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Abstract

Uninorms and nullnorms are special 2-uninorms. In this work, we construct 2-uninorms on bounded lattices. Let L be
a bounded lattice with a nontrivial element d. Given two uninorms U; and Us, defined on sublattices [0, d] and [d, 1],
respectively, this paper presents two methods for constructing binary operators on L which extend both U; and U;. We
show that our first construction is a 2-uninorm on L if and only if Us is conjunctive and our second construction is a 2-
uninorm on L if and only if U; is disjunctive. Moreover, we prove that the two 2-uninorms are, respectively, the weakest
and the strongest 2-uninorm among all 2-uninorms, the restrictions of which on [0, d]? and [d, 1] are respectively U;
and Us.
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1 Introduction

By allowing the identity element different from 0 and 1, Yager and Rybalov [@2] introduced uninorms on the unit
interval, which include triangular norms [27] (t-norms henceforth) and triangular conorms [27] (t-conorms henceforth)
as special classes. Since then, uninorms have become important aggregation operators, which have applications in expert
systems [[8, 20, 6], fuzzy logic [2R], and fuzzy systems modeling [A1]. As an interesting mathematical construction,
uninorms have been investigated by many researchers, see [[5, IR, 23, 29, B1]. By allowing annihilator to be put
anywhere in [0, 1], nullnorms (or t-operators) [8, BU] are another generalization of both t-norms and t-conorms. Later,
Akella [I] proposed the important notion of a 2-uninorm, which has two local identity elements in [0, 1]. 2-uninorms
generalize uninorms and nullnorms and they have been applied in related fields such as [[3]. Until now, 2-uninorms
have attracted some research interests, see [I9, B2, B3, BR, &4, 45, A6].

As a bounded lattice, the unit interval is sometimes too special and often cannot be adopted as the underlying
value domain of many decision making tasks. Recently, several researchers have considered similar constructions on
general bounded lattices. A series of works have been done for uninorms [@, B, [7, O, 00, (2, 14, 26, 34, 40], nullnorms
[§, 00, 22, 24, 25], uni-nullnorms [37, 89, 3] and null-uninorms [&3].

Ertugrul [Z1] considered 2-uninorms on a general bounded lattice. Let (L, <) be a bounded lattice. Suppose d is
a nontrivial element of L, Uy (Us, resp.) a disjunctive (conjunctive, resp.) uninorm on [0,d] ([d,1], resp.). Ertugrul
[21] defined a 2-uninorm on L by extending U; and Us in a natural way. Furthermore, he showed that the construction
could fail to be a 2-uninorm if either the disjunctivity or conjunctivity is not satisfied.

In this work, we consider a similar problem as in [21]. Let (L, <) be a bounded lattice. Suppose d is a nontrivial
element of L. For any uninorm U; on [0,d] and any uninorm Us on [d, 1], we construct two operators ’H@hU2 and
Hyy, v, and show that Hpy 1, (H, y,, resp.) is a 2-uninorm if and only if Us is conjunctive (U; is disjunctive, resp.).
Moreover, we prove that for any 2-uninorm H on L, if U; and Us, are, respectively, the restrictions of H on [0, d]? and
[d, 1]?, then Hfy, 1;, <H < Hp, 17,- Our 2-uninorms on bounded lattices generalize 2-uninorms on the unit interval and
also can be used to obtain uni-nullnorms, null-uninorms and nullnorms on bounded lattices. Moreover, using H\lﬁl,Uz’
we can obtain fuzzy implications on bounded lattices, which can be applied in lattice-valued fuzzy set theory.
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In the remainder of this work, we first recall some preliminaries in Section 2, then present our constructions and
main results in Section 3. A short conclusion as well as an outlook for future research is presented in Section 4.

2 Preliminaries

Our reference to basic notions and terminologies of lattice theory is [B]. Suppose (L, <) is a lattice. The binary minimum
(meet) and maximum (join) operations on L are denoted by A and V, respectively. A lattice (L, <) is called a bounded
lattice if there exist two elements 0 and 1 in L such that 0 < x < 1 for any x € L. We call 0 and 1, respectively, the
bottom and the top of L. For aj,as € L with a1 < ag, we define [a1,a2] = {z | a1 < & < as}. Similarly, we can define
(a1,a2), (a1,az2] and [a1, as). In addition, we define I; = {z € L|z is incomparable with d}.

Let (L,<) be a lattice. Suppose F' : L? — L is a binary operator on L. Assume L; is a sublattice of L, i.e., both
aVband aAbarein L for any a,b € Ly. The restriction of F to L7 is denoted as F'[2. In general, F(a,b) is not
necessarily an element in Ly despite that a,b are both in L. In case that Ly is closed under F, i.e., F(a,b) € L; for
any a,b € Ly, we write F'|z, to denote the restriction of F' to L?, which is a binary operator on L;. Suppose there is
another binary operation F’ on L; such that F’(a,b) = F(a,b) for all a,b € Ly. Then F is called an eztension of F’ on
L, or F extends I’ on L.

In the remainder of this paper, we always denote a bounded lattice (L, <,0,1) simply as L.

All operators considered in this paper are AMC operators in the following sense.

Definition 2.1. [I] Assume L is a bounded lattice. An operator F : L? — L is an AMC operator if F is associative,
commutative, and non-decreasing in both variables.

Definition 2.2. [[7, 27] Assume L is a bounded lattice. An AMC operator F' on L is called a triangular norm (i-
norm) if 1 is the identity element of F, i.e., F(1,a) = a for any a € L. Analogously, we say F is a triangular conorm
(t-conorm) if 0 is the identity element of F', i.e., F(0,a) = a for any a € L.

The following example gives two special t-norms (t-conorms).

Example 2.3. [26, 27] Assume L is a bounded lattice. Define

a, ifb=1
Tp(a,b)=4¢ b, ifa=1
0, otherwise,
a, ifb=0
Sp(a,b)=4¢ b, ifa=0
1, otherwise,

Ty (Tp, resp.) is the strongest (weakest, resp.) t-norm on L and Sp (Sam, resp.) is the strongest (weakest, resp.)
t-conorm on L.

Both t-norms and t-conorms are special nullnorm and uninorm operators.

Definition 2.4. [25, 27, 80] A binary operator F : L?> — L on a bounded lattice L is a nullnorm on L if it is an AMC
operator and has an annihilator b € L such that F'(0,z) =« for any x < b and F(1,y) =y for any y > b.

Every t-conorm S is a nullnorm with annihilator 1 and every t-norm 7' is a nullnorm with annihilator 0.

Definition 2.5. [26, 21] A binary operator U : L?> — L on a bounded lattice L is called a uninorm on L if U is an AMC
operator and has an identity element e in L, i.e., U(e,z) = for allxz € L. If U(0,1) =0, we say U is conjunctive; if
U(0,1) =1, we say U is disjunctive.

Every t-conorm S (t-norm 7', resp.) on L is a uninorm with identity element 0 (1, resp.).
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Let L be a bounded lattice and e € L\ {0,1}. Then U, : L? — L and Uy, : L? — L, respectively, are the weakest
and strongest uninorms on L withe neutral element e [Z6], where

zVy, if (z,y) € e, 1}2
x Ay, if (z,y) €[0,e) x [e,1] Ule, 1] x [0,€)
Use(z,y) =% v, if (x,y) € [e,1] x I (1)
x, if (x,y) € I. x [e,1]
0, otherwise,
r Ay, if (x,y) €10,€)?
zVy, if (z,y)€0,e) x[e, 1] Ule, 1] x [0,€)
Uia(z,y) = v, if (x,y) € [0,¢] x I, (2)
T, if (z,y) € I. x [0, €]

1, otherwise.

Obviously, Uy, is conjunctive and Uy is disjunctive.
Proposition 2.6. [Z6] Suppose U is a uninorm on a bounded lattice L with identity element e # 0,1. Then the
restriction of U on [0,¢]? ([e, 1]?, resp.) is a t-norm (t-conorm, resp.) on [0,€] ([e, 1], resp.).
Definition 2.7. [i, 46] A binary operator H : L?> — L on a bounded lattice L is a 2-uninorm if H is an AMC operator
and there exist e1,e3 and d € (0,1) in L such that 0 < e; <d<ey <1 and H(z,e1) =z for anyx < d and H(y,e2) =y
for any y > d. We call d the cutpoint and call e1, eq the first and, respectively, the second local identity elements of H.

Definition 2.8. [B5] A 2-uninorm with ea = 1 is called a uni-nullnorm, and a 2-uninorm with ex = 0 is called a
null-uninorm.

Assume H is a 2-uninorm on L with local identity elements e; < es and cutpoint d. Let U; and Us be the restrictions
of H to [0,d)? and [d, 1]?, respectively. Clearly, U; (Us, resp.) is a uninorm on [0, d] ([d, 1], resp.) and e; (e, resp.) is
its identity element.

Obviously, uninorms, nullnorms, uni-nullnorms and null-uninorms are all special 2-uninorms.

Theorem 2.9. [21] Let L be a bounded lattice, Uy : [0,d]* — [0,d] be a disjunctive uninorm with neutral element e;
and Uy : [d,1]? = [d, 1] be a conjunctive uninorm with neutral element es. Then the function U? : L? — L given by

9 U1<-'177y), (‘T7y) € [O7d]2
U(z,y) = Us(z,y), (x,y)€[d1)?
d, otherwise

s a 2-uninorm.

3 2-uninorms on bounded lattices

Let L be a bounded lattice. Suppose e1,e3,d € L with 0 <e; <d<ey <1and0 < d < 1. Assume further that U; is a
uninorm on [0, d] with identity element e; and Us is a uninorm on [d, 1] with identity element e;. We give two methods
for constructing 2-uninorms by extending U; and Us. The first extension, denoted ’H(/}I’UQ, is a 2-uninorm if and only
if Us is a conjunctive uninorm; the second extension, denoted H%,Uzv is a 2-uninorm if and only if U; is a disjunctive
uninorm.

3.1 The weakest 2-uninorm ”HQLUQ

The construction of the first extension is illustrated in Fig. .

Theorem 3.1. Let L be a bounded lattice. Suppose e1,es,d € L with 0 <d <1 and 0 <e; <d < ey <1. Assume
further that Uy is a uninorm on [0,d] with identity element ex and Uz is a uninorm on [d, 1] with identity element eo.
Then the operator HlAfl,Uz given by

A _ UQ(xay)7 if (l’,y) € [du 1]2
Hy, v, (@, y) = { Ui(z Ad,y ANd), otherwise ®)

is a 2-uninorm on L if and only if Us is a conjunctive uninorm.

Proof. To simplify the presentation, we use, in (and only in) this proof, z ¢y to denote the binary operation Hﬁ,hUz of
any two elements z,y € L, i.e., oy = 7—[@17[]2 (z,y).
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I,| Uyad) | Ud,yad) | Uad,ynd)
1
€| Und) U, U (xrd.d)
d
e v, U,(d.y) Uy(xad.y)
1

Figure 1: The structure of the 2-uninorm Hg;, p, in Eq. (3)

Necessity Suppose ’H@hw is a 2-uninorm. We show Uj is conjunctive, i.e., Us(d,1) = d. From the definition of ¢,
we have 101 =Us(1,1) =1 and e; ¢ 1 = Uy(e; Ad,d A1) = d. By the associativity of ¢, we have

Us(d,1)=dol=(e10l)ol=e10(lol)=¢e 0l =d.

Sufficiency Suppose U, is conjunctive. Then d o1 = Us(d,1) = d. By Ui(e1,d) = d = Us(es, d), we have U;(d,d) =
d =Us(d,d) and Us(x,d) = d for any = > d.

We prove that H’I}I,UQ is a 2-uninorm with cutpoint d and local identity elements eq,es.

Note that we can rewrite Hf}, 1, as

Ul(xvy)7 if (xay) € [Ovd]
U2(m>y)’ if (may) € [d7 1]
Ui(d,y A d), if (z,y) € [d, 1] x 14
Ui(x Ad,d), if (x,y) € Iy x [d, 1]
voy=1 Ui(rd), i (2,y) € [0,d] x [d,1] (1)
Ul(dv y)v if (x’y) € [dv 1] X [Ovd]
Ui(z,y Ad), 1f (z,y) €[0,d] x Iy
Ui(z Ad,y), if (z,y) € Iy x [0,d]
Uiz Nd,y Nd), 1f(my)€]§

Clearly, ¢ is commutative and satisfies z o e; = Uji(z,e1) = z for any x € [0,d] and z ¢ ex = Uz(z,e2) = x for any
€ [d,1]. It remains to prove its monotonicity and associativity. Let us first consider the monotonicity. For any
x,y,z € L, suppose < y. We show z ¢ z < y ¢ z. The monotonicity clearly holds if x,y, z € [d,1]. Since z < y we see
that if y ¢ [d, 1], then also « ¢ [d,1] and x 0z =Uy(z Ad,zAd) < Ui(y Ad,zAd) = yoz. The same holds if z ¢ [d, 1].
Finally, if « ¢ [d,1] and y,z € [d, 1], then z oz =Ui(x Ad,y Nd) <d < Us(y,z) =y 2.
To show the associativity, we only need to prove

zo(yoz)=(xoy)oz

for any z,y,z € L.
If x,y,z € [d, 1], the associativity is clear. Otherwise, it is enough to show that in all remaining cases

zo(yoz)=U(x Nd,Ui(y Nd,z A d)),

and
(zoy)oz=U(U1(z Nd,yANd),z Nd).

If fact, if y, z € [d, 1], then = & [d, 1] and x o (yo 2z) = Ur(x Ad,Usz(y,2) Nd) = Ur(z Ad,d) = Ur(x Ad, Ui (y Nd, z Ad)).
Ify & [d,1] or z & [d,1], then yo z = U1(y Ad,z ANd) < d. Especially, when y ¢ z < d, we obtain z o (y ¢ z) =
Ur(zAd,Uy(yNd, zAd)); when yoz =d and x € [d, 1], then zo (yoz) = zod = Uy(zAd,d) = Uy (z Ad, U (y Ad, zA\d));
when yoz = d and z € [d, 1], then zo(yoz) = xod = Us(z,d) = d = Uy (d,d) = Uy (xAd,d) = Uy (z Ad, U1 (y Ad, z Ad)).
To sum up, ¢ (yoz) =U(x Ad,Ur(y Ad, z Ad)) if at least one of x, y and z is not in [d, 1].

Similarly, we can prove that (zoy)oz = Uy (Ui(x Ad,y Ad),zAd) if at least one of x, y and z is not in [d, 1]. Hence,
the associativity follows from the associativity of Uj. O
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The next example illustrates the construction of H61,U2 in Theorem 3.1.

Example 3.2. Let L; = {0,a1,e1,a2,a3,d,a4,€2,a5,1,b1,ba,¢1,¢a,¢3,c4} be the bounded lattice shown in Fig. 2.
Suppose Uy (Us) is a conjunctive uninorm on [0,d] ([d,1]) given by (cf. [4]):

Sm(z,y), if (z,y) € [e1,d]?
- [E7 U
Tp(x ANei,yAer), otherwise,
and
Sp(z,y), if (z,y) € [e2,1]?
e =1 & A P ®

Ty(x Aea,yAes), otherwise.

The 2-uninorm ’Hﬁhrb, as defined in Theorem B, is given by Table 1.

Figure 2: The bounded lattice Lq

Remark 3.3. (i) In Theorem 3.1, d is required to be less than es. Otherwise, Uy becomes a t-conorm and it cannot be
conjunctive.

(i1) If Uy is conjunctive and L is the unit interval [0,1], then 7—[{}11% corresponds to the 2-uninorms constructed
in [B6]. Indeed, in this case we have Hp, ;,(0,1) = Hpy, 1,(0,d) = Ui(0,d) € {0,d}. If Hp, 1,(0,1) = d, then
it corresponds to the 2-uninorm defined in Theorem 4 of [B8]. If H{}hUQ (0,1) = 0, then, by H{}hUz(l,d) = d, this
2-uninorm corresponds to the one introduced in Theorem 5 of [48].

It is interesting to find that Hp; ;, is the weakest one among all 2-uninorms which have the same restrictions on
[0,d])* and [d, 1]*.

Theorem 3.4. Let L be a bounded lattice with elements e1,es,d in L such that 0 < d <1 and 0 <e; <d < ey < 1.
Suppose Uy is a uninorm on [0,d] with identity element ey and Uy is a conjunctive uninorm on [d, 1] with identity
element es. Then Uy and Uy are, respectively, the restrictions of ’H{}hUQ on [0,d)? and [d,1]>. Moreover, for any
2-uninorm H on L which extends both Uy and Uy, we have H > Hﬁl,UQ'

Proof. By construction, Uy (Us, resp.) is clearly the restriction of ’H/L\,hU2 on [0,d]? ([d, 1)?, resp.). Suppose H is also
a 2-uninorm which extends both Uy and Us. Clearly, for any (z,y) € [0,d]* U [d,1]*, H(x,y) = Hp, y, (¢, y). For any
(z,y) € [0,1]2\ ([0,d]* U [d, 1]*), we have

H(z,y) > H@xAd,yNd) =Ui(zx Ad,y A Nd) = H{}MUQ(x,y)

as ‘H is non-decreasing. Thus, H > ’H@hUz. O
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H/(}l Us 0 al €1 ag as d a4 €9 as 1 b1 b2 C1 C2 C3 Cy
0 o o0 o o o o o o0 o o0 o o0 o0 o 0 o0
a 0O 0 a a a a a a1 a a 0 a1 a3 a3 O 0
€1 0 al €1 ag as d d d d d bl d as as b1 al
as 0 aq as a9 as d d d d d b1 d ag as b1 al
as 0 ai as as as d d d d d bl d as as b1 aiq
d 00 &gz d d d d d d d d b d d d b a
aq 0 aq d d d d a4q aq a4 aq bl d d d b1 ap
€9 0 aq d d d d [e7} €9 as 1 bl b2 d d bl al
as 0 al d d d d aq as 1 1 b1 b2 d d b1 al
1 0 ay d d d d Qy 1 1 1 b1 bg d d b1 ai
b1 0 0 b b b by by by by by 0 b by by 0 0
bg 0 aq d d d d d b2 b2 bg bl d d d b1 ap
C1 0 aq a9 a9 as d d d d d bl d as as bl aiy
C2 0 aq as as as d d d d d b1 d as as b1 ay
C3 0 0 b1 b1 b1 b1 b1 b1 b1 bl 0 b1 bl b1 0 O
Cq 0 0 aq a1 ap aq aq ay aq ay 0 aq ay aq 0 0

Table 1: The 2-uninorm 7—[@11]2 in Example 3.2

The above result shows that ’HA v, 1s the weakest among all 2-uninorms that extend both U; and Usz. A stronger
conclusion can be obtained if Us is selected to be the weakest uninorm on [d, 1].

Corollary 3.5. Let L be a bounded lattice with elements ey, ea,d such that0 <d <1 and0 <e; <d < ey < 1. Suppose
U is an arbitrary uninorm on [0,d] and Us. the weakest uninorm on [d, 1] with identity element ex (cf. Eq.(1)). Then
’H{}U s the weakest among all 2-uninorms that extend U and have cutpoint d and local identity elements e1,es on L .

It is necessary to point out that for any 2-uninorm H on a bounded lattice L, H(0,1) = a is always its annihilator.
Indeed, since H(0,0) = 0 and H(1,1) =1, we get H(a,0) = H(0,a) = H(0,#(0,1)) = H(#(0,0),1) = H(0,1) = a, and
similarly H(1,a) = H(a, 1) = a. Then the monotonicity for every x € L gives a = H(a,0) < ’H(a, x) < H(a,1) =a, ie.,
H(z,a) = H(a,z) = a. If Uy is disjunctive in Theorem BT, then d = Uy (v, d) = Hp), (2, d) for any = € [0,d], i.e., d is
also the annihilator of HIA]hUz (see Corollary 3.6). In this case, U; is not a t-norm and therefore 0 < e; < d.

In the below, for convenience, denote X4 = ([0,d] U I) x [d,1] U [d, 1] x ([0,d] U I).

Corollary 3.6. Let L be a bounded lattice with elements ey,es,d such that 0 < d < 1 and 0 < e < d < eg < 1.
Suppose Uy : [0,d)? — [0,d] is a disjunctive uninorm with identity element e; and Us : [d,1]*> — [d,1] a conjunctive
uninorm with identity element es. Then

UQ(ZII,y), if (xvy) S [da 1]2
Hiy, v, (2,y) =< d, if (z,y) € Xq (7)
Uiz Ad,y Ad), otherwise.

Clearly, d is the annihilator of the 2-uninorm 7—[@17(]2.

Remark 3.7. Corollary 3.6 has the same conditions as Theorem 1 of [21]], i.e., both requiring that Uy is a disjunctive

uninorm and Us is a conjunctive uninorm. We find that HIAJl,Uz differs from the 2-uninorm U? of [21] only in the region
Ul(may)v if (x,y) € [07d]2

[0,d] x I;UI; % [0,d]U I3 since U(z,y) = Us(z,y), if (z,y) € [d,1]?

d otherwise.

7

In case e; = 0 (e2 = 1, resp.) in Theorem B, then U; (Us, resp.) becomes a t-conorm (t-norm, resp.). This yields
a null-uninorm (a uni-nullnorm, resp.) on L.

Corollary 3.8. Let L be a bounded lattice with elements e,d such that 0 < d < e < 1 and 0 < d < 1. Suppose
U:[d,1)? = [d,1] is a uninorm with identity element e and S : [0,d]?> — [0,d] a t-conorm. Then

U(x,y), if (z,y) € [d,1)?

Hsp(z,y) =14 d if (z,y) € X4 (8)
S(xANd,y Nd), otherwise.
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Moreover, the operator ’HQU is a null-uninorm on L if and only if U is a conjunctive uninorm. If U is a conjunctive
uninorm, then the null-uninorm Hg ; is also the weakest among all null-uninorms that extend U and S with cutpoint
donlL .

Remark 3.9. In Corollary B3, if S = Sy and U = Ug,, then H = HQ‘M,USC is the weakest among all null-uninorms
on L with cutpoint d . Moreover, we have

Usc($7y)a Zf (!L'7y) € [da 1]2
H(z,y) =4 d, if (z,y) € Xaq 9)
(xANd)V (yAd), otherwise.

Corollary 3.10. Let L be a bounded lattice with elements e,d such that 0 < e <d <1 and 0 < d < 1. Suppose U is
a uninorm on [0, d] with identity element e and T a t-norm on [d,1]. Then 2-uninorm Hp; p on L is a uni-nullnorm.
Indeed, Hiy 1 is the weakest among all uni-nullnorms that extend U and T with cutpoint d on L.

Remark 3.11. (i) The result of Corollary 3.10 is the one of Theorem 3.1 in [39].
(i) In Corollary TID, if U = Use and T = Tp, then H = "H{}WTD is the weakest uni-nullnorm among all uni-
nullnorms on L with cutpoint d and local identity element e.

Taking e = 1 in Corollary B8 or e = 0 in Corollary B0, we obtain the nullnorm on L constructed in [22].

3.2 The strongest 2-uninorms Hy; ;,

In the previous section, we have defined a 2-uninorm which is the weakest 2-uninorm with given underlying functions.
Dually, we can construct the strongest one in a similar way. The construction is illustrated in Fig. B.

I,|Udyvd) | Uyx.dvy) | Ukvdyvd)

€2 U,(d.y) U, U,(xvd.y)
d

e, U, U,(x.d) U,(xvd,d)
0 e, d e, 1 1,

Figure 3: The structure of the 2-uninorm H; ;;, in Eq. (10)

Theorem 3.12. Let L be a bounded lattice with elements e1,ea,d such that 0 < e; <d < ey <1 and 0 < d < 1.
Suppose Uy : [0,d)?> — [0,d] is a uninorm with identity element e; and Uy : [d,1]*> — [d,1] a uninorm with identity
element es. The binary operator H¥17U2 given by

Ur(z,y), if (2,y) € [0,d]”

Vv —
Moy v, (2,y) = { Us(zVvd,yVd), otherwise 10)

is a 2-uninorm on L if and only if Uy is a disjunctive uninorm.

Remark 3.13. (i) In Theorem 8.12, d is required to be greater than ey. Otherwise, Uy is a t-norm and it cannot be
disjunctive.

(#i) Suppose Uy is disjunctive. If L is the unit interval [0, 1], then ’H%hUz corresponds to the 2-uninorms constructed
in [d6, Theorems 4 & 6].

The 2-uninorm H\[jvhUZ is the strongest among all 2-uninorms which extend U; and U, with cutpoint d.
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Theorem 3.14. Let L be a bounded lattice with elements ey, es,d such that 0 < e; < d < ey <1 and0 < d < 1.
Suppose Uy is a disjunctive uninorm on [0,d] with identity element e; and Us a uninorm on [d, 1] with identity element
es. Then Uy and Us are, respectively, the restrictions of HE/H,Uz on [0,d)* and [d,1]>. Moreover, for any 2-uninorm H
on L which extends both Uy and Us, we have H < Hy;, ..

A stronger conclusion can be reached if U; is the strongest uninorm on [0, d].

Corollary 3.15. Let L be a bounded lattice with elements e1,ea,d such that 0 < e; < d < ey <1 and 0 < d < 1.
Suppose U is an arbitrary uninorm on [d, 1] with identity element ea and Uyq the strongest uninorm on [0, d] with identity
element ey (cf. Eq.(2)). Then Hﬁld’U is the strongest among all 2-uninorms on L that extend U and have cutpoint d
and local identity elements ey, es.

In case U, is conjunctive, we have a finer representation for 7—[\[}1 v,» Which directly implies that d is the annihilator

of the 2-uninorm Hy; 1, We denote Yy = [0,d] x (I3 U [d, 1]) U (I4 U [d,1]) x [0,d].

Corollary 3.16. Let L be a bounded lattice with elements e1,ea,d such that 0 < e1 < d < ey <1 and 0 < d < 1.
Suppose Uy is a disjunctive uninorm on [0,d] with identity element e; and Us a conjunctive uninorm on [d, 1] with
identity element es. Then

Ur(z,y), if (x,y) € [0,d]?
Hgl’U2 (x,y) = d’ if (-T,y) €Yy (11)
Us(xVd,yVd), otherwise.

Clearly, d is the annihilator of HIVJI,UQ.

Remark 3.17. Similar to Remark BT, when compared with the 2-uninorm U? in [21], our 2-uninorm thUz differs
only in the region [d,1] x I;U I x [d,1] U I3, where U? takes the fived value d.

Corollary 3.18. Let L be a bounded lattice with elements e,d such that 0 < e <d <1 and 0 < d < 1. Suppose
T :[d,1]?> — [d,1] is a t-norm and U : [0,d)?> — [0,d] a uninorm with identity element e. Then

Ul(z,y), if (2,y) € [0,d]”
Hi/],T(xvy) = d7 if (xvy) € Yd (12)
T(xVd,yVvd), otherwise.

Moreover, ’H&T 1s a uni-nullnorm on L if and only if U is a disjunctive uninorm. If U is a disjunctive uninorm, then
Hyy o is indeed the strongest uni-nullnorm among all uni-nullnorms on L that extend U and T with cutpoint d.

Remark 3.19. (i) The result of Corollary BI8 is the one of Theorem 4.1 in [39].
(i) In Corollary BI8, if U = Ujq and T = Ty, then G = ngd,TM is the strongest uni-nullnorm with cutpoint d
and local identity element e. Moreover, we have

Uia(,y), if (z,y) €[0,dJ?
G(l‘,y) = d7 Zf (x,y) € Yd (13)
(xVvd)A(yVvd), otherwise.

Corollary 3.20. Let L be a bounded lattice, e,d € L, 0 < d <e <1 and 0 < d < 1. Suppose U is a uninorm on
[d, 1] with identity element e and S a t-conorm on [0,d]. The 2-uninorm H¥; on L is a null-uninorm. Indeed, it is
the strongest null-uninorm on L which extends both S and U with cutpoint d.

Remark 3.21. In Corollary 320, if S = Sp and U = Uyq, then G = H§D7Um is the strongest null-uninorm.

Taking e = 1 in Corollary BTI8 or e = 0 in Corollary B=20, we obtain the nullnorm on L constructed in [22].
To illustrate the construction, we also give an example.

Example 3.22. Let Ly = {0,a1, €1, a2, as,d, a4, ea,as,1,b1,ba,¢1,ca,c3,c4} be the bounded lattice as defined in Fig. 2.
Suppose T, is a t-norm on [0,e1] and Se, a t-conorm on [e2,1]. Consider the disjunctive uninorm Uy on [0,d] with
identity element ey given by

Tel ('T7y)7 lf (x7y) € [0’61]
R i (21y) € 0,e2] % ([0,d]\ [0, 1))
e z, if (z,y) € ([0,d] \ 0, e1]) x [0, 1]
h(z) vV h(y), if (z,y) € ([0,d] \ [0,e1])?,



Construction of 2-uninorms on bounded lattices 195

and the conjunctive uninorm Us on [d, 1] with identity element es given by

Sea (), if (x,y) € [e2, 1]?
UQ(CL‘ y) = Y, if (z,y) € [6271] X ([d’ 1] \ [6271])
’ o Zf (l‘,y) € ([dv 1] \ [6271]) X [6271]

g(x) Ng(y), otherwise,

where h is a closure operator and g is an interior operator, respectively (please see the definitions of closure operators
and interior operators in [54]). Then Uy and Us are uninorms (see [Theorems 4.1 and 5.1, [34]).
Now, select Te, = T, h(z) =z, Se, = Sp, g(x) = x. Then we obtain 2-uninorm My, ;, on Ly given in Table 2.

/Hgl Us 0 aiq €1 as as d Qy €9 as 1 bl b2 C1 C2 C3 C4
0 0 0 0 a a3 d d d d d b d d d d d
al 0 al al a2 as d d d d d b1 d d d d d
e1 0 a1 e a a3 d d d d d b d d d d d
a9 as a9 a9 as as d d d d d a9 d d d d d
as as as as as as d d d d d as d d d d d
d d d d d d d d d d d d d d d d d
aq d d d d d d a ags a4 as d d ag d a4 a4
() d d d d d d ay () as 1 d bz a4 b2 aq 1
as d d d d d d Qy as 1 1 d b2 ay b2 aq 1
1 d d d d d d ayg 1 1 1 d b2 a4 b2 ay 1
bl b1 b1 b1 an as d d d d d b1 d d d d d
by d d d d d d d by by by d by d by d by
c1 d d d d d d a a4 a4 as d d ag d a4 a4
&) d d d d d d d by by by d by d by d b
C3 d d d d d d Qy Qa4 ayq Qy d d Qy d ayq Q4
Cq d d d d d d (o7} 1 1 1 d b2 ayq bg (o7} 1

Table 2: The 2-uninorm 7—[&17(]2 in Example 3.22

In [45], the authors discuss the (U2, N)- operation Ij2 x on the unit interval derived from a 2-uninorm U? and a
fuzzy negation N, where Iz y(z,y) = U*(N(z),y). They prove that Iy2 y is a fuzzy implication if and only if the
related 2-uninorm U? is disjunctive, i.e., U?(0,1) = 1. ©

Using our 2-uninorms, we can obtain fuzzy implications on bounded lattices as well. In fact, if U; and U, are
disjunctive, then Hlel,Uz is a disjunctive 2-uninorm. Therefore, analogously as in [d5], we can use such ’thUQ to
construct (H, N)-implications Iy on bounded lattices by Iy n(z,y) = H), 1, (N(2),y).

Example 3.23. Let Ly = {0,a1,e1,d, e3,a2,b1,ba, 1} be the bounded lattice shown in Fig. 4. Define N : [0,1] — [0,1]

by
1, ifz=0
as, ifx=ay
e2, ifz=e1
N(z)=< d, ifze{dby,bs}
e1, ifr=es
ai, fo = asz
0, ifx=1.
Clearly, N is a fuzzy negation on Lo. Let Uy and Uy be given, respectively, by
TM(Qj,y), Zf (l’,y) € [0761]2
Ui(oy) =4 ¥ if (2,y) € [0, 1] x ([0,d] \ [0, e])
’ x, if (z,y) € ([0,d] \ [0, e1]) x [0, 1]
xVy, Zf (:Cay> € ([O7d]\[0761})27

IFor definitions of fuzzy implications and fuzzy negations, the reader can refer to [2, &5].
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TD(m>y)’ Zf (m>y) € [d’ 62]
Us(ay) = 4 ¥ if (x,y) € [d, e2] x ([d, 1]\ [d, e2])
S x, if (x,y) € ([d, 1]\ [d, e2]) x [d, e2]
Sp(xVeyyVes), if(x,y) <€ ([d,1]\[d,e])?

Then Uy and Uy are disjunctive, and fuzzy tmplication I n on Lo is given in Table 3. The fuzzy implication Iy N
can be useful for lattice-valued fuzzy set theory just as (S,N)-implications on bounded lattices [3].

Figure 4: Bounded lattice Lo

IH,N 0 a1 €1 d €9 ag 1 b1 b2
0 1 1 1 1 1 1 1 1 1
al as a9 a9 as a9 1 1 1 as
€1 d d d d €9 ag 1 ag €9
d d d d d d a 1 a d
€9 0 al €1 d d a2 1 a9 d
as 0 a4 a1 d d ay 1 ay d
1 0 0 0 d d a9 1 a9 d
bl d d d d d a9 1 a9 d
b2 d d d d d ag 1 ag d

Table 3: The Iz y in Example 3.23

4 Conclusion

For a bounded lattice L with elements 0 < e; < d < ey <1 and 0 < d < 1, suppose U; is a uninorm on [0, d] with
identity element e; and Us a uninorm on [d, 1] with identity element e5. We constructed 2-uninorms on L by extending
both U; and Us. The two 2-uninorms, ’H{}l,UQ and H&,UQ are the weakest and the strongest 2-uninorms on L among all
2-uninorms that extend U; and Us, respectively. Our constructions have also been adapted to construct uni-nullnorms
and null-uninorms on L.

As bounded lattices can be very different from the unit interval [0, 1], many nice properties fulfilled by 2-uninorms
on [0, 1] may not hold. It is interesting to extend the classifications obtained in [} and [d6] to general bounded lattices.
In addition, it is easy to see that neither Hﬁh v, hor 7—[%17 v, is idempotent, in general. In the future, we will investigate
idempotent 2-uninorms on bounded lattices.
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