (12) is then formulated as follows:
Maximize β (30)

s.t f = Ω
∪{

β ≤ −0.8736Y1 + 1.9363Y 2 + 1.2313λ, β ≤ −0.7668Y1 + 1.4937Y 2 + 1.1105λ
}
.

The problem above is solved and the solution obtained is:

(Y ∗, λ∗, β∗) = (Y ∗
1 , Y

∗
2 , λ

∗, β∗) = (0, 0.2683, 0.3902, 0.8341).

The optimal solution for the main problem is: X∗ = Y ∗

λ∗ = (0, 0.6875), and

F̃ (X) =
−
Fα=0.8(X

∗) = [F
−
(X∗),

−
F (X∗)] = [1.4805, 2.0585].

Since F
−

max = F
−
(X∗),

−
F

max

=
−
F (X∗), then ϵ = 0; this means X∗ is the exact optimal solution for the main fuzzy

problem.

4.1.1 Numerical analysis

The extreme points of the feasible region Sα=0.8 are included in Table 1. As we observe numerically, F
−
( ¯̄X) <

F
−
(X∗),

−
F ( ¯̄X) <

−
F (X∗), where ¯̄X is assumed as an extreme point. Therefore, convexity of S along with pseudoconvexity

of F
−
(X) and

−
F (X) implies that: F

−
(X) < F

−
(X∗),

−
F (X) <

−
F (X∗), ∀X ∈ S. Thus,

F̃ (X) =

[
F
−
(X),

−
F (X)

]
<

[
F
−
(X∗),

−
F (X∗)

]
= F̃ (X∗), ∀X ∈ S;

this means X∗ is a unique optimal solution for the main fuzzy problem.
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Extreme point ¯̄X F̃ = [F
−
( ¯̄X),

−
F ( ¯̄X)]

(0, 1.4545) [1.4160, 1.9483]
(1.5144, 0.7318) [0.5487, 0.8874]
(1.7831, 0.1687) [0.1266, 0.4042]
(1.7541, 0.2295) [0.1636, 0.4688]
(1.6183, 0.1303) [0.1265, 0.4087]
(0, 0.6875) = X∗ [1.4805, 2.0585]

Table 1: Extreme points of Sα=0.8 and their values of F̃ (X)

4.2 Example 2

Maximize F̃ (X) =
(−1.5722,−1.35,−1.1278)X1 + (9, 10, 15)X2 + (3, 4, 5)

(1, 2, 4)X1 + (4, 5, 7)X2 + (0, 1, 11)
, (31)

s.t S = {−X1 ≤ −1, −X1 + 2X2 ≤ 1, 2X1 +X2 ≤ 8, −2X2 ≤ −1, X1, X2 ≥ 0}.
If we set α = 0.55, then the (8) is formed as follows:

Maximize
X∈S

{
F
−
(X),

−
F (X)

}
=

{
−1.45X1 + 9.55X2 + 3.55

2.9X1 + 5.9X2 + 5.5
,
−1.25X1 + 12.25X2 + 4.45

1.55X1 + 4.55X2 + 0.55

}
. (32)

Taking into account the values:

F
−

max = 0.8147, F
−

min = 0.1494,
−
F

max

= 2.7029,
−
F

min

= 1.7670,

the membership functions are defined as follows:

µ
−
(X) =

−2.8307X1 + 13.0295X2 + 4.1009

2.9X1 + 5.9X2 + 5.5
,

−
µ(X) =

−1.5908X1 + 4.4985X2 + 3.7167

1.55X1 + 4.55X2 + 0.55
.

Maximize β (33)

s.t f = {−Y1 + λ ≤ 0, −Y1 + 2Y2 − λ ≤ 0, 2Y1 + Y2 − 8λ ≤ 0, −2Y2 + λ ≤ 0,
2.9Y1 + 5.9Y2 + 5.5λ ≤ 1, 1.55Y1 + 4.55Y2 + 0.55λ ≤ 1,

β ≤ −2.8307Y1 + 13.0295Y2 + 4.1009λ, β ≤ −1.59Y1 + 4.4985Y2 + 3.7167λ,
Y1, Y2, λ, β ≥ 0}.

The (33) is solved and the obtained solution is (Y ∗, λ∗, β∗) = (0.0699, 0.0699, 0.0699, 0.4632). Thus, X∗ = Y ∗

λ∗ =
(1, 1) is the proposed solution for (31).
At the solution X∗:

F
−
(X) = 0.8147,

−
F (X) = 2.6992, F̃ (X) = [0.8147, 2.6992],

ϵ = max

{
F
−

max − F
−
(X∗),

−
F

max

−
−
F (X∗)

}
= max{0, 0.0037} = 0.0037.

Thus,

F̃ (X) =

[
F
−
(X),

−
F (X)

]
≤
[
F
−
(X∗ + ϵ,

−
F (X∗ + ϵ

]
= F̃ (X∗) + ϵ, ∀X ∈ S.

4.2.1 Numerical analysis

In Table 2, the extreme point of the feasible region S are listed. Numerically, we see that:

F
−
( ¯̄X)+ ϵ < F

−
(X∗)+ ϵ,

−
F ( ¯̄X) <

−
F (X∗), where ¯̄X is assumed as an extreme point. Therefore, convexity of S along with

pseudoconvexity of F
−
(X) and

−
F (X) implies that: F

−
(X) < F

−
(X∗) + ϵ,

−
F (X) <

−
F (X∗) + ϵ, ∀X ∈ S. Thus,

F̃ (X) =

[
F
−
(X),

−
F (X)

]
<

[
F
−
(X∗) + ϵ,

−
F (X∗) + ϵ

]
= F̃ (X∗) + ϵ, ∀X ∈ S;

this means X∗ is an ϵ-optimal solution for the main fuzzy problem.
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Extreme point ¯̄X F̃ = [F
−
( ¯̄X),

−
F ( ¯̄X)]

(1, 0.5) [0.6057, 2.7027]
(3, 2) [0.7045, 1.7622]
(3.75, 0.5) [0.1496, 0.6816]
(1, 1) = X∗ [0.8147, 2.6992]

ϵ = 0.0037 F̃ (X∗) + ϵ = [0.8184, 2.7029]

Table 2: Extreme points of Sα=0.55 and their values of F̃ (X)

4.2.2 Comparison

For example 2, method of Mehra et al. results in solution XMe = (1, 0.5). At the solution XMe :

F
−
(X) = 0.6057,

−
F (X) = 2.7029, F̃ (X) = [0.6057, 2.7029],

ϵMe = max

{
−
F

max

− F
−
(XMe),

−
F

max

−
−
F (XMe)

}
= max{0.2097, 0} = 0.2097.

Thus, our proposed solution X∗ is more accurate than the solution XMe due to the fact that: ϵ < ϵMe.

4.3 Example 3

In this section, a real life production planning in Taiwan is considered [17]. The original problem modeled as a LFPP
with fuzzy coefficients and fuzzy decision variables. In order to be able to solve the problem with the method provided
by this study, we set the decision variables to be non-fuzzy. Therefore, we reach the following problem.

Maximize F̃ (X) =
f̃(X)

g̃(X)
, (34)

s.t S = {X1 +X2 +X3 +X4 ≤ (7.2, 8, 8.8), X5 +X6 +X7 +X8 ≤ (12, 14, 13.8),
X9 +X10 +X11 +X12 ≤ (10.2, 12, 13.8), X1 +X5 +X9 ≥ (16.2, 7, 7.8),

X2 +X6 +X10 ≥ (8.9, 10, 11.1), X3 +X7 +X11 ≥ (6.5, 8, 9.5),
X4 +X8 +X12 ≥ (7.8, 9, 10.2), Xi ≥ 0 i = 1, ..., 12},

where

f(X) = (8, 10, 10.8)X1 + (20.4, 22, 24)X2 + (8, 10, 10.6)X3 + (18.8, 20, 22)X4 + (14, 15, 16)X5 + (18.2, 20, 22)X6

+ (10, 12, 13)X7 + (6, 8, 8.8)X8 + (18.4, 20, 21)X9 + (9.6, 12, 13)X10 + (7.8, 10, 10.8)X11 + (14, 15, 16)X12,

g(X) = (1.5, 2, 2.5)X1 + (4, 5, 6)X2 + (1.3, 2, 2.5)X3 + (3, 4, 5)X4 + (2.5, 3, 4)X5 + (2, 3, 4)X6+

(2.3, 3, 4)X7 + (1.5, 2, 2.5)X8 + (3, 4, 5)X9 + (2, 3, 4)X10 + (1.5, 2, 2.7)X11 + (2, 3, 4)X12.

If we set α = 0.6, then (8) is formed as follows:

Maximize
X∈S

{
F
−
(X),

−
F (X)

}
=

{
f1(X)

g1(X)
,
f2(X)

g2(X)

}
, (35)

where

f1(X) = 9.2X1+21.36X2+9.2X3+19.52X4+14.6X5+19.28X6+11.2X7+7.2X8+19.36X9+11.04X10+9.12X11+14.8X12,

g1(X) = 2.2X1 + 5.4X2 + 2.2X3 + 4.4X4 + 3.4X5 + 3.4X6 + 3.4X7 + 2.2X8 + 4.4X9 + 3.4X10 + 2.28X11 + 3.4X12,
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f2(X) = 10.32X1+22.8X2+10.24X3+20.8X4+15.4X5+20.8X6+12.4X7+8.32X8+20.4X9+12.4X10+10.32X11+15.4X12,

g2(X) = 1.8X1 +4.6X2 +1.72X3 +3.6X4 +2.8X5 +2.6X6 +2.72X7 +1.8X8 +3.6X9 +2.6X10 +1.8X11 +2.6X12.

According to F
−

max = 4.723, F
−

min = 3.4741,
−
F

max

= 6.6931,
−
F

min

= 4.9367, the membership functions are specified as

follows:

µ
−
(X) =

µ
−
N (X)

µ
−
D(X)

,
−
µ(X) =

−
µ
N

(X)

−
µ
D

(X)

,

where

µ
−

N (X) = 1.2467X1 + 2.0817X2 + 1.2467X3 + 4.2340X4 + 2.2324X5 + 5.9797X6 − 0.49X7 − 0.3547X8 + 3.262X9

− 0.6181X10 + 0.9601X11 + 2.2324X12,

µ
−

D(X) = 2.2X1 +5.4X2 +2.2X3 +4.4X4 +3.4X5 +3.4X6 +3.4X7 +2.2X8 +4.4X9 +3.4X10 +2.28X11 +3.4X12,

−
µ
N

(X) = 0.8164X1 + 0.0519X2 + 0.9729X3 + 1.7239X4 + 0.898X5 + 4.5346X6 − 0.5852X7 − 0.3223X8 + 1.2912X9

− 0.4354X10 + 0.8164X11 + 1.4601X12,

−
µ
D

(X) = 1.8X1 +4.6X2 +1.72X3 +3.6X4 +2.8X5 +2.6X6 +2.72X7 +1.8X8 +3.6X9 +2.6X10 +1.8X11 +2.6X12.

The (12) is formulated as follows:
Maximize β (36)

s.t f = {Y1 + Y2 + Y3 + Y4 − 7.68λ ≤ 0, Y5 + Y6 + Y7 + Y8 − 13.2λ ≤ 0, Y9 + Y10 + Y11 + Y12 − 11.28λ ≤ 0,
Y1 + Y5 + Y9 − 6.68λ ≥ 0, Y2 + Y6 + Y10− 9.56λ ≥ 0,
Y3 + Y7 + Y11 − 7.4λ ≥ 0, Y4 + Y8 + Y12 − 8.52λ ≥ 0,

2.2Y1 + 5.4Y2 + 2.2Y3 + 4.4Y4 + 3.4Y5 + 3.4Y6 + 3.4Y7 + 2.2Y8 + 4.4Y9 + 3.4Y10 + 2.28Y11 + 3.4Y12 ≤ 1
1.8Y1 + 4.6Y2 + 1.72Y3 + 3.6Y4 + 2.8Y5 + 2.6Y6 + 2.72Y7 + 1.8Y8 + 3.6Y9 + 2.6Y10 + 1.8Y11 + 2.6Y12 ≤ 1

β ≤ 1.2467Y1 + 2.0817Y2 + 1.2467Y3 + 4.2340Y4 + 2.2324Y5 + 5.9797Y6 − 0.49Y7 − 0.3547Y8 + 3.262Y9 − 0.6181Y10 +
0.9601Y11 + 2.2324Y12

β ≤ 0.8164Y1 + 0.0519Y2 + 0.9729Y3 + 1.7239Y4 + 0.898Y5 + 4.5346Y6 − 0.5852Y7 − 0.3223Y8 + 1.2912Y9 − 0.4354Y10 +
0.8164Y11 + 1.4601Y12

Yi, λ, β ≥ 0, i = 1, ..., 12}.

The above problem is solved and the obtained solution is:
(Y ∗, λ∗, β∗) = (0.0309, 0, 0.0471, 0, 0.037, 0.0971, 0, 0, 0, 0, 0.0280, 0.0865, 0.0102, 0.6933). Thus, the proposed
solution is:
X∗ = Y ∗

λ∗ = (3.04, 0, 4.64, 0, 3.64, 9.56, 0, 0, 0, 0, 2.76, 8.52).
At the solution X∗:

F
−
(X) = 4.7165,

−
F (X) = 6.6931, F̃ (X) = [4.7165, 6.6931],

ϵ = max

{
F
−

max − F
−
(X∗),

−
F

max

−
−
F (X∗)

}
= max{0, 0.0065} = 0.0065,

F̃ (X) =

[
F
−
(X),

−
F (X)

]
≤
[
F
−
(X∗) + ϵ,

−
F (X∗) + ϵ

]
= F̃ (X∗) + ϵ, ∀X ∈ S.
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4.3.1 Comparison

Method of [17] results in a solution for which F̃ (X) = [3.688, 6.576]. Therefore,

ϵDa = max{4.7230− 3.688, 6.6931− 6.5760} = 1.035.

Since ϵ ≤ ϵDa, it is then concluded that this study provide a better result.

4.4 Example 4

Our proposed approach can be used to solve bi-objective linear fractional programming problem. In this section, we
consider a real life example taken from [29].

Maximize {Z1(X), Z2(X)} (37)

s.t S = {0.3X1 + 0.4X2 + 0.4X3 + 0.98X4 + 0.97X5 + 0.98X6 ≤ 600,
2280000X1 + 9200X2 + 16000X3 + 22500X4 + 20000X5 + 20000X6 ≤ 20000000,

650X1 + 630X2 + 320X3 + 660X4 + 360X5 + 640X6 ≤ 500000,
20X1 + 22X2 + 20X3 + 18X4 + 20X5 + 17X6 ≤ 15000,

11400X1 + 3220X2 + 1800X3 + 12750X4 + 3250X5 + 3000X6 ≤ 6000000,
148X1 + 238X4 + 135X6 ≤ 50000,

180X1 + 220X2 + 200X3 + 150X4 + 100X5 + 160X6 ≤ 120000,
60X1 + 40X2 + 35X3 + 50X4 + 30X5 + 45X6 ≤ 30000,
30X1 + 32X2 + 28X3 + 35X4 + 26X5 + 20X6 ≤ 200000,
15X1 + 18X2 + 16X3 + 14X4 + 17X5 + 18X6 ≤ 10000,
42X1 + 38X2 + 36X3 + 40X4 + 37X5 + 35X6 ≤ 25000,

Xi ≥ 0 i = 1, ..., 6},

where

Z1(X) =
59890X1 + 23390X2 + 30750X3 + 59750X4 + 40700X5 + 59435X6

35345X1 + 13420X2 + 18455X3 + 39455X4 + 23840X5 + 24070X6 + 500000
,

Z2(X) =
59890X1 + 23390X2 + 30750X3 + 59750X4 + 40700X5 + 59435X6

96X1 + 120X2 + 144X3 + 144X4 + 84X5 + 120X6 + 480
.

Consider:
Zmin
1 = 0, Zmax

1 = 2.3381, Zmin
2 = 0, Zmax

2 = 491.51.51,

µZ1(X) =
25615X1 + 10004X2 + 13152X3 + 25555X4 + 17407X5 + 25420X6

35345X1 + 13420X2 + 18455X3 + 39455X4 + 23840X5 + 24070X6 + 500000
,

µZ2(X) =
121.8477X1 + 47.5876X2 + 62.5617X3 + 121.5629X4 + 82.8052X5 + 120.992X6

96X1 + 120X2 + 144X3 + 144X4 + 84X5 + 120X6 + 480
,

the (12) is formed for this example as follows:

Maximize β (38)

s.t f = {0.3Y1 + 0.4Y2 + 0.4Y3 + 0.98Y4 + 0.97Y5 + 0.98Y6 − 600λ ≤ 0,
2280000Y1 + 9200Y2 + 16000Y3 + 22500Y4 + 20000Y5 + 20000Y6 − 20000000λ ≤ 0,

650Y1 + 630Y2 + 320Y3 + 660Y4 + 360Y5 + 640Y6 − 500000λ ≤ 0,
20Y1 + 22Y2 + 20Y3 + 18Y4 + 20Y5 + 17Y6 − 15000λ ≤ 0,

11400Y1 + 3220Y2 + 1800Y3 + 12750Y4 + 3250Y5 + 3000Y6 − 6000000λ ≤ 0,
148Y1 + 238Y4 + 135Y6 − 50000λ ≤ 0,

180Y1 + 220Y2 + 200Y3 + 150Y4 + 100Y5 + 160Y6 − 120000λ ≤ 0,
60Y1 + 40Y2 + 35Y3 + 50Y4 + 30Y5 + 45Y6 − 30000λ ≤ 0,
30Y1 + 32Y2 + 28Y3 + 35Y4 + 26Y5 + 20Y6 − 200000λ ≤ 0,
15Y1 + 18Y2 + 16Y3 + 14Y4 + 17Y5 + 18Y6 − 10000λ ≤ 0,
42Y1 + 38Y2 + 36Y3 + 40Y4 + 37Y5 + 35Y6 − 25000λ ≤ 0,

35345Y1 + 13420Y2 + 18455Y3 + 39455Y4 + 23840Y5 + 24070Y6 + 500000λ ≤ 1,
96Y1 + 120Y2 + 144Y3 + 144Y4 + 84Y5 + 120Y6 + 480λ ≤ 1,

β ≤ 25615Y1 + 10004Y2 + 13152Y3 + 25555Y4 + 17407Y5 + 25420Y6,
β ≤ 121.8477Y1 + 47.5876Y2 + 62.5617Y3 + 121.5629Y4 + 82.8052Y5 + 120.04926,

Yi ≥ 0, i = 1, ..., 6, λ, β ≥ 0}.
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The (38) is solved and the solution X∗ = Y ∗

λ∗ = (0, 0, 0, 0, 0, 370) is obtained as an efficient solution for (37).
At the solution X∗:

Z1(X) = 2.3380, Z2(X) = 489.9944, µZ1(X) = 0.9999, µZ2(X) = 0.9948.

The average of µZ1(X) and µZ2(X) is: 0.9948.

4.4.1 Comparison

The solution proposed by Pramy and Islam is: X̂ = (0, 0, 0, 0, 196.078, 370.37).
At the solution X̂ :

Z1(X) = 2.1288, Z2(X) = 488.531, µZ1(X) = 0.9105, µZ2(X) = 0.9887.

The average of µZ1(X), µZ2(X) is: 0.9496.
The results show that solution X∗ proposed by this study dominates the solution X̂ provided by Pramy and Islam due
to the fact that:

Z1(X̂) < Z1(X
∗), Z2(X̂) < Z2(X

∗).

5 Conclusions

In this paper, an approach was proposed to address the linear fractional programming with fuzzy coefficients (FLFPP).
In the method, the fuzzy problem was finally changed into a LPP. It was proven that the solution resulted by the LPP
is an ϵ-optimal solution for the main problem. To construct our methodology, the concept of α-cuts, the membership
function, max-min technique, and variable transformations were used. Although we only used triangular fuzzy numbers
for convenience, this article covers the LFPPs with any kind of fuzzy numbers. Four numerical examples were solved in
order to illustrate the method and comparisons were made to show the efficiency. For the first example, our outcome
is an exact optimal solution. The second example was solved for α = 0.55 and found that the solution proposed by
this article dominates the outcome of Mehra et al. For example 3, the solution provided by this study also dominated
the solution proposed by [17]. Since our proposed method can be used to address the bi-objective linear fractional
programming problem, we considered example 4 taken from [29]. This bi objective linear fractional programming
problem was solved and the results demonstrated that our solution dominated the solution of Pramy and Islam. In
brief, we conclude that our proposed approach is reliable to address the LFPP with fuzzy coefficients, and bi-objective
LFPP. It should be mentioned that, in this paper, the Linprog documentation of Optimization Toolbox of MATLAB
R2016 was employed to solve the linear programming problems.
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 برای برنامه ریزی کسری  Max-Minو   برش-αرویکردی مبتنی بر تکنیک 

 خطی با ضرائب فازی 

 

و ا  .دهیچک کارآمد  روش  یک  مقاله  با    ین  بدگیپیچیسرراست  کمتر  محاسباتی  به  های  پرداختن  رای 

-αاخت رویکرد، از مفهوم  دهد. برای سه میئارا  (   FLFPPریزی کسری خطی با ضرائب فازی )  برنامه

اعداد    برش با  مقابله  رتبه برای  بر  میفازی، علاوه  استفاده  آنها  فابندی  مسئله  اساس،  این  بر  با  شود.  زی 

( تبدیل می   BOLFPPی دو منظوره )  ریزی کسری خطئله برنامهک مسای به یاستفاده از حساب بازه 

شود که با اعمال  تعریف می  اهداف،    معادل برحسب توابع عضویت    BOLFPPشود. پس از آن یک  

برنامهتبدیل به یک مسئله  )  های متغیر غیرخطی مناسب  می    ( تبدیل  BOLPPریزی خطی دو منظوره 

برنامه  BOLPP  برای تغییر  Max-Minشود. نظریه   ( مورد استفاده   LPPیزی خطی )  ربه یک مسئله 

برای مسئله فازی است.  بهینه    –  єاه حل  یک ر  LPPقرار می گیرد. ثابت شده است که راه حل بهینه  

ی صورت گرفته هایه شده و برای نشان دادن کارایی مقایسهئچهار مثال عددی برای نشان دادن روش، ارا

 است.  


