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Abstract

Uninorms and nullnorms are special 2-uninorms. In this work, we construct 2-uninorms on bounded lattices. Let L be
a bounded lattice with a nontrivial element d. Given two uninorms U1 and U2, defined on sublattices [0, d] and [d, 1],
respectively, this paper presents two methods for constructing binary operators on L which extend both U1 and U2. We
show that our first construction is a 2-uninorm on L if and only if U2 is conjunctive and our second construction is a 2-
uninorm on L if and only if U1 is disjunctive. Moreover, we prove that the two 2-uninorms are, respectively, the weakest
and the strongest 2-uninorm among all 2-uninorms, the restrictions of which on [0, d]2 and [d, 1]2 are respectively U1

and U2.
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1 Introduction

By allowing the identity element different from 0 and 1, Yager and Rybalov [42] introduced uninorms on the unit
interval, which include triangular norms [27] (t-norms henceforth) and triangular conorms [27] (t-conorms henceforth)
as special classes. Since then, uninorms have become important aggregation operators, which have applications in expert
systems [16, 20, 36], fuzzy logic [28], and fuzzy systems modeling [41]. As an interesting mathematical construction,
uninorms have been investigated by many researchers, see [15, 18, 23, 29, 31]. By allowing annihilator to be put
anywhere in [0, 1], nullnorms (or t-operators) [5, 30] are another generalization of both t-norms and t-conorms. Later,
Akella [1] proposed the important notion of a 2-uninorm, which has two local identity elements in [0, 1]. 2-uninorms
generalize uninorms and nullnorms and they have been applied in related fields such as [13]. Until now, 2-uninorms
have attracted some research interests, see [19, 32, 33, 38, 44, 45, 46].

As a bounded lattice, the unit interval is sometimes too special and often cannot be adopted as the underlying
value domain of many decision making tasks. Recently, several researchers have considered similar constructions on
general bounded lattices. A series of works have been done for uninorms [4, 6, 7, 9, 10, 12, 14, 26, 34, 40], nullnorms
[8, 11, 22, 24, 25], uni-nullnorms [37, 39, 43] and null-uninorms [43].

Ertuğrul [21] considered 2-uninorms on a general bounded lattice. Let (L,≤) be a bounded lattice. Suppose d is
a nontrivial element of L, U1 (U2, resp.) a disjunctive (conjunctive, resp.) uninorm on [0, d] ([d, 1], resp.). Ertuğrul
[21] defined a 2-uninorm on L by extending U1 and U2 in a natural way. Furthermore, he showed that the construction
could fail to be a 2-uninorm if either the disjunctivity or conjunctivity is not satisfied.

In this work, we consider a similar problem as in [21]. Let (L,≤) be a bounded lattice. Suppose d is a nontrivial
element of L. For any uninorm U1 on [0, d] and any uninorm U2 on [d, 1], we construct two operators H∧

U1,U2
and

H∨
U1,U2

and show that H∧
U1,U2

(H∨
U1,U2

, resp.) is a 2-uninorm if and only if U2 is conjunctive (U1 is disjunctive, resp.).

Moreover, we prove that for any 2-uninorm H on L, if U1 and U2 are, respectively, the restrictions of H on [0, d]2 and
[d, 1]2, then H∧

U1,U2
≤ H ≤ H∨

U1,U2
. Our 2-uninorms on bounded lattices generalize 2-uninorms on the unit interval and

also can be used to obtain uni-nullnorms, null-uninorms and nullnorms on bounded lattices. Moreover, using H∨
U1,U2

,
we can obtain fuzzy implications on bounded lattices, which can be applied in lattice-valued fuzzy set theory.
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In the remainder of this work, we first recall some preliminaries in Section 2, then present our constructions and
main results in Section 3. A short conclusion as well as an outlook for future research is presented in Section 4.

2 Preliminaries

Our reference to basic notions and terminologies of lattice theory is [3]. Suppose (L,≤) is a lattice. The binary minimum
(meet) and maximum (join) operations on L are denoted by ∧ and ∨, respectively. A lattice (L,≤) is called a bounded
lattice if there exist two elements 0 and 1 in L such that 0 ≤ x ≤ 1 for any x ∈ L. We call 0 and 1, respectively, the
bottom and the top of L. For a1, a2 ∈ L with a1 < a2, we define [a1, a2] ≡ {x | a1 ≤ x ≤ a2}. Similarly, we can define
(a1, a2), (a1, a2] and [a1, a2). In addition, we define Id ≡ {x ∈ L|x is incomparable with d}.

Let (L,≤) be a lattice. Suppose F : L2 → L is a binary operator on L. Assume L1 is a sublattice of L, i.e., both
a ∨ b and a ∧ b are in L1 for any a, b ∈ L1. The restriction of F to L2

1 is denoted as F |L2
1
. In general, F (a, b) is not

necessarily an element in L1 despite that a, b are both in L1. In case that L1 is closed under F , i.e., F (a, b) ∈ L1 for
any a, b ∈ L1, we write F |L1 to denote the restriction of F to L2

1, which is a binary operator on L1. Suppose there is
another binary operation F ′ on L1 such that F ′(a, b) = F (a, b) for all a, b ∈ L1. Then F is called an extension of F ′ on
L, or F extends F ′ on L.

In the remainder of this paper, we always denote a bounded lattice (L,≤, 0, 1) simply as L.
All operators considered in this paper are AMC operators in the following sense.

Definition 2.1. [1] Assume L is a bounded lattice. An operator F : L2 → L is an AMC operator if F is associative,
commutative, and non-decreasing in both variables.

Definition 2.2. [17, 27] Assume L is a bounded lattice. An AMC operator F on L is called a triangular norm (t-
norm) if 1 is the identity element of F , i.e., F (1, a) = a for any a ∈ L. Analogously, we say F is a triangular conorm
(t-conorm) if 0 is the identity element of F , i.e., F (0, a) = a for any a ∈ L.

The following example gives two special t-norms (t-conorms).

Example 2.3. [26, 27] Assume L is a bounded lattice. Define

TM (a, b) = a ∧ b,

TD(a, b) =

 a, if b = 1
b, if a = 1
0, otherwise,

SD(a, b) =

 a, if b = 0
b, if a = 0
1, otherwise,

SM (a, b) = a ∨ b.

TM (TD, resp.) is the strongest (weakest, resp.) t-norm on L and SD (SM , resp.) is the strongest (weakest, resp.)
t-conorm on L.

Both t-norms and t-conorms are special nullnorm and uninorm operators.

Definition 2.4. [25, 27, 30] A binary operator F : L2 → L on a bounded lattice L is a nullnorm on L if it is an AMC
operator and has an annihilator b ∈ L such that F (0, x) = x for any x ≤ b and F (1, y) = y for any y ≥ b.

Every t-conorm S is a nullnorm with annihilator 1 and every t-norm T is a nullnorm with annihilator 0.

Definition 2.5. [26, 27] A binary operator U : L2 → L on a bounded lattice L is called a uninorm on L if U is an AMC
operator and has an identity element e in L, i.e., U(e, x) = x for all x ∈ L. If U(0, 1) = 0, we say U is conjunctive; if
U(0, 1) = 1, we say U is disjunctive.

Every t-conorm S (t-norm T , resp.) on L is a uninorm with identity element 0 (1, resp.).
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Let L be a bounded lattice and e ∈ L \ {0, 1}. Then Usc : L
2 → L and Usc : L

2 → L, respectively, are the weakest
and strongest uninorms on L withe neutral element e [26], where

Usc(x, y) =


x ∨ y, if (x, y) ∈ [e, 1]2

x ∧ y, if (x, y) ∈ [0, e)× [e, 1] ∪ [e, 1]× [0, e)
y, if (x, y) ∈ [e, 1]× Ie
x, if (x, y) ∈ Ie × [e, 1]
0, otherwise,

(1)

Uld(x, y) =


x ∧ y, if (x, y) ∈ [0, e]2

x ∨ y, if (x, y) ∈ [0, e)× [e, 1] ∪ [e, 1]× [0, e)
y, if (x, y) ∈ [0, e]× Ie
x, if (x, y) ∈ Ie × [0, e]
1, otherwise.

(2)

Obviously, Usc is conjunctive and Uld is disjunctive.

Proposition 2.6. [26] Suppose U is a uninorm on a bounded lattice L with identity element e ̸= 0, 1. Then the
restriction of U on [0, e]2 ([e, 1]2, resp.) is a t-norm (t-conorm, resp.) on [0, e] ([e, 1], resp.).

Definition 2.7. [1, 46] A binary operator H : L2 → L on a bounded lattice L is a 2-uninorm if H is an AMC operator
and there exist e1, e2 and d ∈ (0, 1) in L such that 0 ≤ e1 ≤ d ≤ e2 ≤ 1 and H(x, e1) = x for any x ≤ d and H(y, e2) = y
for any y ≥ d. We call d the cutpoint and call e1, e2 the first and, respectively, the second local identity elements of H.

Definition 2.8. [35] A 2-uninorm with e2 = 1 is called a uni-nullnorm, and a 2-uninorm with e1 = 0 is called a
null-uninorm.

Assume H is a 2-uninorm on L with local identity elements e1 ≤ e2 and cutpoint d. Let U1 and U2 be the restrictions
of H to [0, d]2 and [d, 1]2, respectively. Clearly, U1 (U2, resp.) is a uninorm on [0, d] ([d, 1], resp.) and e1 (e2, resp.) is
its identity element.

Obviously, uninorms, nullnorms, uni-nullnorms and null-uninorms are all special 2-uninorms.

Theorem 2.9. [21] Let L be a bounded lattice, U1 : [0, d]2 → [0, d] be a disjunctive uninorm with neutral element e1
and U2 : [d, 1]2 → [d, 1] be a conjunctive uninorm with neutral element e2. Then the function U2 : L2 → L given by

U2(x, y) =

 U1(x, y), (x, y) ∈ [0, d]2

U2(x, y), (x, y) ∈ [d, 1]2

d, otherwise

is a 2-uninorm.

3 2-uninorms on bounded lattices

Let L be a bounded lattice. Suppose e1, e2, d ∈ L with 0 ≤ e1 ≤ d ≤ e2 ≤ 1 and 0 < d < 1. Assume further that U1 is a
uninorm on [0, d] with identity element e1 and U2 is a uninorm on [d, 1] with identity element e2. We give two methods
for constructing 2-uninorms by extending U1 and U2. The first extension, denoted H∧

U1,U2
, is a 2-uninorm if and only

if U2 is a conjunctive uninorm; the second extension, denoted H∨
U1,U2

, is a 2-uninorm if and only if U1 is a disjunctive
uninorm.

3.1 The weakest 2-uninorm H∧
U1,U2

The construction of the first extension is illustrated in Fig. 1.

Theorem 3.1. Let L be a bounded lattice. Suppose e1, e2, d ∈ L with 0 < d < 1 and 0 ≤ e1 ≤ d < e2 ≤ 1. Assume
further that U1 is a uninorm on [0, d] with identity element e1 and U2 is a uninorm on [d, 1] with identity element e2.
Then the operator H∧

U1,U2
given by

H∧
U1,U2

(x, y) =

{
U2(x, y), if (x, y) ∈ [d, 1]2

U1(x ∧ d, y ∧ d), otherwise
(3)

is a 2-uninorm on L if and only if U2 is a conjunctive uninorm.

Proof. To simplify the presentation, we use, in (and only in) this proof, x ⋄ y to denote the binary operation H∧
U1,U2

of
any two elements x, y ∈ L, i.e., x ⋄ y ≡ H∧

U1,U2
(x, y).
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Figure 1: The structure of the 2-uninorm H∧
U1,U2

in Eq. (3)

Necessity Suppose H∧
U1,U2

is a 2-uninorm. We show U2 is conjunctive, i.e., U2(d, 1) = d. From the definition of ⋄,
we have 1 ⋄ 1 = U2(1, 1) = 1 and e1 ⋄ 1 = U1(e1 ∧ d, d ∧ 1) = d. By the associativity of ⋄, we have

U2(d, 1) = d ⋄ 1 = (e1 ⋄ 1) ⋄ 1 = e1 ⋄ (1 ⋄ 1) = e1 ⋄ 1 = d.

Sufficiency Suppose U2 is conjunctive. Then d ⋄ 1 = U2(d, 1) = d. By U1(e1, d) = d = U2(e2, d), we have U1(d, d) =
d = U2(d, d) and U2(x, d) = d for any x ≥ d.

We prove that H∧
U1,U2

is a 2-uninorm with cutpoint d and local identity elements e1, e2.
Note that we can rewrite H∧

U1,U2
as

x ⋄ y =



U1(x, y), if (x, y) ∈ [0, d]2

U2(x, y), if (x, y) ∈ [d, 1]2

U1(d, y ∧ d), if (x, y) ∈ [d, 1]× Id
U1(x ∧ d, d), if (x, y) ∈ Id × [d, 1]
U1(x, d), if (x, y) ∈ [0, d]× [d, 1]
U1(d, y), if (x, y) ∈ [d, 1]× [0, d]
U1(x, y ∧ d), if (x, y) ∈ [0, d]× Id
U1(x ∧ d, y), if (x, y) ∈ Id × [0, d]
U1(x ∧ d, y ∧ d), if (x, y) ∈ I2d .

(4)

Clearly, ⋄ is commutative and satisfies x ⋄ e1 = U1(x, e1) = x for any x ∈ [0, d] and x ⋄ e2 = U2(x, e2) = x for any
x ∈ [d, 1]. It remains to prove its monotonicity and associativity. Let us first consider the monotonicity. For any
x, y, z ∈ L, suppose x ≤ y. We show x ⋄ z ≤ y ⋄ z. The monotonicity clearly holds if x, y, z ∈ [d, 1]. Since x ≤ y we see
that if y /∈ [d, 1], then also x /∈ [d, 1] and x ⋄ z = U1(x ∧ d, z ∧ d) ≤ U1(y ∧ d, z ∧ d) = y ⋄ z. The same holds if z /∈ [d, 1].
Finally, if x /∈ [d, 1] and y, z ∈ [d, 1], then x ⋄ z = U1(x ∧ d, y ∧ d) ≤ d ≤ U2(y, z) = y ⋄ z.

To show the associativity, we only need to prove

x ⋄ (y ⋄ z) = (x ⋄ y) ⋄ z,

for any x, y, z ∈ L.
If x, y, z ∈ [d, 1], the associativity is clear. Otherwise, it is enough to show that in all remaining cases

x ⋄ (y ⋄ z) = U1(x ∧ d, U1(y ∧ d, z ∧ d)),

and
(x ⋄ y) ⋄ z = U1(U1(x ∧ d, y ∧ d), z ∧ d).

If fact, if y, z ∈ [d, 1], then x ̸∈ [d, 1] and x ⋄ (y ⋄ z) = U1(x∧ d, U2(y, z)∧ d) = U1(x∧ d, d) = U1(x∧ d, U1(y ∧ d, z ∧ d)).
If y ̸∈ [d, 1] or z ̸∈ [d, 1], then y ⋄ z = U1(y ∧ d, z ∧ d) ≤ d. Especially, when y ⋄ z < d, we obtain x ⋄ (y ⋄ z) =
U1(x∧d, U1(y∧d, z∧d)); when y ⋄z = d and x ̸∈ [d, 1], then x⋄ (y ⋄z) = x⋄d = U1(x∧d, d) = U1(x∧d, U1(y∧d, z∧d));
when y ⋄z = d and x ∈ [d, 1], then x⋄ (y ⋄z) = x⋄d = U2(x, d) = d = U1(d, d) = U1(x∧d, d) = U1(x∧d, U1(y∧d, z∧d)).
To sum up, x ⋄ (y ⋄ z) = U1(x ∧ d, U1(y ∧ d, z ∧ d)) if at least one of x, y and z is not in [d, 1].

Similarly, we can prove that (x⋄ y)⋄ z = U1(U1(x∧d, y∧d), z∧d) if at least one of x, y and z is not in [d, 1]. Hence,
the associativity follows from the associativity of U1.
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The next example illustrates the construction of H∧
U1,U2

in Theorem 3.1.

Example 3.2. Let L1 = {0, a1, e1, a2, a3, d, a4, e2, a5, 1, b1, b2, c1, c2, c3, c4} be the bounded lattice shown in Fig. 2.
Suppose U1 (U2) is a conjunctive uninorm on [0, d] ([d, 1]) given by (cf. [4]):

U1(x, y) =


SM (x, y), if (x, y) ∈ [e1, d]

2

y, if (x, y) ∈ [e1, d]× Ie1
x, if (x, y) ∈ Ie1 × [e1, d]
TD(x ∧ e1, y ∧ e1), otherwise,

(5)

and

U2(x, y) =


SD(x, y), if (x, y) ∈ [e2, 1]

2

y, if (x, y) ∈ [e2, 1]× Ie2
x, if (x, y) ∈ Ie2 × [e2, 1]
TM (x ∧ e2, y ∧ e2), otherwise.

(6)

The 2-uninorm H∧
U1,U2

, as defined in Theorem 3.1, is given by Table 1.

Figure 2: The bounded lattice L1

Remark 3.3. (i) In Theorem 3.1, d is required to be less than e2. Otherwise, U2 becomes a t-conorm and it cannot be
conjunctive.

(ii) If U2 is conjunctive and L is the unit interval [0, 1], then H∧
U1,U2

corresponds to the 2-uninorms constructed
in [46]. Indeed, in this case we have H∧

U1,U2
(0, 1) = H∧

U1,U2
(0, d) = U1(0, d) ∈ {0, d}. If H∧

U1,U2
(0, 1) = d, then

it corresponds to the 2-uninorm defined in Theorem 4 of [46]. If H∧
U1,U2

(0, 1) = 0, then, by H∧
U1,U2

(1, d) = d, this
2-uninorm corresponds to the one introduced in Theorem 5 of [46].

It is interesting to find that H∧
U1,U2

is the weakest one among all 2-uninorms which have the same restrictions on

[0, d]2 and [d, 1]2.

Theorem 3.4. Let L be a bounded lattice with elements e1, e2, d in L such that 0 < d < 1 and 0 ≤ e1 ≤ d < e2 ≤ 1.
Suppose U1 is a uninorm on [0, d] with identity element e1 and U2 is a conjunctive uninorm on [d, 1] with identity
element e2. Then U1 and U2 are, respectively, the restrictions of H∧

U1,U2
on [0, d]2 and [d, 1]2. Moreover, for any

2-uninorm H on L which extends both U1 and U2, we have H ≥ H∧
U1,U2

.

Proof. By construction, U1 (U2, resp.) is clearly the restriction of H∧
U1,U2

on [0, d]2 ([d, 1]2, resp.). Suppose H is also

a 2-uninorm which extends both U1 and U2. Clearly, for any (x, y) ∈ [0, d]2 ∪ [d, 1]2, H(x, y) = H∧
U1,U2

(x, y). For any

(x, y) ∈ [0, 1]2 \ ([0, d]2 ∪ [d, 1]2), we have

H(x, y) ≥ H(x ∧ d, y ∧ d) = U1(x ∧ d, y ∧ d) = H∧
U1,U2

(x, y)

as H is non-decreasing. Thus, H ≥ H∧
U1,U2

.
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H∧
U1,U2

0 a1 e1 a2 a3 d a4 e2 a5 1 b1 b2 c1 c2 c3 c4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 a1 a1 a1 a1 a1 a1 a1 a1 0 a1 a1 a1 0 0
e1 0 a1 e1 a2 a3 d d d d d b1 d a2 a3 b1 a1
a2 0 a1 a2 a2 a3 d d d d d b1 d a2 a3 b1 a1
a3 0 a1 a3 a3 a3 d d d d d b1 d a3 a3 b1 a1
d 0 a1 d d d d d d d d b1 d d d b1 a1
a4 0 a1 d d d d a4 a4 a4 a4 b1 d d d b1 a1
e2 0 a1 d d d d a4 e2 a5 1 b1 b2 d d b1 a1
a5 0 a1 d d d d a4 a5 1 1 b1 b2 d d b1 a1
1 0 a1 d d d d a4 1 1 1 b1 b2 d d b1 a1
b1 0 0 b1 b1 b1 b1 b1 b1 b1 b1 0 b1 b1 b1 0 0
b2 0 a1 d d d d d b2 b2 b2 b1 d d d b1 a1
c1 0 a1 a2 a2 a3 d d d d d b1 d a2 a3 b1 a1
c2 0 a1 a3 a3 a3 d d d d d b1 d a3 a3 b1 a1
c3 0 0 b1 b1 b1 b1 b1 b1 b1 b1 0 b1 b1 b1 0 0
c4 0 0 a1 a1 a1 a1 a1 a1 a1 a1 0 a1 a1 a1 0 0

Table 1: The 2-uninorm H∧
U1,U2

in Example 3.2

The above result shows that H∧
U1,U2

is the weakest among all 2-uninorms that extend both U1 and U2. A stronger
conclusion can be obtained if U2 is selected to be the weakest uninorm on [d, 1].

Corollary 3.5. Let L be a bounded lattice with elements e1, e2, d such that 0 < d < 1 and 0 ≤ e1 ≤ d < e2 ≤ 1. Suppose
U is an arbitrary uninorm on [0, d] and Usc the weakest uninorm on [d, 1] with identity element e2 (cf. Eq.(1)). Then
H∧

U,Usc
is the weakest among all 2-uninorms that extend U and have cutpoint d and local identity elements e1, e2 on L .

It is necessary to point out that for any 2-uninorm H on a bounded lattice L, H(0, 1) = a is always its annihilator.
Indeed, since H(0, 0) = 0 and H(1, 1) = 1, we get H(a, 0) = H(0, a) = H(0,H(0, 1)) = H(H(0, 0), 1) = H(0, 1) = a, and
similarly H(1, a) = H(a, 1) = a. Then the monotonicity for every x ∈ L gives a = H(a, 0) ≤ H(a, x) ≤ H(a, 1) = a, i.e.,
H(x, a) = H(a, x) = a. If U1 is disjunctive in Theorem 3.1, then d = U1(x, d) = H∧

U1,U2
(x, d) for any x ∈ [0, d], i.e., d is

also the annihilator of H∧
U1,U2

(see Corollary 3.6). In this case, U1 is not a t-norm and therefore 0 ≤ e1 < d.
In the below, for convenience, denote Xd = ([0, d] ∪ Id)× [d, 1] ∪ [d, 1]× ([0, d] ∪ Id).

Corollary 3.6. Let L be a bounded lattice with elements e1, e2, d such that 0 < d < 1 and 0 ≤ e1 < d < e2 ≤ 1.
Suppose U1 : [0, d]2 → [0, d] is a disjunctive uninorm with identity element e1 and U2 : [d, 1]2 → [d, 1] a conjunctive
uninorm with identity element e2. Then

H∧
U1,U2

(x, y) =

 U2(x, y), if (x, y) ∈ [d, 1]2

d, if (x, y) ∈ Xd

U1(x ∧ d, y ∧ d), otherwise.
(7)

Clearly, d is the annihilator of the 2-uninorm H∧
U1,U2

.

Remark 3.7. Corollary 3.6 has the same conditions as Theorem 1 of [21], i.e., both requiring that U1 is a disjunctive
uninorm and U2 is a conjunctive uninorm. We find that H∧

U1,U2
differs from the 2-uninorm U2 of [21] only in the region

[0, d]× Id ∪ Id × [0, d] ∪ I2d since U2(x, y) =

 U1(x, y), if (x, y) ∈ [0, d]2

U2(x, y), if (x, y) ∈ [d, 1]2

d, otherwise.

In case e1 = 0 (e2 = 1, resp.) in Theorem 3.1, then U1 (U2, resp.) becomes a t-conorm (t-norm, resp.). This yields
a null-uninorm (a uni-nullnorm, resp.) on L.

Corollary 3.8. Let L be a bounded lattice with elements e, d such that 0 < d < e ≤ 1 and 0 < d < 1. Suppose
U : [d, 1]2 → [d, 1] is a uninorm with identity element e and S : [0, d]2 → [0, d] a t-conorm. Then

H∧
S,U (x, y) =

 U(x, y), if (x, y) ∈ [d, 1]2

d, if (x, y) ∈ Xd

S(x ∧ d, y ∧ d), otherwise.
(8)
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Moreover, the operator H∧
S,U is a null-uninorm on L if and only if U is a conjunctive uninorm. If U is a conjunctive

uninorm, then the null-uninorm H∧
S,U is also the weakest among all null-uninorms that extend U and S with cutpoint

d on L .

Remark 3.9. In Corollary 3.8, if S = SM and U = Usc, then H = H∧
SM ,Usc

is the weakest among all null-uninorms
on L with cutpoint d . Moreover, we have

H(x, y) =

 Usc(x, y), if (x, y) ∈ [d, 1]2

d, if (x, y) ∈ Xd

(x ∧ d) ∨ (y ∧ d), otherwise.
(9)

Corollary 3.10. Let L be a bounded lattice with elements e, d such that 0 ≤ e ≤ d < 1 and 0 < d < 1. Suppose U is
a uninorm on [0, d] with identity element e and T a t-norm on [d, 1]. Then 2-uninorm H∧

U,T on L is a uni-nullnorm.
Indeed, H∧

U,T is the weakest among all uni-nullnorms that extend U and T with cutpoint d on L.

Remark 3.11. (i) The result of Corollary 3.10 is the one of Theorem 3.1 in [39].
(ii) In Corollary 3.10, if U = Usc and T = TD, then H = H∧

Usc,TD
is the weakest uni-nullnorm among all uni-

nullnorms on L with cutpoint d and local identity element e.

Taking e = 1 in Corollary 3.8 or e = 0 in Corollary 3.10, we obtain the nullnorm on L constructed in [22].

3.2 The strongest 2-uninorms H∨
U1,U2

In the previous section, we have defined a 2-uninorm which is the weakest 2-uninorm with given underlying functions.
Dually, we can construct the strongest one in a similar way. The construction is illustrated in Fig. 3.

Figure 3: The structure of the 2-uninorm H∨
U1,U2

in Eq. (10)

Theorem 3.12. Let L be a bounded lattice with elements e1, e2, d such that 0 ≤ e1 < d ≤ e2 ≤ 1 and 0 < d < 1.
Suppose U1 : [0, d]2 → [0, d] is a uninorm with identity element e1 and U2 : [d, 1]2 → [d, 1] a uninorm with identity
element e2. The binary operator H∨

U1,U2
given by

H∨
U1,U2

(x, y) =

{
U1(x, y), if (x, y) ∈ [0, d]2

U2(x ∨ d, y ∨ d), otherwise
(10)

is a 2-uninorm on L if and only if U1 is a disjunctive uninorm.

Remark 3.13. (i) In Theorem 3.12, d is required to be greater than e1. Otherwise, U1 is a t-norm and it cannot be
disjunctive.

(ii) Suppose U1 is disjunctive. If L is the unit interval [0, 1], then H∨
U1,U2

corresponds to the 2-uninorms constructed
in [46, Theorems 4 & 6].

The 2-uninorm H∨
U1,U2

is the strongest among all 2-uninorms which extend U1 and U2 with cutpoint d.
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Theorem 3.14. Let L be a bounded lattice with elements e1, e2, d such that 0 ≤ e1 < d ≤ e2 ≤ 1 and 0 < d < 1.
Suppose U1 is a disjunctive uninorm on [0, d] with identity element e1 and U2 a uninorm on [d, 1] with identity element
e2. Then U1 and U2 are, respectively, the restrictions of H∨

U1,U2
on [0, d]2 and [d, 1]2. Moreover, for any 2-uninorm H

on L which extends both U1 and U2, we have H ≤ H∨
U1,U2

.

A stronger conclusion can be reached if U1 is the strongest uninorm on [0, d].

Corollary 3.15. Let L be a bounded lattice with elements e1, e2, d such that 0 ≤ e1 < d < e2 ≤ 1 and 0 < d < 1.
Suppose U is an arbitrary uninorm on [d, 1] with identity element e2 and Uld the strongest uninorm on [0, d] with identity
element e1 (cf. Eq.(2)). Then H∨

Uld,U
is the strongest among all 2-uninorms on L that extend U and have cutpoint d

and local identity elements e1, e2.

In case U2 is conjunctive, we have a finer representation for H∨
U1,U2

, which directly implies that d is the annihilator
of the 2-uninorm H∨

U1,U2
. We denote Yd = [0, d]× (Id ∪ [d, 1]) ∪ (Id ∪ [d, 1])× [0, d].

Corollary 3.16. Let L be a bounded lattice with elements e1, e2, d such that 0 ≤ e1 < d < e2 ≤ 1 and 0 < d < 1.
Suppose U1 is a disjunctive uninorm on [0, d] with identity element e1 and U2 a conjunctive uninorm on [d, 1] with
identity element e2. Then

H∨
U1,U2

(x, y) =

 U1(x, y), if (x, y) ∈ [0, d]2

d, if (x, y) ∈ Yd

U2(x ∨ d, y ∨ d), otherwise.
(11)

Clearly, d is the annihilator of H∨
U1,U2

.

Remark 3.17. Similar to Remark 3.7, when compared with the 2-uninorm U2 in [21], our 2-uninorm H∨
U1,U2

differs

only in the region [d, 1]× Id ∪ Id × [d, 1] ∪ I2d , where U2 takes the fixed value d.

Corollary 3.18. Let L be a bounded lattice with elements e, d such that 0 ≤ e < d < 1 and 0 < d < 1. Suppose
T : [d, 1]2 → [d, 1] is a t-norm and U : [0, d]2 → [0, d] a uninorm with identity element e. Then

H∨
U,T (x, y) =

 U(x, y), if (x, y) ∈ [0, d]2

d, if (x, y) ∈ Yd

T (x ∨ d, y ∨ d), otherwise.
(12)

Moreover, H∨
U,T is a uni-nullnorm on L if and only if U is a disjunctive uninorm. If U is a disjunctive uninorm, then

H∨
U,T is indeed the strongest uni-nullnorm among all uni-nullnorms on L that extend U and T with cutpoint d.

Remark 3.19. (i) The result of Corollary 3.18 is the one of Theorem 4.1 in [39].
(ii) In Corollary 3.18, if U = Uld and T = TM , then G = H∨

Uld,TM
is the strongest uni-nullnorm with cutpoint d

and local identity element e. Moreover, we have

G(x, y) =

 Uld(x, y), if (x, y) ∈ [0, d]2

d, if (x, y) ∈ Yd

(x ∨ d) ∧ (y ∨ d), otherwise.
(13)

Corollary 3.20. Let L be a bounded lattice, e, d ∈ L, 0 ≤ d < e ≤ 1 and 0 < d < 1. Suppose U is a uninorm on
[d, 1] with identity element e and S a t-conorm on [0, d]. The 2-uninorm H∨

S,U on L is a null-uninorm. Indeed, it is
the strongest null-uninorm on L which extends both S and U with cutpoint d.

Remark 3.21. In Corollary 3.20, if S = SD and U = Uld, then G = H∨
SD,Uld

is the strongest null-uninorm.

Taking e = 1 in Corollary 3.18 or e = 0 in Corollary 3.20, we obtain the nullnorm on L constructed in [22].
To illustrate the construction, we also give an example.

Example 3.22. Let L1 = {0, a1, e1, a2, a3, d, a4, e2, a5, 1, b1, b2, c1, c2, c3, c4} be the bounded lattice as defined in Fig. 2.
Suppose Te1 is a t-norm on [0, e1] and Se2 a t-conorm on [e2, 1]. Consider the disjunctive uninorm U1 on [0, d] with
identity element e1 given by

U1(x, y) =


Te1(x, y), if (x, y) ∈ [0, e1]

2

y, if (x, y) ∈ [0, e1]× ([0, d] \ [0, e1])
x, if (x, y) ∈ ([0, d] \ [0, e1])× [0, e1]
h(x) ∨ h(y), if (x, y) ∈ ([0, d] \ [0, e1])2,



Construction of 2-uninorms on bounded lattices 195

and the conjunctive uninorm U2 on [d, 1] with identity element e2 given by

U2(x, y) =


Se2(x, y), if (x, y) ∈ [e2, 1]

2

y, if (x, y) ∈ [e2, 1]× ([d, 1] \ [e2, 1])
x, if (x, y) ∈ ([d, 1] \ [e2, 1])× [e2, 1]
g(x) ∧ g(y), otherwise,

where h is a closure operator and g is an interior operator, respectively (please see the definitions of closure operators
and interior operators in [34]). Then U1 and U2 are uninorms (see [Theorems 4.1 and 5.1, [34]).

Now, select Te1 = TM , h(x) = x, Se2 = SD, g(x) = x. Then we obtain 2-uninorm H∨
U1,U2

on L1 given in Table 2.

H∨
U1,U2

0 a1 e1 a2 a3 d a4 e2 a5 1 b1 b2 c1 c2 c3 c4
0 0 0 0 a2 a3 d d d d d b1 d d d d d
a1 0 a1 a1 a2 a3 d d d d d b1 d d d d d
e1 0 a1 e1 a2 a3 d d d d d b1 d d d d d
a2 a2 a2 a2 a2 a3 d d d d d a2 d d d d d
a3 a3 a3 a3 a3 a3 d d d d d a3 d d d d d
d d d d d d d d d d d d d d d d d
a4 d d d d d d a4 a4 a4 a4 d d a4 d a4 a4
e2 d d d d d d a4 e2 a5 1 d b2 a4 b2 a4 1
a5 d d d d d d a4 a5 1 1 d b2 a4 b2 a4 1
1 d d d d d d a4 1 1 1 d b2 a4 b2 a4 1
b1 b1 b1 b1 a2 a3 d d d d d b1 d d d d d
b2 d d d d d d d b2 b2 b2 d b2 d b2 d b2
c1 d d d d d d a4 a4 a4 a4 d d a4 d a4 a4
c2 d d d d d d d b2 b2 b2 d b2 d b2 d b2
c3 d d d d d d a4 a4 a4 a4 d d a4 d a4 a4
c4 d d d d d d a4 1 1 1 d b2 a4 b2 a4 1

Table 2: The 2-uninorm H∨
U1,U2

in Example 3.22

In [45], the authors discuss the (U2, N)- operation IU2,N on the unit interval derived from a 2-uninorm U2 and a
fuzzy negation N , where IU2,N (x, y) = U2(N(x), y). They prove that IU2,N is a fuzzy implication if and only if the
related 2-uninorm U2 is disjunctive, i.e., U2(0, 1) = 1. 1

Using our 2-uninorms, we can obtain fuzzy implications on bounded lattices as well. In fact, if U1 and U2 are
disjunctive, then H∨

U1,U2
is a disjunctive 2-uninorm. Therefore, analogously as in [45], we can use such H∨

U1,U2
to

construct (H,N)-implications IH,N on bounded lattices by IH,N (x, y) = H∨
U1,U2

(N(x), y).

Example 3.23. Let L2 = {0, a1, e1, d, e2, a2, b1, b2, 1} be the bounded lattice shown in Fig. 4. Define N : [0, 1] → [0, 1]
by

N(x) =



1, if x = 0
a2, if x = a1
e2, if x = e1
d, if x ∈ {d, b1, b2}
e1, if x = e2
a1, if x = a2
0, if x = 1.

Clearly, N is a fuzzy negation on L2. Let U1 and U2 be given, respectively, by

U1(x, y) =


TM (x, y), if (x, y) ∈ [0, e1]

2

y, if (x, y) ∈ [0, e1]× ([0, d] \ [0, e1])
x, if (x, y) ∈ ([0, d] \ [0, e1])× [0, e1]
x ∨ y, if (x, y) ∈ ([0, d] \ [0, e1])2,

1For definitions of fuzzy implications and fuzzy negations, the reader can refer to [2, 45].
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U2(x, y) =


TD(x, y), if (x, y) ∈ [d, e2]

2

y, if (x, y) ∈ [d, e2]× ([d, 1] \ [d, e2])
x, if (x, y) ∈ ([d, 1] \ [d, e2])× [d, e2]
SD(x ∨ e2, y ∨ e2), if (x, y) ∈ ([d, 1] \ [d, e2])2.

Then U1 and U2 are disjunctive, and fuzzy implication IH,N on L2 is given in Table 3. The fuzzy implication IH,N

can be useful for lattice-valued fuzzy set theory just as (S,N)-implications on bounded lattices [2].

Figure 4: Bounded lattice L2

IH,N 0 a1 e1 d e2 a2 1 b1 b2
0 1 1 1 1 1 1 1 1 1
a1 a2 a2 a2 a2 a2 1 1 1 a2
e1 d d d d e2 a2 1 a2 e2
d d d d d d a2 1 a2 d
e2 0 a1 e1 d d a2 1 a2 d
a2 0 a1 a1 d d a2 1 a2 d
1 0 0 0 d d a2 1 a2 d
b1 d d d d d a2 1 a2 d
b2 d d d d d a2 1 a2 d

Table 3: The IU2,N in Example 3.23

4 Conclusion

For a bounded lattice L with elements 0 ≤ e1 ≤ d ≤ e2 ≤ 1 and 0 < d < 1, suppose U1 is a uninorm on [0, d] with
identity element e1 and U2 a uninorm on [d, 1] with identity element e2. We constructed 2-uninorms on L by extending
both U1 and U2. The two 2-uninorms, H∧

U1,U2
and H∨

U1,U2
are the weakest and the strongest 2-uninorms on L among all

2-uninorms that extend U1 and U2, respectively. Our constructions have also been adapted to construct uni-nullnorms
and null-uninorms on L.

As bounded lattices can be very different from the unit interval [0, 1], many nice properties fulfilled by 2-uninorms
on [0, 1] may not hold. It is interesting to extend the classifications obtained in [1] and [46] to general bounded lattices.
In addition, it is easy to see that neither H∧

U1,U2
nor H∨

U1,U2
is idempotent, in general. In the future, we will investigate

idempotent 2-uninorms on bounded lattices.
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[10] G. D. Çaylı, F. Karaçal, Construction of uninorms on bounded lattices, Kybernetika, 53 (2017), 394-417.
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 های محدود ها روی شبکهتک نرم-2ساخت 

را روی    هاتک نرم-2در این کار  های خاص هستند.  تک نرم-2های پوچ  ها و تک نرم تک نرم.  دهیچک

باشد. برای دو    dبدیهی  با یک عنصر غیر  یک شبکه محدود   Lسازیم. فرض کنید  های محدود میشبکه

نرم   ترتیب روی    2U  و  1U  تک  به  این مقاله دو  تعریف شده   ][d, 1و    [d ,0]های  شبکهزیر  که  اند، 

  دهند. را گسترش می  2U  همو  1U  دهدکه هم  ه میئ ارا  Lروش برای ساخت عملگرهای دوتایی روی  

عطفی باشد و ساختار   2Uاگر    فقطو است اگر  Lتک نرم روی  -2دهیم که ساختار اول ما یک  نشان می

-2کنیم که دو این، ثابت می. علاوه برباشد فصلی 1Uاگرطفقواست اگر  Lتک نرم روی -2دوم ما یک 

ها هستند که تحدید آنها  تک نرم-2در بین تمام تک نرم -2 ترینترین و قویها به ترتیب ضعیفتک نرم

 باشد.  می  2U و 1Uبه ترتیب   [d, 1]2و  [d ,0]2به 

 


