
A. Etemad-Shahidi et al.
Int. J. Environ. Sci. Tech., 7 (1), 29-36, Winter 2010
ISSN: 1735-1472
© IRSEN, CEERS, IAU

Received 4 February 2009;     revised 19 July 2009;    accepted 10 November 2009;   available online 1 December 2009

      *Corresponding Author Email: etemad@iust.ac.ir
      Tel.: +9821 7724 0399;   Fax: +9821 7724 0398

An alternative data driven approach for prediction of thermal discharge 
initial dilution using tee diffusers 

 
*A. Etemad-Shahidi; M. J. Zoghi; M. Saeedi 

 
School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran 

ABSTRACT: Mixing of heated water discharged from outfalls is an efficient and effective method of waste disposal
in coastal areas. Discharging the heated water with large quantities of mass flux generally requires multi-port diffusers.
In recent years, using numerical models to predict the plume behavior has received attention from many researchers,
who are interested in design of outfalls. This study reports the development and application of an artificial neural
network model for prediction of initial dilution of multi-port tee diffusers. Several networks with different structures
were trained and tested using error back propagation algorithm. Statistical error measures showed that a three layer
network with 9 neurons in the hidden layer is skillful in prediction of initial dilution and the outputs are in good
agreement (R = 0.97) with experimental results. Furthermore, the sensitivity analyses showed that the width of the
equivalent slot of the diffuser is the most important parameter in the estimation of initial dilution.
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INTRODUCTION
Pollutants discharging into marine and coastal

waters can be classified based on their origin as natural
and anthropogenic. Anthropogenic originated
pollutions are mainly discharged from inland as
domestic and industrial wastewaters, either via marine
outfalls or rivers. A marine outfall is a mean for
discharging industrial wastewater, storm runoff or
sewage out to undersea disposal point. Outfalls mostly
involve pipes laid in or on the seabed. The discharge
of sewage can be made by a variety of ways, ranging
from a single to multiport diffusers. Submerged
multiport diffusers are generally considered to be the
most efficient means of fast dilution of discharged heat.
A multiport diffuser is a linear diffusion structure
consisting of a manifold which contains numerous
closely spaced ports through which heated water is
discharged as in the form of a turbulent jet into the
receiving water at high velocity. A tee diffuser is a
diffuser which its alignment is parallel to the ambient
cross flow.

Adverse effects of thermal discharges on marine
environment (i.e. coral reefs, beaches, coasts and
estuaries) have been reported in previous works

(Alesheikh et al., 2007; Karuppanapandian et al., 2007;
Nouri et al., 2008; Cetin, 2009). Abbaspour et al. (2005)
attempted to model thermal pollution in Persian Gulf in
the vicinity of a thermal power plant. They also
evaluated its environmental and economic effects.
Regarding thermal discharges environmental and
coastal economic effects, developing alternative
methods to predict thermal discharges dilution in marine
environments seems to be very important.

By discharging the heated water through a large
number of ports at a high velocity, the total area
available for jet entrainment is increased, permitting
the rapid dilution of the discharged water (Kim and
Seo, 2000).

The design and construction of marine outfalls
require both economic and human efforts. It is therefore
necessary to assure the perfect performance of the
outfall, either by constructing a physical model of the
layout or using numerical models. Physical modeling
usually is a time consuming task and is limited to
technical constraints. On the other hand, numerical
modeling allows simulation of a great number of
scenarios and can be used more effectively for the
optimal design. These models, however, need to be
verified using measurements either in the field or in the
laboratory (Falconer, 1992).
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Heated water discharged from power plants can
increase the ambient water temperature. This process
can negatively affect the coastal environment.
According to the environmental standards, the
maximum increase in ambient temperature due to the
thermal discharges shall not exceed 2 ºC (Elsayed, 1981).
Using multi-port diffusers can reduce the maximum
temperature rise and protect coastal environments.

Due to the large number of variables affecting the
behavior of an outfall discharge into a waterbody,
determination of the initial dilution and other
characteristics of the resulting wastefield are not easy
tasks. Hence, available studies and analyses in the
literature are mostly concerned with simplified and
limiting cases. Öztürk et al. (1995) developed a two-
dimensional simplified model in order to estimate the
distribution of temperatures in the marine environment
following the discharge of thermal effluents. The model
has been successfully used in environmental impact
assessment studies of the two 500 MW power plants
proposed at the east of Marmara Sea, Turkey. Hamrick
and Mills (2000) developed a three-dimensional surface
water model system capable of addressing a variety of
power plant impact issues, including thermal transport,
in surface water systems.

Hybrid techniques also have been used to simulate
the dispersion of heat from surface discharges in
coastal areas. Very reasonable agreement was reported
applying a hybrid near-field/far-field thermal discharge
model for coastal areas using CORMIX3 for the
nearfield thermal dispersion, two-dimensional harmonic
finite element hydrodynamic model (TEA) and an
Eulerian–Lagrangian transport model (ELA) for the far-
field computation (Suh, 2001).

The usual approach in many studies is to apply
dimensional analysis and length scale arguments, based
on fluxes of momentum, volume and buoyancy. Then
the results are compared with data obtained from field
measurements or from controlled lab experiments. Rapid
dilution in water bodies depends on three parameters,
nature of the outfall, the characteristics of the receiving
water and the constituents of the raw sewage (Fischer
et al., 1977). Numerical models can predict the behavior
of plume dilution. Several numerical models are
presently available for the prediction of initial dilution
from thermal discharges. Mixing zone models were
developed in three major categories: Three-dimensional
finite element or finite difference models, integral-type
models and length-scale models. In the first category,

the system of equations of motion is solved via
numerical techniques that require large computational
time. The last two categories are often called zone
models, because the region of interest is divided into
several zones with distinct properties.

Several numerical models are presently available to
engineers for the hydraulic design of outfalls. These
models are traditionally classified as length scale models
such as CORMIX (Akar and Jirka, 1991), integral type
models such as VISJET (Lee and Cheung, 1990) and
3 D models (Kim and Seo 2000). The performances of
these models have been evaluated using filed and
laboratory experimental data (Etemad-Shahidi et al.,
2006, Etemad-Shahidi and Azimi, 2007). Artificial neural
networks (ANN) has been developed and used for
engineering purposes (Muttiah et al., 1997; Maier and
Dandy, 2000; Huang and Foo, 2002; Suen and Eheart,
2003, Mahjoobi et al., 2008; Etemad-Shahidi and
Mahjoobi, 2009, Kazeminezhad et al., 2010). In the filed
of environmental engineering, ANNs have been used
for prediction of water quality in coastal and inland
waters (Suen and Eheart 2003; Kuo et al., 2007; Palani
et al. 2008). ANN models have not been used for outfall
design yet. The aim of this study is to examine the
performance of the ANN modeling for the prediction of
initial dilution in a complex environment, i.e. tee diffuser
in ambient current. Here, the results of ANN modeling
and some empirical equations are compared to that
those of a physical model of multi-port tee diffusers.

In this study, data set collected by Seo et al. (2001)
for tee diffusers was used to develop the ANN model
for prediction of initial dilution. Two third of the
collected data points were selected randomly for
training of the models and the remaining part was used
for models’ validation. This numerical experiment was
conducted in the School of Civil Engineering, Iran
University of Science and Technology, during 2007-
2008.

MATERIAL AND METHODS
A neural network is best defined as a set of simple,

highly interconnected processing elements that are
capable of learning information. A neural network’s
ability to learn and process information classifies it as
a form of artificial intelligence. After McCulloch and
Pitts (1943) introduced the concept of a neural network,
many ANN models have been developed (Rumelhart
et al., 1986, Grossberg 1988). The multi-layered network
trained by back-propagation algorithm is mostly applied
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for solving different engineering problems recently
(Yeh et al., 1993, Bateni et al., 2007). Supervised training
is required for back propagation related problems. In
back propagation type neural networks, information is
processed in interconnecting processing elements or
nerons. These nodes are organized into groups termed
layers. There are three distinct types of layers in a back
propagation neural network: the input layer, the hidden
layer (s) and the output layer. All inputs to a node are
weighted, combined and then processed through a
transfer function that controls the strength of the signal
relayed through the node’s output connections. The
transfer function is used  to normalize a output signal
strength between 0 and 1. The sigmoid function is the
most widely used function for back propagation neural
networks. The errors are determined and back
propagated though the network in an attempt to
improve the network’s response. Amounts determined
by the training algorithm are used to adjust the nodal
weight factors. The errors are determined by the iterative
procedure of processing inputs through the network
and the weights constitutes the learning process are
adjusted. One training iteration is completed when all
supplied training cases have been processed through
the network. The training algorithms adjust the weights
in an attempt to drive the network’s response error to a
minimum. The training algorithm’s adjustment of the
weights are controlled by two factors. They are the
“learning rate coefficient” and the “momentum factor”.

If the learning rate is too fast, network training can
become unstable. If the learning rate is too small, the
network will learn at a very slow pace. The momentum
factor has a smaller influence on learning speeds, but
it can influence training stability and promote faster
learning for most networks. Higher values of the
momentum factor can help the network escape from
local minimum.

The used network in this study was the common
three-layered feed forward type of network shown in
Fig. 1. In this network, the input nodes receive the
input variables (ambient current) and pass them on to
the hidden layer nodes. First, the input values are
normalized within the range of 0.0-1.0 and multiplied
by a weight and summed up in each individual node.
Then a bias is added to each sum and it is passed on
the result through a non-linearity like a sigmoid transfer
function. This forms input to the output layer that
operates similar to the hidden layer nodes. The output
from each output node is transformed and forms the
network output. As followed by Yeh et al. (1993), the
error back propagation was employed for training of
the network. The goal of the training is to minimize the
overall error, E, defined below (Deo and Kumar, 2000):

Where, P = total number of training patterns, Ep =
error for pth training pattern defined as:

∑=
P

pE
P

E
1

1
(1)

Fig. 1: The structure of used ANN model
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Where, N = total number of output nodes, ok =
network output at the kth output node, and tk = target
output at the kth output node.

The scheme of error back-propagation is used to
reduce the global error in the training process. This
scheme involves minimization of the error between the
modeled output and the measured one for each training
pattern supplied. Here, steepest descent or gradient
descent approach is employed. In each iteration, the
network weights and biases are adjusted by moving a
small step in the direction of negative gradient of the
error function. The iterations are repeated until a
specified error or  iterations number is achieved. The
gradient descent is given by (Deo and Kumar, 2000):

Where, kX  = vector of weights at kth iteration index,
1+kX  = vector of weights at (k+1 )th iteration index, n =

step size supplied by the user, g  = gradient vector

and )(Xf = error function for a general weight vector X .
The above error gradient approach is simple to use.
However, it converges slowly and may exhibit
oscillatory behavior due to fixed step size. Generally,
the numbers of layers and their nodes are determined
by trial and error (Eberhart and Dobbins, 1990).

In order to compare different network performances,
the following error measures were calculated:
Coefficient of correlation (R):

Mean squared error (MSE):

MSE =

Bias =
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In all formulae, the
i

x ’s = measured values, the
i

y ’s =
predicted values, n = number of observations, x = mean
of and x = mean of y .
In this study data set collected by Seo et al. (2001) for
tee diffusers was used to develop the ANN model for
prediction of initial dilution. The objective of their study
was to investigate the characteristics of initial dilution
over a wide range of momentum ratio conditions. Hence,
extensive experimental work was carried out and the
initial dilution was measured in the laboratory. The
experiments were conducted in a 20 m long flume and
the similitude of densimetric Froude number was used
for scaling of the model. The Reynolds similarity was
relaxed since the flow was turbulent and near field area
was of importance. The total length of the diffusers
was 120 cm while the ports had an inner diameter of
0.43 cm with a spacing varying between 4.0 to 12.0 cm.
These ports had an angle of 22.5 to the channel bottom.
The flow was measured by an electromagnetic flow
meter and the temperature was measured by CC-type
thermo-couple sensors connected to a data logger (Seo
et al., 2001). The temperature of the ambient water was
20 ºC while the outfall had a temperature of 30 ºC. It
was assumed that the flow is vertically well mixed.
Three test series were conducted and two third of the
collected data points were selected randomly for
training the models and the remaining part was used
for models’ validation.

RESULTS AND DISCUSSION
As mentioned before, the data set used in this study

for prediction of initial dilution is obtained from
laboratory experiment of Seo et al. (2001). Here, two
third of the data points was used for training while the
remaining part was used for validation of the ANN
model. Table 1 shows the range of different parameters
used for the prediction of initial dilution.  Both raw and
normalized values were used for developing the models
and it was found that the computational time and error
will be reduced by normalized values.

Identification of the neuron’s number in the input
and output layers is normally a simple task dictated by
the input and output variables considered to model
the physical process (Bateni et al. 2007). The selected
input parameters were depth of ambient water (H),
ambient current (Ua), velocity of the effluent discharge
(U0) and width of an equivalent slot diffuser (B). It

y x
− −

−
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Parameter Range 
Ambient water depth (H) 9-26 (cm) 
Ambient velocity (Ua) 0.09-21.4 (cm/s) 
Discharge velocity (U0) 32.1-104.1 (cm/s) 
Width of an equivalent slot diffuser (B) 0.0133-0.0375 (cm) 
Observed initial dilution (S) 8-33.3 
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Table 1: Range of different input parameters and initial dilutions
used for modeling

Table 2: Error measures of different networks used with 15,000
iterations

Number of 
neurons in 
first layer 

Number of 
neurons in 

second layer 
MSE Bias R 

4 - 2.7 0.77 0.964 
5 - 2.7 0.68 0.961 
6 - 2.59 0.71 0.964 
7 - 2.8 0.74 0.959 
9 - 1.62 0.61 0.967 
4 2 2.7 0.68 0.962 
8 4 2.87 0.77 0.962 

12 8 2.5 0.68 0.965 

Table 3: Error measures of ANN, empirical and theoretical
approaches

  ANN Adams 
(1982) 

Adams and 
Stolzenbach (1977) 

MSE 1.62 70.26 15510 
Bias 0.61 -6.05 -61.92 
R 0.967 0.20 0.01 

Table 4: Error measures of different networks, no H

Number of 
neurons in  
first layer 

Number of 
neurons in 

second layer 
MSE Bias R 

5 - 2.41 0.94 0.959 
7 - 2.33 0.96 0.96 
9 - 2.38 1 0.959 
3 2 2.54 0.89 0.956 
6 3 2.24 0.93 0.962 
9 3 2.57 0.9 0.956 
9 6 2.5 0.98 0.956 

Table 5: Error measures of different networks, no Ua

Number of 
neurons in 
first layer 

Number of 
neurons in 

second layer 
MSE Bias R 

3 - 2.25 0.84 0.96 
6 - 2.29 0.78 0.959 
9 - 2.34 0.73 0.958 

12 - 2.32 0.717 0.957 
3 2 2.39 0.94 0.959 
6 3 2.36 0.93 0.959 
9 3 2.25 0.85 0.959 

Table 6: Error measures of different networks, no U0

Number of 
neurons in 
first layer 

Number of 
neurons in 

second layer 
MSE Bias R 

3 - 1.68 0.75 0.969 
6 - 1.74 0.73 0.968 
9 - 1.68 0.7 0.968 
3 2 1.87 0.76 0.965 
6 3 1.69 0.73 0.968 

 

Table 7: Error measures of different networks, no B

Number of 
neurons in 
first layer 

Number of 
neurons in 

second layer 
MSE Bias R 

3 - 4.23 0.46 0.872 
6 - 4.45 0.46 0.866 
9 - 4.5 0.47 0.865 
3 2 4.67 0.44 0.854 
6 3 4.55 0.48 0.86 
9 3 4.44 0.49 0.866 

12 3 4.38 0.5 0.869 
12 6 4.36 0.45 0.868 

 

Table 8: Comparison of error estimates of the networks with
different input parameters

Method MSE Bias R 
ANN with all input 1.62 0.61 0.967 
ANN no H 2.24 0.93 0.962 
ANN no Ua 2.25 0.84 0.960 
ANN no U0 1.68   0.7 0.968 
ANN no B 4.23 0.46 0.872 

 

should be mentioned that angle between the port and
sea bed and density difference were constant in the
used data set. Hence, these parameters were not used
as the input variables.

Different networks were examined and the network
with one hidden layer and nine nodes was found to be
optimal with minimum error. The error measures of
different networks are shown in Table 2. As seen the
network performs well and can be used successfully
for prediction of initial dilution with an ARE of 7.68 %
and a correlation coefficient of 0.967. Fig. 2 displays
the comparison between measured and predicted initial
dilution using the developed ANN model for both
training and validation procedures. As shown, the used
model has a higher training error compared with that
of verification. The error in training can be reduced by
increasing the number of iterations (Fig. 3). However,
care should be taken not to over increase the number
of iteration since the model can be over trained in this
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Fig. 2: Comparison of observed and predicted dilutions using ANN model with 15000 iteration (a) validation and (b) training
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Fig. 3: Comparison of observed and predicted dilutions using ANN model with 1000000 iteration (a) validation and (b) training

Archive of SID

www.SID.ir

IJEST
Placed Image

www.sid.ir
www.sid.ir


A. Etemad-Shahidi et al.Int. J. Environ. Sci. Tech., 7 (1), 29-36, Winter 2010

35

case. The criterions for stopping the iteration are
generally reaching to a predefined level of accuracy or
number of iterations. These are determined based on
the speed of the calculations or experience of the
modeler. The potential consequence of over-training
is that the model’s performance improves in the training
phase while it performs poor in the testing phase. In
this case, the model is called to be over-trained / over-
fitted and loses its generalization ability. The
performance of the developed model is also compared
to the theoretical model of Adams (1972,1982) and
empirical equation of Adams and Stolzenbach (1977) in
Table 3. The theoretical model of Adams (1972, 1982)
for dilution is based on the Bernoulli’s and momentum
equations and implies that the initial dilution is a linear
function of Momentum ratio. The reason for selecting
it for comparison was that it is the most recent
theoretical model for estimation of initial dilution.  This
model is suggested by Lee et al. (1977) for estimation
of dilution.

The suggested new approach predicts that initial
dilution is more accurate and superior to both
theoretical and empirical models. As discussed by Seo
et al. (2001), these theoretical and empirical models are
developed for special flow conditions and are not
applicable for tee diffusers generally. It is interesting
to analyze the sensitivity of the initial dilution to the
different used input parameters. In this way, the relative
importance of each parameter can be assessed as well.
Following Bateni et al. (2007), the sensitivity analysis
was conducted by ignoring one of the input parameters
in each network. Tables 4 -7 show the error estimates
obtained by ignoring different parameters. Here,
different networks were tested to obtain the optimum
structure. These tables show that the results are more
sensitive to the ignored parameters than the structure
of the network. In addition, Table 8 indicates that
between the used parameters, the most important
parameters is B, the width of the equivalent slot.

CONCLUSION
In this study, development and application of an

ANN model for prediction of the initial dilution were
outlined. The networks were trained using error back
propagation algorithm with different structures. The
collected laboratory data for a tee diffuser was
manipulated to train and validate different networks.
Results were compared with a different set of
measurements and it was shown that the used ANN

model is skillful in predicting the initial dilution. The
results of the ANN model were also compared with
those of empirical models, showing the superiority of
the ANN approach. The obtained correlation coefficient
between measured and predicted initial dilution using
a three layer network with 9 neurons in the hidden
layer was 0.97. Furthermore, the relative importance of
input variables were analyzed and it was shown that
the width of the equivalent slot diffuser and the depth
of ambient water are the most important parameters
while the ambient current has the least effect on the
initial dilution.
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