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ABSTRACT: Ice jams can sometimes occur in high latitude rivers during winter and the resulting water level rise may

generate costly and dangerous flooding such as the recent ice jam flooding in the Nechako River in downtown Prince

George in Canada. Thus, the forecast of water level and ice jam thickness is of great importance. This study compares

three methods to simulate and forecast water level and ice jam thickness based on field observations of river ice jams in

the Quyu Reach of the Yellow River in China.  More specifically, simulation results generated by the traditional multi-

variant regressional method are compared to those of the back propagation neural network and the support vector

machine methods. The forecast of ice jam thickness and water level under ice jammed condition have been conducted in

two different approaches, 1) simulation of water level and ice jam thickness in the second half of the period of

measurement using models developed based on data gained during the first half of the period of measurement, 2)

simulation of water level and ice jam thickness at the downstream cross sections using models developed based on data

gained at the upstream cross sections. For this reason, as the results of simulation and field observations indicated, the

back propagation neural network method and the support vector machine method are superior in terms of accuracy to

the multi-variant regressional method.
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INTRODUCTION

The formation of winter ice cover in northern or high

latitude rivers creates a new solid surface and thus

directly increases wetted perimeter  of flow.

Consequently, the resistance of the river reach

increases, leading to an increase in water level and/or

a decrease in flow velocity (Sui et al., in press).  Perhaps

even more seriously, ice-cover formation on many rivers

is associated with jamming on the reach. Under specific

conditions such as with the continuous arrival of frazil

ice from the upstream, or when the transported ice is

arrested by obstacles such as a stationary ice cover,

an ice jam may be formed (Beltaos, 1983; 2000). Due to

a large aggregate ice thickness and a high hydraulic

resistance relative to the sheet ice, ice jams can result

in significant increase in water level and thus cause ice

flooding. Such flooding recently occurred on the

Nechako River during the winter of 2007 in downtown

Prince George, Canada.

In addition to flooding concerns, if an ice jam

suddenly clears, the resulting high-velocity surge of

water and ice can lead to significant increases in water

level that pose a risk to human life and property

downstream of the jam. For example, “on February 15,

2003, more than 1,000 residents of Badger,

Newfoundland, Canada, were forced to evacuate from

their homes when a massive ice jam sparked major

flooding from three rivers, leaving their town rapidly

encased in ice and water” (Morse and Hicks, 2005).

Moreover, the backwater effect of an ice jam on water

level increases with the jam thickness. The increase in

jam thickness, in turn, increases the channel slope and

flow velocity (Sui et al. 2005).
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The most common locations for the formations of ice

jam include places with reduced flow velocity. Obvious

locations include where the river enters a lake or

reservoir, at river bends or when the flow encounters a

deep pool. Due to their essential nature, ice problems

are invariably complicated. The following are just some

factors must be considered in the course of studies of

river ice problems:

(a) river morphology, including channel slope, channel

geometry, channel networks, shoals, riverbed

roughness and vegetation in channel and floodplain;

(b) hydraulic conditions including flow velocities, water

depth, water  surface profile, influence of

downstream;

(c) meteorological factors including air temperature,

water temperature, wind speed and snowfall;

(d)many other factors, including things like human

interventions and ground heat input.

Gerard and Davar (1995) reviewed the flooding

caused by river ice jams across Canada and found that

ice jam floods are not only less predictable and sudden,

but they are usually accompanied by low temperatures

and that massive ice slabs and blocks often move with

the floodwaters (Beltaos, 1995; Beltaos et al., 1996; Sui

et al., 2002, 2008). It is not surprising that river ice

attracts interest of many researchers and engineers in

the world (Hicks et al., 1995; Tuthill et al., 1996; Sui et

al., 2000; White, 2003; Sui et al., 2005; Bandyopadhyay

and Chattopadhyay, 2007). Clearly, the forecast of water

levels and ice jam thickness is profoundly important.

Although, it is difficult to precisely simulate a river

system under ice covered conditions due to the

complexity of a natural river system and the associated

meteorological conditions, significant research has

been undertaken. Yet because of the inherent danger

in measuring ice jam properties and to forecast water

level and ice jam thickness, researchers have used a

variety of indirect ways to describe ice jam

configurations.  For example, numerical models are

potentially useful and safe tools for determining water

levels that may be expected under varying ice jam

conditions. McDonald et al. (2002) gave an application

that successfully predicted ice jams at a confluence.

Grover et al. (1999) predicted water levels in a

multichannel river. Mahabir et al. (2006) forecasted the

risk of ice jams for Fort McMurray by fuzzy logic. Daly

(2002) applied a data modeling approach that

incorporated real-time observations for forecasting

purposes. DYNARICE (Lu et al., 1999; Shen, 2002) is a

coupled Eulerian–Lagrangian model. The hydro-

dynamics of flow are simulated using a finite-element

scheme and the ice dynamics are simulated using a

Lagrangian discrete-parcel method. Based on the field

observations of water levels and thickness of river ice

jams in the Quyu Reach of the Yellow River from 1986

to 1989, the objective of this study is to forecast water

level and ice jam thickness by two new methods,

namely, the back propagation neural network method

and the support vector machine method. The simulated

results by back propagation neural network and support

vector machine methods have been compared with

those using multi-variant regressional method.

Studied river reach

Located between 39.6 N and 40 N latitude and 111

E and 112 E longitude, the Quyu reach (Fig. 1) of the

Yellow River in China is 23.9 km long. The upstream

Shiyaobu cross section is located at the Shiyaobu river

bend which has a radius of curvature of only 0.7 km.

Immediately downstream of the river bend, there is a

point bar which in winter is always submerged.

Downstream from this point bar, a short open reach is

usually maintained by large local flow velocities during

winter period. The downstream Shitizi cross section is

located about 2 km upstream of the backwater zone of

the Tianqiao reservoir. The Quyu reach is meandering.

The channel width ranges from 500 m to 1000 m. Each

year in December, a long open reach in the upstream

Inner Mongolia Reach of the Yellow River is exposed to

cold air temperatures because of numerous rapids and

high flow velocities. This open river reach generates

enormous quantities of frazil ice which leads directly the

formation of frazil ice jam in the downstream Tianqiao

reservoir (dam cross section, no measurements) in

December. Due to the impact of the Tianqiao reservoir,

an ice jam (Quyu ice jam) will form every year between

the Shtizi cross section (backwater cross section) and

the Shiyaobu cross section (upstream cross section).

As temperatures increase around March, the Quyu ice

jam breaks up. As shown in Fig. 1, four measurement

cross sections had been set up along the Quyu Reach

in winter from 1986 to 1989 to measure water levels, ice

jam thickness and thickness of frazil ice accumulated

under ice cover. In total, 217 measurements (ice jam

thickness and water level) have been conducted along

this river reach. Discharges have been measured at the

Hequ gaging station.
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MATERIALS AND METHODS
As mentioned, this study uses three methods to

simulate water level and ice jam thickness as a function
of the key measured environmental variables. This
section reviews the basic methodology and approach
for each of these methods.

The multi-variant regressional (MVRE) method
In winter, the water level and ice jam thickness

depend on many factors. The obvious and significant
factors are effective, including flow velocity, energy
slope, channel geometry, features of riverbed (i.e.,
gradation, grain size and shear velocity), ice discharge
from upstream and temperature of air and water. To
explore their primary inter-relationships, dimensionless
analysis is useful.  A non-dimensional water level (or
water depth under ice jammed condition) can be
described by following function:
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Fig. 1: The schematic map of studied Quyu Reach of the Yellow
River in China

Where, hW = water level (or water depth) under ice
jammed condition; hi = total ice jam thickness; hf =
thickness of frazil accumulated under ice cover; T = air
temperature during the calculated period and Tav = long
term average air temperature during the calculated
period. ( ) 5.0

Wr hgvF =  = flow Froude Number under ice
jammed condition in which v = average flow velocity
and g = gravitational acceleration.
Eq. 1 can be expressed as below:

                                                                                         (2)

Where, a1, b1 and c1 in Eq. 2 are constants. These
constants are different from cross section to cross
section.
Eq. 2 can be expressed as linear form of multi-variants
as follows,

                                                                                         (3)

     Similarly, a non-dimensional ice jam thickness can
be described by following function:

                                                                                         (4)

Eq. 4 can also be expressed as:

                                                                                          (5)

Where, a2, b2, and c2 in Eq. 5 are constants. These
constants are different from cross section to cross
section.
Eq. 5 can be expressed as linear form of multi-variants
as:

                                                                                         (6)

The support vector machine (SVM) method
The SVM has shown a great potential in numerous
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Cross section Mileage (m)
Hequ gauging station 0
Shiyaobu 2200
Chuanwan 6245
Quyu 18700
Yangmain 21600
Shitizi 26055
Tianqiao hydropower station 46700
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Forecast of water level and ice jam thickness

SVM is a learning algorithm for pattern classification

and regression (Vapnik, 1995; Vapnik, et al., 1997;

Smola and Schoelkopf, 2004). In SVM analysis, the

basic idea is to map original data into a feature space

with higher dimensionality via a non-linear mapping

function, which is usually unknown and then carry

on linear regression in the feature space. Therefore,

the regression approximation addresses a problem of

estimating a function based on a given data set.  The

expected classification error of unseen test samples

can be minimized.

   The SVM method approximates the function in the

following form,

                                                                                         (7)

    Where x = original data;  = a non-linear mapping

function; n

ii
x

1
 represents the input features and

n

ii
w

1
 and b are coefficients. These are estimated by

minimizing the regularized risk function by following

equation:

                                                                                           (8)

Where,   = a prescribed parameter, normally

specified as 0.001; L (d, y) = -insensitive loss function

which does not penalize errors less than ;  ||w||2/2 is

used to assess the flatness. C = coefficient determining

the trade-off between the training error and the model

flatness, normally specified as 100.

Slack variables can be introduced into Eq. 7 and 8

to convert them to a constrained form. The SVM

method can be applied in various ways including to

achieve the regression approximation, the estimation

of the probability density function and for other

steps.

The back propagation neural network (BP-NN) method

The neural network (NN) is a group of (artificial)

neurons connected together. Connecting neurons to

form a NN can be done in various ways. NNs have the

ability to learn by example. That is, a learning set that

consists of some input examples and the known-correct

output for each case must be provided. Therefore, these

input-output examples are applied to show the network
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what type of behavior is expected and the back

propagation (BP) algorithm allows the network to

adapt. NNs have been used in many commercial

applications like character  recognition, image

recognition, credit evaluation, fraud detection and

stock forecasting. In the late 1980’s, interest in NN

increased with algorithms like BP-NN which is one of

the popular NNs, as shown in Fig. 2. As pointed out by

Crochat and Franklin (2000), the mathematical analysis

of such networks is much more complex.

In the currently application, attentions have been

restricted to the simplest variety of neural network,

known as a multilayer perception. This NN consists of

only an input layer; hidden layer and output layer. As

summarized by Habra (2005), some important features

of the BP-NN can be described as following: 1) each

neuron has its own input weights; 2) the weights for

the input layer are assumed to be 1 for each input,

namely, input values are not changed; 3) the output of

a neuron in a layer goes to all neurons in the following

layer; 4) the output of the NN is reached by applying

input values to the input layer, passing the output of

each neuron to the following layer as input and 5) the

BP- NN must have at least an input layer and an output

layer. It could have zero or more hidden layers. The

BP-NN works in two modes. The supervised training

mode is the one widely used. The training can be

summarized as follows: 1) start by initializing the input

weights for all neurons to some random numbers

between 0 and 1; 2) apply input to the network; 2)

calculate the output; 3) compare the resulting output

with the desired output for the given input (this is

Fig. 2: The diagram shows a back propagation neural network

     Inputs                                     Hidden layer                              Outputs
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called the error); 4) modify the weights and threshold

for all neurons using the error; 5) repeat the process

until error reaches an acceptable value, which means

that the NN was trained successfully (in case of

reaching a maximum count of iterations, which means

that the NN training was not successful). The artificial

neural network, has shown potential for modeling the

behavior of complex nonlinear processes such as

those associated with river ice jams. In the last couple

of years, researchers have used neural network

method to assess river ice process. As pointed by

Massie et al. (2001), when the BP-NN method is used

to simulated river ice process, the selection of input

variables is perhaps the most critical decision that

will impact on mapping accuracy in a neural network.

Massie et al. (2001) explored the viability of neural

networks, black-box models that can be ‘trained’ to

represent complex non-l inear  cause-effect

relationships accurately. Using BP-NN method, they

predicted breakup ice jams at Oil City, Pennsylvania.

They claimed that, with all the original data, the

network produced 94 % jam accuracy and 93 % no

jam accuracy. Using data from the Athabasca River

Basin, Mahabir et al. (2006) used both fuzzy and

neuro-fuzzy expert systems to successfully product

the severity of water levels associated with the spring

breakup. In this study, the BP-NN method, SVM

method and MVRE method have been used in

forecasting of water level and ice jam thickness, based

on the data set measured during winter from 1987 to

1989 for the Quyu ice jam of the Yellow River.

RESULTS AND DISCUSSION

Forecast of water level

The data set measured at the Chuanwan cross

section (73 measurements), Quyu cross section (72

measurements) and Yangmian (72 measurements) cross

section included many key terms: water level, ice jam

thickness (thickness of frazil accumulation under ice

cover and thickness of ice cover). Discharges were

available at the upstream Hequ gauging station. Based

on discharge and water depth under the ice cover, the

average flow velocity was estimated. Air temperatures

were measured at the Hequ climate station.

Forecasted water level using the first half of the

measurements

According to Eq. 1, dimensionless variables were

determined using the data obtained during the first half

of the period of measurement at each cross section.

The SPSS statistical software has been used to

generate the coefficients in the multi-variant

regressional equation based on this data set (including,

water depth, discharge, ice jam thickness, thickness of

frazil accumulation under ice cover and air

temperature). Then, to predict water level (water depth)

under ice jammed condition during the second half of

the period of measurement, following data gained

during the second half of the period of measurement at

each cross section were used: discharge, ice jam

thickness, thickness of frazil accumulation under ice

cover and air temperature.

Using and modifying the MATLAB software

package, models have developed based on the SVM

and BP-NN methods. Following data gained during

the first half of the period of measurement at each cross

section have been used for the development of the

models: water depth, discharge, ice jam thickness,

thickness of frazil accumulation under ice cover and

air temperature. This data set has been used as the

training samples and applied as the inputs in the

networks to calculate the outputs. The outputs have

been compared with the measured data. Once the neural

network training was successful, then, the trained mode

is used to forecast water level using data (including

discharge, ice jam thickness, thickness of frazil

accumulation under ice cover and air temperature)

gained during the second half of the period of

measurement. The forecast of water levels at each cross

section have been carried out by using MVRE, SVM

and BP-NN methods. The simulated results from these

three methods are compared, in Table 1 and shown in

Figs. 3a-c. Table 1 indicates that, within a tolerable

range of relative error of 5 %, the ratio of the forecasted

water level to the measured water level using SVM and

BP-NN methods is 55 % and 51 %, respectively. Within

an allowed relative error of 15 %, by using SVM and

BP-NN methods, the ratio of the forecasted water level

to the water level measured is 96 % and 94 %,

respectively.

If the relative error criterion is relaxed to 20 %,

determined by using SVM, BP-NN and MVRE methods,

the ratio of the forecasted water level to the measured

water level is as 98 %, 97 % and 60 %, respectively.

As shown in Figs. 3a-c , by both SVM and BP-NN

methods, the deviations of the calculated water levels

from the measured water levels are obviously less than

those measured by the MVRE method. Clearly, both

SVM and BP-NN methods can be used to forecast water
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Fig. 3: Comparison of the forecasted water depths with measured water depths under ice jammed condition by using three different methods

level under ice jammed condition and generate good

results, comparing to the results by MVRE method.

Forecast of water level based on data gained at the

upstream cross sections

In practice, it is important to forecast water level

under ice jammed condition at the downstream cross

section  using measured data at the upstream cross

sections such as water level, discharge, ice jam

thickness, thickness of frazil ice accumulated under

ice cover and air temperature. In the regression method,

dimensionless variables were determined from data

gained at the upstream cross section. Then, the SPSS

statistical software generated the coefficients in the multi-

variant regressional equation based on this data set

gained at the upstream cross section, such as, water

depth, discharge, ice jam thickness, thickness of frazil

accumulation under ice cover and air temperature. Then,

the multi-regressional equation derived from data

measured at the upstream cross section is used to forecast

water level under ice jammed condition at the downstream

cross section. Using and modifying the MATLAB

software package, models have been developed based

on the SVM and BP-NN methods to predict water level

under ice jammed condition at the downstream cross

section. Data obtained at the upstream cross section

 Water depth Ice jam thickness 

Simulation methods SVM BP-NN MVRE SVM BP-NN MVRE 

Error range (%) <5 <15 <20 <5 <15 <20 <20 >20 <5 <15 <20 <5 <15 <20 <20 >20 

Ratio of forecasted value to 

measured value (%) 

55 96 98.3 51 94 96.9 59.7 40.3 30 87 89 37 87 91 52 48 

Table 1: Forecasted water depths and ice jam thicknesses using models developed through SVM, BP-NN and MVRE methods

(simulation based on data gained during the first half of the period of measurement)

d)  Calculated water depth
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were used for the development of the models: water

level, discharge, ice jam thickness, thickness of frazil

accumulation under ice cover and air temperature. This

data set has been used as the training sample and

applied as the inputs in the networks to calculate the

outputs. Once the neural network training was

completed, the trained modes are used to forecast water

level at the downstream cross section. The predicted

water levels at the downstream cross sections have

been compared using these three methods as shown

in Table 2 and Fig. 3d. Within a tolerable range of relative

error of 5 %, the ratio of the forecasted water level to

the measured water level by using SVM and BP-NN

methods is 29 % and 44 %, respectively. When the

relative error was allowed to be 15 % or less, the ratio

of the forecasted water level to the measured water

level using SVM and BP-NN methods is 89 % and 88

%, respectively. For a relative error of 20 %, the ratio of

the forecasted water level to the measured water level

using SVM, BP-NN and MVRE methods is 95 %, 96 %

and 62 %, respectively. As Fig. 3d shows, the

deviations of the predicted water levels are clearly lower

by both SVM and BP-NN methods than the MVRE

method.

 Thus, both SVM and BP-NN methods forecasted

water level under ice jammed condition more accurately

than the MVRE method.

Forecast of ice jam thickness

In practice, the forecast of ice jam thickness is very

important for flood protection and operation of

hydropower stations. Additionally, significant riverbed

scour normally occurs under ice jammed conditions,

with scour increasing along with the quantity of the

ice accumulation (Sui et al., 2006, 2007; Wang et al.,

2008; 2009). Conceptually, the growth and diminishing

of an ice jam have been mainly affected by

thermodynamic and hydraulic factors, such as air

temperature, water temperature, discharge and water

level.

Forecasting ice jam thickness using the first half of

the measurements

According to Eq. 4, a model used to predict the

dimensionless ice jam thickness has been developed

at first based on data gained during the first half of the

period of measurement at each cross section. The SPSS

statistical software was again used to generate the

coefficients in the multi-variant regressional equation

based on this data set (water depth, discharge, ice jam

thickness, thickness of frazil accumulation under ice

cover and air temperature). Then, to forecast ice jam

thickness, data gained during the second half of the

period of measurement (including discharge, water

level and air temperature) was again used at each cross

section. Using and modifying the MATLAB software

package, models have developed to forecast ice jam

thickness based on the SVM and BP-NN methods.

Following data gained during the first half of the period

of measurement at each cross section have been used

for the development of the models. This data set was

used as the training samples and applied as the inputs

in the network to calculate ice jam thickness. The

calculated ice jam thicknesses have been compared

with the measured data. Once the neural network

training was completed, the trained mode is used to

forecast ice jam thickness using some data, including

discharge, water level under ice-covered condition and

air temperature gained during the second half of the

period of measurement.

All three methods were used to predict ice jam

thicknesses at each cross section. Table 1 and Figs.

4a-c show the deviations of forecasted jam thicknesses

from the measured jam thicknesses. As Table 1 indicates,

within a tolerable range of relative error of 5 %, the

ratio of the forecasted jam thickness to the measured

jam thickness by using SVM and BP-NN methods is 30

% and 37 %, respectively. For a relative error of 15 %,

the ratio of the forecasted jam thickness to the

measured jam thickness by SVM and BP-NN methods

is 87 % and 87 %, respectively. Within a tolerable range

of relative error of 20 %, the ratio of the forecasted jam

Table 2: Forecasted water depths and ice jam thicknesses using models developed through SVM, BP-NN and MVRE methods

(simulation is based on data gained at the upstream cross section)

Water depth Ice jam thickness 

Simulation methods SVM BP-NN MVRE SVM BP-NN MVRE 

Error range (%) <5 <15 <20 <5 <15 <20 <20 >20 <5 <15 <20 <5 <15 <20 <20 >20 

Ratio of forecasted value to 

measured value (%) 

29 89  95 44 88 96 62 38 29 62 86 16 58 79 62 38 
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Forecast of water level and ice jam thickness

Fig. 4: Comparison of the forecasted ice jam thicknesses with measured ice jam thicknesses by using three different methods

thickness to the measured jam thickness by SVM, BP-

NN and MVRE methods is 89 %, 91 % and 52 %,

respectively. As Figs. 4a-c shown, the deviations of the

predicted jam thicknesses from the measured jam

thicknesses by both SVM and BP-NN methods are

obviously less than those by the MVRE method. Clearly,

both SVM and BP-NN methods can be used to forecast

jam thickness and generate good results, comparing to

the results obtained using MVRE method.

Forecast of jam thickness based on data gained at the

upstream cross sections

Similarly to the forecast of water level under ice

jammed condition by measured data from the upstream

cross sections, jam thickness could also be predicted

using models developed based on data measured at the

upstream cross section. Regression models can predict

the dimensionless ice jam thickness through

dimensionless variables obtained at the upstream cross

section. The SPSS statistical software can then generate

the coefficients in the multi-variant regressional equation

based on this data set gained at the upstream cross

section, such as water depth, discharge, ice jam

thickness, thickness of frazil accumulation under ice

cover and air temperature. Then, the multi-regressional

equation derived from the upstream cross section is used

to forecast jam thickness at the downstream cross

section. To predict jam thickness at the downstream cross

section, using and modifying the MATLAB software

package, models have been developed based on the

SVM and BP-NN methods. Following data gained at the

upstream cross section have been used for the

development of the models: water level, discharge, ice

jam thickness, thickness of frazil accumulation under ice

cover and air temperature. This data set has been used

as the training samples and applied as the inputs in the

networks to calculate jam thicknesses. Once the neural

network training was successful, the trained mode is

used to forecast jam thicknesses at the downstream cross

section. The predicted jam thicknesses at the

downstream cross sections using these three methods

have been compared, as shown in Table 2 and Fig. 4d.

d)  Calculated ice jam thickness

(from upstream to downstream)

a)  Calculated ice jam thickness (Chuanwan station) b)  Calculated ice jam thickness (Quyu station)
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c)  Calculated ice jam thickness (Yangmian station)
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Within a tolerable range of relative error of 5 %, the

ratio of the forecasted jam thickness to the measured

jam thickness by using SVM and BP-NN methods is 29

% and 16 % respectively. For a maximum allowed error

of 15 %, the ratio of the forecasted jam thickness to the

measured jam thickness by using SVM and BP-NN

methods is 62 % and 58 %, respectively. For a relative

error of 20 %, the ratio of the forecasted jam thickness

to the measured jam thickness using SVM, BP-NN and

MVRE methods is 86 %, 79 % and 62 %, respectively.

As Fig. 4d shown, the deviations of the predicted jam

thicknesses from the measured jam thicknesses by

using both SVM and BP-NN methods are obviously

less than those by using the MVRE method. Overall,

using these three methods, the results (both water level

and jam thickness) forecasted using models developed

based on data measured at the upstream cross section

deviate clearly more compared to those determined by

models developed based on data gained during the

first half of the period of measurement. This may be

resulted from the complexity of the natural channel,

such as deformation of riverbed, etc. One can say that

the MVRE method should not be used to predict water

level and jam thickness. Both the SVM and the BP-NN

methods can be used to forecast water level and jam

thickness and generate good results.

CONCLUSION

In this research, based on field observations on Quyu

ice jams of the Yellow River, the BP-NN method and the

SVM method have been used to predict ice jam thickness

and water level under ice jammed condition. The

simulation results generated from the BP-NN and SVM

methods have been compared with the results by a

MVRE model. The forecast of ice jam thickness and water

level under ice jammed condition have been conducted

in two different approaches, 1) simulation of water level

and ice jam thickness in the second half of the period of

measurement using models developed based on data

gained during the first half of the period of measurement,

2) simulation of water level and ice jam thickness at the

downstream cross sections using models developed

based on data gained at the upstream cross sections.

It is found that the simulations at each cross section

using models developed based on data gained during

the first half of the period of measurement provide a

better results than those developed based on data

gained at the upstream cross sections. It is noticed

that the simulations using models developed through

both SVM and BP-NN methods clearly give better

results than those developed through the MVRE

method. For the investigated cases, within a tolerable

range of relative error of 20 %, the simulations of water

level and ice jam thickness in the second half of the

period of measurement using models developed based

on data gained during the first half of the period of

measurement are given as following:

The ratio of the forecasted water level to the measured

water level using SVM, BP-NN and MVRE methods

is 98 %, 97 % and 60 %, respectively;

The ratio of the forecasted jam thickness to the

measured jam thickness by SVM, BP-NN and MVRE

methods is 89 %, 91 % and 52 %, respectively.

Within a tolerable range of relative error of 20 %,

simulation of water level and ice jam thickness at the

downstream cross sections by using models developed

based on data gained at the upstream cross sections

are examplewise given as follows:

  The ratio of the forecasted water level to the measured

water level by SVM, BP-NN and MVRE methods is

95 %, 96 % and 62 %, respectively;

The ratio of the forecasted jam thickness to the

measured jam thickness using SVM, BP-NN and

MVRE methods is 86 %, 79 % and 62 %, respectively.

Overall, both the SVM and the BP-NN methods can

be used to forecast water level and jam thickness. The

prediction of the forecasted results from the measured

results using both SVM and BP-NN methods is much

more accurate than that obtained through the MVRE

method.
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