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Abstract 

Floating offshore structures, particularly floating oil production, storage and offloading 
systems (FPSOs) are still in great demand, both in small and large reservoirs, for deployment in 
deep water. The prediction of such vessels’ responses to her environmental loading over her 
lifetime is now often undertaken using response-based design methodology, although the 
approach is still in its early stages of development. Determining the vessel’s responses to 
hydrodynamic loads induced by long term sea environments is essential for implementing this 
approach effectively. However, it is often not practical to perform a complete simulation for 
every 3-hour period of environmental data being considered. Therefore, an Artificial Neural 
Networks (ANN) modelling technique has been developed for the prediction of FPSO’s 
responses to arbitrary wind, wave and current loads that alleviates this problem. Comparison of 
results obtained from a conventional mathematical model with those of the ANN-based 
technique for the case of a 200,000 tdw tanker demonstrates that the approach can successfully 
predict the vessel’s responses due to arbitrary loads. 
Keywords: seakeeping, floating offshore platforms, artificial neural networks
  
Introduction 

Methods for calculating the maximum 
responses of a turret-moored FPSO 
subjected to arbitrary wind, current and 
wave loads for an N-year life period, 
which is essential for  mooring system 
design, are still being developed. 
Standing, Thomas et al. [1] showed that 
by using  response-based methods the 
100-year maximum resultant excursion 
of an FPSO can be reduced to about 75% 
to 80% of the maximum excursion 
predicted using a traditional collinear 
combination of a 100-year wind, a 100-
year current and a 100-year wave. 
However, it should be noted that in some 
cases other combinations of 
environmental loads e.g. smaller and 
steeper waves, may create larger 

excursions than the combinations of the 
100-year collinear values. The results 
obtained by Incecik, Bowers et al. [2] for 
a specific semi-submersible are a good 
example of a case where the severe 
mooring loads did not occur when wind, 
wave, and current loads were collinear 
and acting at their maximum design 
values for a N-year life period. For these 
reasons the response-based calculation 
procedure can be expected to yield more 
accurate results than the traditional 
method. In order to make the response-
based method more practical for real 
cases an artificial neural network based 
model has been developed. 

The methodology of a response based 
approach applied to a turret-moored 

1/E Vol. 3/ No. 4/ Summer 2006 

Archive of SID

www.SID.ir

www.SID.ir


 
 

 

JOURNAL of MARINE ENGINEERING 
Iranian Association of 

Naval Architecture & Marine Engineering 

FPSO is presented in the flow chart 
shown in Fig. 1. The procedures 
involved entail the following tasks: 
 
1)Building up a mathematical model in 
order to determine the loads and motions 
of a turret-moored FPSO due to wind, 
current, and waves. This model should 
take into account the nonlinearities of 
the loads as well as their direction. 
2)Obtaining the vessel’s responses by 
running the mathematical model over a 
reasonable period of environmental data, 
for example 5 years. 
3)Setting up an artificial neural network 
(ANN) that has been trained and cross 
validated using sufficient data obtained 
from the mathematical model to ensure 
an accurate representation of vessel 
responses as a function of environmental 
variables.  
4)Using the ANN to generate long term 
vessel responses (e.g. using 25-year met-
ocean data) and analysing them 
statistically to predict the vessel’s 
maximum excursion over an N-year life 
period. 

It can be seen that the development of 
the vessel’s mathematical response 
model and the ANN model are the most 
crucial parts of the response-based 
methodology. Details of the 
mathematical model used for generating 
the vessel responses have been reported 
elsewhere [3, 4]. In what follows, a brief 
overview of the response mathematical 
model will be presented but attention 
will be focussed chiefly on the ANN 
model. Finally, the results obtained from 
an ANN based model applied to the case 
of a 200,000 tdw FPSO will be 
compared with the results obtained using 
a traditional response mathematical 
model.  

 
Nomenclature 

L : length between perpendiculars 
F : activation function 

X : input vector 
Y : output vector 
f : non-linear function 
g : gravitational acceleration 
k : mooring stiffness  
α : wind direction 
β : current direction 
δ : water depth/draft 
γ : wave direction 
φ : output function 
ω : wave frequency 

sH : significant wave height 
currentU : current velocity 

wiV : wind velocity 
ix : input parameter 
iy : output parameter 
ijW : weighting factor 

 

Figure 1- The flowchart of response-based 
methodology 
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Mathematical response model 
The mathematical response model 

(SAMRES)[5] involves the calculation 
of the 1st and 2nd order loads and 
motions of an FPSO subjected to 
arbitrary wind, current and waves. The 
model accounts for the effects of shallow 
water and also of the vessel’s 
weathervaning. 

 
1st order loads and motions 

Strip theory has been employed for 
calculating 1st order wave loads and 
motions. The effects of finite depth and 
current have been considered in deriving 
the first order wave loads and motions. 
Also, in deriving wave induced surge 
load the influence of the vessel’s lateral 
curvature has been accounted for and the 
model validated by comparing results 
with those obtained using the surface 
integration method and Oortmerssen’s 3-
D source technique[6]. The volume 
integration method was shown to give 
very good agreement with the 3-D 
source technique.  

A simple drag force formula has been 
used in calculating the steady wind loads 
in which the drag force coefficients have 
been selected from the API standard [7].  

For calculating current induced loads, 
the approximate drag force formula has 
been used in surge mode. However, the 
sectional drag force has been integrated 
over the vessel’s length in calculating the 
transverse force. Moreover the effects of 
the Munk moment and the turret 
mooring system have been taken into 
account in the calculating current 
induced yaw moment. 

A mathematical response model, 
based on the above, has been written in 
MATLAB and the program has been 
executed for a particular FPSO whose 
principal characteristics are listed in 
Table 1. The results obtained for the 
loads and responses have been compared 
with those from a 3-D source technique. 

The lateral RAOs for the vessel in head 
seas are shown in Fig. 2. 
 

Table 1- Particulars of 200,000 tdw FPSO 
 

Length between perpendiculars 310 m 
Breadth 47.20 m 
Draft 18.90 m 
Volume of displacement 235,000 m3 

Block coefficient 0.85 
Mid-ship section coefficient 0.995 
Prismatic coefficient 0.855 
Distance of cg to mid-ship section 6.61 m 
Height of centre of gravity 13.32 m 
Meta-centric height 5.78 m 
Longitudinal radius of gyration 77.50 m 
Transverse radius of gyration 17.00 m 
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Figure 2- Motion transfer functions in surge, 

sway and heave modes, 0=γ  
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From the results the following can be 
observed: 
 

• The data obtained from the 
mathematical model correlate well 
with those obtained by Oortmerssen 
who used a 3-D boundary integral 
approach. 
• The motion transfer functions 
calculated by the two approaches are 
in particularly good agreement in the 
surge, sway and heave modes. 
• The results show that in the 
present instance the strip theory 
approach represents a viable 
alternative to the 3-D boundary 
integral technique, particularly since 
lateral loads and motions are the 
subject of the calculation. 
 
 

2nd order loads and motions 
Although the effects of wave 

direction, frequency and the waterline 
shape of the floating structures on the 
wave mean drift force formula have been 
considered by several authors, a general 
formula taking them all into account was 
not found. For present purposes, 
Faltinsen’s wave drift force formula [8] 
has been modified by adding a finite 
draft coefficient. The results obtained 
from the resulting formula, which is 
wave frequency dependent, compare 
favourably with Helvacioglu’s 
experimental data[9] at sufficiently high 
wave frequencies (Fig. 3). In addition, 
the influence of the current on the wave 
mean drift force has been taken into 
account by considering the current 
coefficient derived from the ship added 
resistance formula. This approach 
predicts that the presence of current can 
increase the mean drift force by up to 50 
percent at particular wave frequencies, 
although it does not account properly for 
the effects of the body geometry. 
However, the following general 

conclusions can be drawn from the 
results [4]: 

 
• The mean drift force loads in 
irregular waves are smaller than 
those in regular waves. The results 
obtained for a 200,000 tdw tanker 
showed that the ratio between the 
mean drift force in irregular waves to 
that in regular waves would be 
between 5 to 15 percent for a 5m 
significant wave height.  
• The formula for the calculation 
of the wave drift damping has been 
extended to cover high wave 
frequencies as well as low wave 
frequencies. The results compared 
with asymptotic formula showed 
good agreement in high frequencies 
band (Fig. 4). 
• The low frequency motion of a 
200,000 tdw tanker has been 
calculated by a mathematical model 
written in MATLAB and the results 
showed that the effect of 2 m/s 
current could increase the vessel’s 
surface motions by up to 50 percent. 
However, the effect of current on the 
slowly varying yaw motion is 
opposite and some decreases can be 
seen. 
 

Wind can also create slowly varying 
motions and in this regard both mean 
wind force and wind gust force must be 
considered. In this study the modified 
Harris wind gust spectrum has been 
adopted and the 200,000 tdw tanker’s 
motions for a 30 m/s average wind speed 
have been calculated as shown in Table 
2. It can be concluded that second order 
wind forces can play a significant role in 
vessel’s surface responses. 
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Weathervaning effects 

The response model has been shown 
to provide a good description of the 
weathervaning effects observed for a 
turret-moored FPSO subjected to wind, 
wave and current loads. It is therefore 
possible to analyse the phenomenon in 
terms of the relative contributions made 
by the first and the second order 
components of the environmental loads. 
For example, the effect of the first order 
wind load on the 200,000 tdw tanker 
subjected to 30 m/s wind speed is to 
increase its wind-induced rotational 
moment by up to 50 percent in its 
ballasted condition as compared to that 
of its loaded condition. The deck 

structures in this example contribute up 
30 and 10 percent of the total wind-
induced rotational moment in the 
ballasted and loaded conditions 
respectively. The vessel’s maximum 
rotational velocity occurs when the 
direction of the current is perpendicular 
to its heading angle. 

Calculation of the equilibrium angle 
for the vessel subjected to different sea 
states showed that the first order wave 
load effect is dominant although the 
current can have a significant effect. 
Current fluctuations are a second order 
effect whose influence can be shown to 
be very small. Therefore, the second 
order current effect on the vessel’s 
weathervaning has been neglected.  

Analysis of the second order effects 
of wind and wave loads on the 200,000 
tdw tanker showed that they are 
responsible for fluctuations of a few 
degrees. Finally, it has been observed 
that the vessel can be shifted from one of 
her equilibrium angles to the other if the 
initial heading angle is such that the 
wind and wave forces act from aft of the 
vessel. 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
Artificial Neural networks 
(ANN) Model 

The development of Artificial Neural 
Networks (ANN) has been inspired by 
the nervous system of the human brain. 
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Figure 3 - Surge drift force coefficients 
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Figure 4- Wave drift damping in surge mode 

 
Table 2-Vessel’s responses due to wind force 
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α =0 30 850 1.15 0.32 1.13 1.47 Surge 

α =90 30 5580 7.53 13.7 7.4 21.23 Sway 

α =45 30 850 0.58 0.10 0.64 0.68 Surge 

α =45 30 5580 3.8 4.46 4.22 8.26 Sway 
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ANNs are comprised of many basic 
processing elements connected in a 
specified parallel structure. Each 
processing element, which is called a 
neuron, is described by a non-linear 
differentiable function of preferably 
sigmoidal shape. Associated with each 
interconnection, there is an adjustable 
parameter weight that changes according 
to a certain learning rule. 

Depending on their structures, they 
can be broadly categorised as either 
“Static” or “Dynamic” networks. In 
static networks the input signal flow is 
directed to the output with no 
information feedback path while in 
dynamic networks, the output from each 
neuron or network is fed back as 
additional input.  

Static ANNs have the capability of 
storing data during a “learning” process 
and then reproducing this data during a 
“recall” process. Their interpolation, and 
in some cases extrapolation, capability is 
very powerful particularly when 
mapping a multi-dimensional input data 
space to a multi-dimensional output data 
space. It is common for empirical data to 
be used directly for marine design and 
analysis. Thermodynamics, fluid 
dynamics and heat transfer tables and 
charts are iteratively used, and provide 
data sets, which cannot be accurately 
modelled because they are highly non-
linear and multi-dimensional. The non-
linear functional mapping properties of 
ANNs, and their capability to learn a 
new set of input patterns without 
significant disturbance to the previous 
structure, are also important factors 
which make them particularly useful for 
the modelling and identification of 
dynamic systems.  

 
ANN Technology 

ANNs are widely used as nonlinear, 
non-physical and universal modelling 
tools [10]. Recurrent or dynamic ANNs 

are capable of capturing systems’ 
dynamics and can uniquely provide 
inverse models of dynamic time-variant 
systems [11], which are of great 
importance in the design of adaptive 
control systems. Their rapid 
developments during the last two 
decades, has resulted in the introduction 
of many different classes of ANNs, such 
as Neocognitron, RBF, recurrent, 
cooperative, Hybrid, and Sigma-Pai 
ANNs, each one tailored to perform best 
in an individual task. The network of 
choice for most pattern recognition 
problems is the multi-layered feed 
forward network. There are several 
network types, which are useful for 
pattern autoassociation, allowing a 
complete pattern to be reconstructed 
when only a partial or degraded pattern 
is used as input. The Hopfield/Tank and 
the Brain-State-in-a-Box (BSB) 
networks are of the most common 
pattern associators. They both possess a 
single (unified) input/output layer, which 
work well on small pattern sets, but 
cannot store large numbers of patterns 
without interference. 

ANN architectures of different types, 
trained either off-line or on-line with 
different learning algorithms, have been 
proposed and used for the modelling and 
control task of dynamic systems.  For 
implementation within modelling and 
motion predictions of marine dynamic 
systems the following properties of 
ANNs are important. 

 
• Applicability to Nonlinear Systems: 
it has been shown [11] that a feed-
forward ANN with at least one 
hidden layer is capable of 
approximating any nonlinear function 
once enough training has been 
provided. Due to this capability, they 
are also easily capable of providing 
reverse (effect-to-cause) models of 
any nonlinear system. 
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• Parallel Distributed processing and 
Hardware Implementations: ANNs 
have inherent parallel architecture, 
which could lead to parallel hardware 
implementations. These 
implementations also have an 
advantage of having, in general, a 
high degree of fault tolerance and 
high processing speed due to 
simplicity of their connections. 
• Learning: ANNs can be trained 
using past recorded data (offline 
learning) or current data (online 
learning). 
• Applicability to Multivariable 
Systems: ANNs are, by definition, 
multi-input multi-output entities and 
this naturally leads to their 
application to multivariable systems 
such as power plants. 
• Speed of response: Trained ANN 
models are much faster by far than 
physical models since they do not 
need to perform any iterative 
calculations and/or search for any 
parameters. This could provide an 
online platform for live data 
processing and analysis. 
 

ANNs can generally represent the 
mapping of multi-dimensional 
input/output data sets as: 
 

YXf →:                        Eq. (1) 
 
f is a non-linear function, 
X=(x1,x2,…,xn) is real input vector, 
Y=(y1,y2,…,ym) is real output vector, 
Fig. 5. ANNs are best used for 
interpolation, but in some cases have 
also been demonstrated to yield valid 
extrapolations. 
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Figure 5 - General structure of an Artificial 
Neural Network 

 
 

Model input/output selection 
Before selecting the ANN’s structure, 

a set of input/output data should be 
obtained. These data in the context of the 
seakeeping analysis of an FPSO are the 
met-ocean parameters as input and the 
vessel’s excursion as output. In this 
regard six met-ocean parameters have 
been used i.e. wave height and direction, 
wind speed and direction, and current 
speed and direction. These data have 
been randomly selected in a systematic 
fashion to cover a wide range of sea 
states. In Table 3 a sample of those input 
data has been presented. Meanwhile, the 
vessel’s excursions; the surge, sway and 
total vessel’s offset associated with each 
series of input data have been calculated. 
This calculation is based on the 
SAMRES model, which utilises the 
hydrodynamic equations based on the 
theories described in previous sections. 
The SAMRES model has been 
implemented for a series of almost one 
thousand sets of input data. This was a 
time consuming task since about 2 hours 
are required to get the response results 
for each set of data. Some typical results 
obtained from SAMRES are presented in 
table 2. 
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The ANN structure 

The ANN structure plays a significant 
role on mapping out the input data onto 
the output neurons but, unfortunately, 
there are no well-defined rules for 
building up an ANN structure for a 
particular purpose and data set [12]. For 
every new problem the network structure 
must be designed by trial and error [13]. 
In the present case, taking into account 
the nature of the input and output data 
displayed in Table 3, a (6-10-3) 
multilayer feed forward network, which 
has one hidden layer containing 10 
neurons, has been selected (Fig 6). It is 
clear that the number of neurons in the 
input and output layers has been chosen 
according to the number of input and 
output parameters. The input parameters 
are the met-ocean variables as shown in 
Fig. 6 and the vessel’s excursions, 
namely surge, sway and the total vessel’s 
offset, are the output parameters. It will 
be noted that the total vessel’s excursion 
is dependent on surge and sway and 
could be ignored in the ANN model. 
However, it was found that the neural 
networks with three outputs responded 
better to the training process than those 
with two. For this reason the third output 
was retained as a redundant output for 
future development. The number of 
neurons in the hidden layer has been 
selected on a trial and error basis in both 
the training and cross-validation 
procedures. The number of neurons in 
the hidden layer was initially started 
with 4 and subsequently increased to 10, 
where the mean square error is 
considered to be sufficiently small. The 
trend of the mean square error for 
different numbers of neurons in the 
hidden layer, both in the training and 
cross-validation procedures, has been 
plotted in Figure 7. 
 
 

 
 
 

Table 3 - The met-ocean parameters and relevant 
vessel’s excursion ( 2.1=δ , 500=k  KN/m) 

WiV
 
 

(m/s) 

α  sH
 

(m) 

γ  cU
 
 

(m/se) 

β
 

Surge 
 
 

(m) 

Sway 
 
 

(m) 

Excur. 
 
 

(m) 

32 136 2 73 1 233 1.09 4.04 4.18 

10 206 3 148 1 115 0.13 1.04 1.05 

14 31 4 321 1 40 0.48 3.87 3.90 

25 53 8 68 2 242 9.52 1.06 9.58 

23 124 5 88 2 265 2.06 5.61 5.98 

25 103 3 228 2 321 0.84 0.01 0.84 

12 224 4 280 1 343 0.46 1.13 1.22 

21 302 2 229 1 8 0.41 0.00 0.41 

28 139 5 309 1 59 1.25 41.18 41.20 

20 206 7 248 2 76 6.07 0.52 6.09 

33 329 3 298 2 159 0.27 68.15 68.15 

33 177 2 61 1 232 1.49 0.62 1.61 

24 228 8 307 2 262 4.57 24.80 25.22 

26 179 8 341 1 157 7.56 21.70 22.97 

13 180 6 4 1 65 2.05 0.58 2.13 

20 179 4 315 1 210 0.56 13.68 13.69 

25 150 5 125 2 331 1.77 26.30 26.36 

11 204 6 326 1 43 2.16 1.53 2.64 

34 166 4 237 2 197 1.96 0.40 2.00 

25 254 3 211 1 120 0.77 0.15 0.79 

16 243 2 162 2 40 0.05 4.67 4.67 

21 160 5 302 2 251 0.86 15.37 15.39 

35 282 7 240 2 40 7.42 1.01 7.49 

16 302 5 97 2 138 0.81 2.75 2.86 

25 76 3 298 1 56 0.19 26.93 26.94 
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Figure 6-A multi-layer feed forward network 
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Figure 7- Average of minimum MSEs 
 
 
 

Training the designed ANN 
The training of the ANN has been 

carried out so that the network output 
parameters obtained by the ANN model 
have a good correlation with the output 
parameters determined by the 
mathematical model (SAMRES). The 
performance of the ANN depends 
heavily on the number of neurons in the 
hidden layer and the amount of data and 
the number of iterations used in the 

training process. The trend of increasing 
accuracy with increasing number of 
neurons and increasing number of 
iterations is shown in Figure 8. The task 
was carried out by systematically 
increasing the amount of data and 
monitoring the mean square error 
(MSE). The number of training iterations 
used for the process was set at 5000 and 
an acceptable accuracy was achieved 
with 10 hidden neurons and using 340 
data sets. With the appropriate number 
of iterations used in the training task the 
designed ANN mapped out the desired 
output perfectly from the input data 
(met-ocean variables). In Fig. 10 the 
desired surge has been plotted against 
the actual network surge and similarly 
the results for sway can be seen Fig. 11. 
The flowchart of training procedure 
including the approximate time needed 
for each task to be done is illustrated in 
Fig. 12. 
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Figure 8 - Average MSE in training procedure 
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Figure 9-Desired and the ANN outputs in 
testing procedure 

 
 

Validating the designed ANN 
model 

The proposed ANN model must be 
tested with some other data that has 
not been used in the training 
procedure. For this purpose, 30 sets of 
data were selected. These sets were 
generated by the same procedures as 
those data sets used for training. The 
desired output (test data) has been 
plotted together with the ANN output 
and the results can be seen in Fig. 9. 
The regression coefficients for the 
vessel’s surge, sway and total 
excursions are 0.98, 0.99 and 0.98 
respectively. The results show that the 
designed ANN model can simulate 
the surface motions of a 200,000 tdw 
vessel subjected to arbitrary sea loads 
predicted by the hydrodynamic 
mathematical model (SAMRES) with 
a very high degree of accuracy. 
 
 
concluding remarks 

Response-based methodology has 
been used by industry to calculate the 
extreme responses of floating offshore 
platforms since the mid 90s but in some 

respects it is still in its early stages of 
development. A response based 
methodology is potentially of great 
interest for the design of FPSOs but it 
suffers from the drawback of being so 
computationally demanding, if based on 
appropriate long term data, as not to be 
viable for many practitioners. ANNs 
provide a means of overcoming this 
problem. For example, the elapsed time 
that would be taken to calculate the 
responses of the 200,000 tdw FPSO for 
1000 sets of met-ocean data using the 
SAMRES model can be reduced from 80 
days to less than a minute if carried out 
instead using the ANN based 
methodology on the same (rather 
modest) machine. This represents an 
enormous saving even taking into 
account the processing required to train 
the ANN.  

The proposition that response based 
design could be used routinely for design 
if they incorporate ANN models, rests on 
the robust performance of the ANNs and 
their ease of use.  In the example of the 
200,000 tdw turret moored FPSO chosen 
for the present study, comparison of the 
results obtained from the designed ANN 
model with those from the SAMRES 
model showed that good correlations are 
achieved. This means that the designed 
ANN model can successfully predict the 
vessel’s responses due to arbitrary wind, 
wave and current loads. Therefore the 
designed ANN model can be a practical 
replacement of SAMRES model for 
response-based technology approach to 
calculate the extreme vessel’s response 
over her lifetime. 
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Figure 10-Desired and the ANN excursions in 

Surge mode 

 
 

 
 
Figure 11-Desired and the ANN excursions in 

Sway mode 
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Figure 12-Training and simulating tasks of 
the ANN model along with the required time 

for doing those tasks 
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