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Abstract

The aim of this investigation was to assess the in-vitro interaction of two antifungal 
agents, econazole-nitrate and chelerythrine, against ten fluconazole-resistant clinical isolates 
and one ATCC type strain 10231 of Candida albicans. The checkerboard microdilution 
method was performed according to the recommendations of the National Committee for 
Clinical Laboratory Standards, and the results were determined by visual examination. The 
interaction intensity was tested in all isolates using the fractional inhibitory concentration index 
(FICI). These experiments showed synergism between econazole-nitrate and chelerythrine in 
antifungal activity against C. albicans, and no antagonistic activity was observed in any of 
the strains tested. Moreover, time-kill curves were performed with selected strains to confirm 
the positive interactions. The similarity between the results of the FICI values and the time-
kill curves revealed that chelerythrine greatly enhances the antifungal effects of econazole-
nitrate against isolates of C. albicans. This synergistic effect may markedly reduce the dose of 
econazole-nitrate required to treat candidiasis, thereby decreasing the econazole-nitrate toxic 
side effects. This novel synergism might provide a potential combination treatment against 
fungal infections.
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Introduction

The dimorphic fungus, Candida albicans, 
is a major fungal pathogen responsible for 
causing a variety of candidiasis. It is the fourth 
leading cause of nosocomial infections, with 
a mortality rate approaching 50% (1,2). The 
organism is known to cause local infections, 
such as vaginitis and thrush, and can cause 
serious life-threatening invasive and systemic 

disease, especially among immunocompromised 
and immunodeficient patients who are receiving 
broad-spectrum antibiotics, patients undergoing 
cancer chemotherapy, organ transplant 
recipients, or individuals infected with the 
human immunodeficiency virus (HIV) (3,4).

Currently, the azoles, which have a broad-
spectrum antifungal activity against a wide 
variety of candida species, are widely used for 
both the prevention and treatment of candidiasis 
(5). However, more recently, the treatment of 
candidal infections has led to several problems. 
In addition to the toxicity presented by some 
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the American Type Culture Collection (ATCC, 
Gaithersburg, MD, USA). In addition, the ten 
fluconazole-resistant isolates of C. albicans 
used in this study were kindly provided by Jiang 
Y.Y. The strains were maintained on Sabouraud 
dextrose agar (SDA, 4% glucose, 1% Bacto 
peptone and containing 3% agar) plates and 
stored at 4 ℃ during the experimental period. C. 
albicans ATCC 10231 was used as the quality 
control strain.

Antifungal agents
CHT and ECZN were used in this study. The 

CHT (≥98% pure) and the ECZN (≥98% pure) 
were purchased from the National Institute for 
the Control of Pharmaceutical and Biological 
Products, Beijing, China. DMSO (dimethyl 
sulfoxide) was used to prepare stock solutions of 
CHT (20480 µg/mL) and ECZN (40960 µg/mL). 
All of the antifungal stock solutions were 
maintained at -20 ℃. The final concentration of 
DMSO in the wells was less then 1% v/v, which 
did not affect the growth of the test organisms in 
all of the susceptibility tests (13).

Antifungal susceptibility testing
The minimum inhibitory concentrations 

(MICs) of CHT and ECZN against the 
Candida strains were determined using the 
broth microdilution method as described by 
the Clinical and Laboratory Standards Institute 
(CLSI, formerly the National Committee for 
Clinical Laboratory Standards) document 
M27-A. The susceptibility test was performed 
in a 96-well flat-bottomed microtitration plate 
according to the process of L. Drago et al. (14). 
Briefly, all tested isolates were incubated at 
35 ℃ in Sabouraud dextrose broth (SDB and 
diluted with the same fresh medium to a density 
of ~106 cfu/mL, which was further diluted to 
generate a final concentration of 5×105 cfu/mL 
dilutions. The MIC values of CHT and ECZN 
were tested after serial 2-fold dilutions in 96-
well flat-bottomed microtitration plates in SDB, 
and the final concentrations of the antimicrobial 
broth ranged from 0.25 to 512 µg/mL. The MIC 
was defined as the lowest concentration with 
no visible growth compared to that of the drug-
free control. The quality control (QC) strain, C. 
albicans ATCC 10231, was included in each 

fungicidal agents, such as amphotericin B 
(AMB)(6), other conventional fungistatics 
have been rendered ineffective by resistance or 
dose-dependent susceptibility found in some C. 
albicans isolates. In particular, azole-resistant 
isolates are appearing at a high frequency due 
to the increasing clinical use of the azoles. Thus, 
new therapeutic strategies to cope with candidal 
infections are necessary. Combination therapy is 
a novel approach that can be used to decrease 
the toxicity of an antifungal drug and improve 
the efficacy of the antifungal therapy and may be 
especially useful for treating infections caused 
by drug-resistant fungi (7).

Chelerythrine (CHT, C21H17NO4, as illustrated 
in Figure 1), one of the more important 
benzophenanthridine alkaloids derived from the 
roots of Chelidonium majus, has been shown 
to have various biological activities, including 
antimicrobial, antiplatelet, and antitumor 
activities (8,9,10). Additionally, a previous report 
showed that CHT has been recommended for 
medical use in the treatment of oral inflammatory 
processes due to its low toxicity and strong anti-
inflammatory effects (11, 12). 

In this study, we investigated the antifungal 
activity of CHT and econazole-nitrate 
(ECZN) against C. albicans, and assessed the 
combination of CHT and ECZN for the treatment 
of candidasis. To evaluate this combination for 
synergism, the checkerboard microtiter test and 
time-kill assays were performed.

Experimental

Strains and growth conditions
C. albicans ATCC 10231 was obtained from 

N+

O

O
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H3CO CH3

Figure 1. Chemical structure of Chelerythrine. (Figure 
composed using Chem Draw 7.0).
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batch of the susceptibility tests to ensure quality. 

Checkerboard method
Interactions between ECZN and CHT were 

tested in 96-well flat-bottomed microtitration 
plates by the checkerboard method against the 
ten C. albicans isolates and the susceptible C. 
albicans ATCC 10231 strain in the same medium 
as used previously. The final antimicrobial agent 
concentrations after the addition of 100 µL of 
inoculum ranged from 0.25 µg/mL to 512 µg/
mL for ECZN and from 8 µg/mL to 512 µg/mL 
for CHT. The inocula were prepared at a final 
concentration of 5×105 cfu/mL per well. The 
plates were incubated at 35 ℃ for 24 - 48 h. 
The effects of the combinations of antimicrobial 
agents were interpreted by the fractional 
inhibitory concentration index (FICI). Based 
on LA theory, the FICI was calculated by the 
following equation (15):

FICI = FICA + FICB = MICA
comb ⁄ MICA

alone + 
MICB

comb ⁄ MICB
alone

The effect of the combinations of antimicrobial 
agents was classified by the following standard: 
(1) FICI ≤ 0.5, synergistic effect; (2) 0.5 ≤ 
FICI ≤ 4.0, additive or indifferent; and (3)                     
FICI > 4.0, antagonistic. Student’s t-test analysis 
was performed to analyse the means of MICs 
between used ECZN alone and the ECZN-
CHT combination, based on spss version 17.0 
for windows. p-values<0.05 were accepted as 
statistically significant.

Time-kill studies
Time–kill studies were performed with the 

chosen isolates using the methodology of L. 
Drago et al. (14). DMSO comprised <1% of the 
total test volume. CHT and ECZN were diluted 
in SDB to obtain a final concentration of 1/2 
MIC. C. albicans 687 and 762 were prepared at 
the starting inoculum of 106 cfu/mL of 0.5 mL 
volume to obtain a final concentration of 105 

cfu/mL in the 5 mL final volume system. The 
concentrations of the agents were determined 
by the MIC values obtained in the previous 
experiment. The tubes containing CHT (32   
µg/mL), ECZN (16 µg/mL), CHT/ECZN (32 
µg/mL and 16 µg/mL, respectively) and 105 

cfu/mL of the tested isolates were incubated 
at 35 °C. At various predetermined time points 
(0, 12, 24, and 48 h), 100 µL aliquots were 
removed from each test tube and serially diluted 
10 fold in sterile water. A volume of 100 µL 
of each dilution was spread on the Sabouraud 
dextrose agar plates to incubate at 35 °C for 
24 h prior to colony counts enumeration. Each 
assay was performed in triplicate. Synergism 
and antagonism were defined by the following 
criteria (16): (1) synergy: a 2 log10cfu/mL 
decrease by the combination compared to the 
most active agent; (2) antagonism: a 2 log10cfu/
mL increase by the combination compared 
to the most active agent; and (3) indifferent: 
a change of < 2 log10cfu/mL between the 
combination and the most active agent.

Results

Antifungal activities and interactions of 
drugs

The in-vitro antifungal activities of CHT 
and ECZN alone and in combination were 
assessed. The results for the tested drugs alone 
and the checkerboard analysis are summarized 
in Table 1. 

In testing the two antifungals independently, 
the MIC values for these two agents against the 
clinical isolates of C. albicans ranged from 16 
to 32 µg/mL for ECZN and 32 to 128 µg/mL 
for CHT treatment. These results showed that 
CHT has antifungal activity against clinical 
isolates of C. albicans in-vitro. 

In the combination studies, the interaction 
between ECZN and CHT displayed synergism 
for all tested strains, including C. albicans 
ATCC 10231, with FICI values ranging 
from 0.078125 to 0.5 using the FICI method. 
Moreover, an antagonism interaction was not 
observed for any of the tested strains. As shown in 
Table 1, the ECZN-CHT combination markedly 
reduced the MICs. The data above showed that 
there was a good synergistic antifungal effect 
against C. albicans when CHT was combined 
with ECZN.

Time-kill curves
To analyze the interaction of these drug 

combinations, we used the time-kill approach. 
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The results of the time-kill curves with the 
antimicrobials alone or in combination against 
two chosen clinical isolates, C. albicans 687 
and 762, are presented in Figure 2. As shown 
in the graph, the lines that represent the agents 
alone have a similar tend. This suggests that 
the tested strains had similar susceptibilities 
to CHT (32 µg/mL) and ECZN (16 µg/mL). 
Given an initial inoculum density of 105cfu/
mL, combination therapy yielded a 2.06 
log10cfu/mL decrease for C. albicans 687 and 
a 2.26 log10cfu/mL decrease for C. albicans 
762, compared to 16 µg/mL of ECZN after 48 h 
of incubation. The fungistatic activity of ECZN 
was dramatically enhanced by the addition 
of CHT. For the two strains tested, time–kill 
curves verified synergism for the ECZN⁄CHT 
combination.

Discussion

A synergistic strategy can be an important 
approach for the treatment of disease, as it 
often shows a better effectiveness compared 
to monotherapy and can lower drug dosage 
requirements, reduce the toxic side-effects of 
drugs and prevent or delay the emergence of drug 

resistance. Recently, there have been many reports 
that have shown synergistic effects between 
antibacterial agents or peptides in combination 
with fluconazole against C. albicans (17,18,19 
and 20), but few studies have been conducted 
investigating synergism with ECZN. ECZN, 
which belongs to the imidazoles, is another 
important antifungal agent largely used for the 
treatment of many nosomycosis, especially 
surface infections, such as mucous membranes 
infections, dermatophytosis and vaginitis (21). 
The present study was undertaken to analyze the 
drug–drug interactions between ECZN and CHT 
using the checkerboard microdilution method. 
Based on the experimental data, it can be 
concluded that a synergistic combination effect 
was observed in all of the test strains, and no 
antagonistic action was observed. Furthermore, 
the positive interactions between the two 
antimicrobials were also confirmed by the time–
kill curves in the selected strains. Moreover, the 
results of both indicated that there was good 
agreement between the conclusions drawn from 
the FICI method and the time–kill curves for the 
strains tested.

In C. albicans, there are four targets (cell 
wall biosynthesis, membrane integrity, sterol 

Strains
Median MIC (range) of durg along 

(µg/mL)
Median MIC (range) in combination 

(µg/mL) Results

CHT ECZN CHT ECZN FICI INT

C. albicans 580 32 16 8 1 0.3125 SYN

C. albicans 659 64 16 4 1 0.125 SYN

C. albicans 687 64 32 16 8 0.5 SYN

C. albicans 762 64 32 16 4 0.375 SYN

C. albicans 817 128 32 16 1 0.15625 SYN

C. albicans 876 128 32 8 0.5 0.078125 SYN

C. albicans 885 64 16 16 2 0.375 SYN

C. albicans 893 32 32 8 0.5 0.265625 SYN

C. albicans 904 64 32 16 4 0.375 SYN

C. albicans 0604109 64 32 16 4 0.375 SYN

C. albicans 10231 128 32 16 2 0.1875 SYN

Note: CHT, chelerythrine; ECZN, econazole-nitrate; MIC,minimum inhibitory concentration; FICI, fractional inhibitory concentration 
index; INT, interpretation; SYN, synergism; ADD, additive; IND, indifference; ANT, antagonism. There is a significant reduced between 
used ECZN alone and the ECZN-CHT combination by Student t-test (P<0.05).
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biosynthesis and DNA/RNA synthesis) of 
fungicidal agents. The specific mechanism of 
the antifungal effect of ECZN has been reported. 
In brief, ECZN inhibits the activity of the 
cytochrome P-450 lanosterol 14a-demethylase, 
which plays important roles in the ergosterol 
biosynthetic pathway, and this pathway is 
considered to be the primary target of the azole 
antifungal drugs (22,23). Hence, two effects 
are produced. First, it disrupts the biosynthesis 
of ergosterol (the main sterol in the fungal cell 
membrane), which in
integrity. Second, it can accumulate toxic 
methylated sterol intermediates that can damage 
the fungal cell. 

Although the underlying mechanism of the 
synergism between ECZN and CHT remains 
unclear, some understanding may be derived 
from previous studies. CHT has been reported 
to have significant antibacterial activity against 
Gram-positive bacteria and C. albicans (24) 

and has recently been extensively studied as 
a protein kinase C (PKC) inhibitor (25,26,27). 
Its antimicrobial activity may be involved 
with the inhibitory action against PKC. PKC 
has been associated with the regulation of cell 
proliferation, differentiation, and survival, 
and it has been widely studied in fungi. More 
recently, many researchers have shown that 
pkc1, a more primitive PKC isoenzyme in 
fungus, can regulate chitin (a component of the 
cell wall) synthesis and drug susceptibility in C. 
albicans. The inhibition of pkc1 could enhance 
the efficacy of antifungal agent targeting the 
cell membrane, including the azoles (2,28). 
Thus, it can be inferred that the mechanism of 
synergy between ECZN and CHT may be due to 
the PKC inhibitory effect of CHT. In addition, 
recent studies have shown that both CHT and 
ECZN produce reactive oxygen species (ROS), 
which leads to apoptosis (29,30,31). Moreover, 
CHT has been shown to play a role in DNA 

A.Time-kill curves of C.albicans 687
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B.Time-kill curves of C.albicans 762
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Figure 2. Time–kill assays with econazole-nitrate and chelerythrine alone and in combination against two species of clinical C. albicans 
(687 and 762). The starting inoculum density of the strains was 105 cfu/mL. The concentrations of antimicrobial were 32 µg/mL for CHT 
and 16 µg/mL for ECZN. And at the predetermined time points (o h, 12 h, 24 h, 36 h, 48 h), the bactericidal activity of the compounds 
were examined. Bacterial counts are represented as log 10 cfu/mL. 
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damage (32). Although there is no evidence 
to indicate that all of these drug characters 
could act on C. albicans, hypothetically, these 
functions may be involved in the synergic 
mechanism. The exact cooperative mechanism 
may be multifactorial and will have to be 
further explored.

CHT is a potent PKC inhibitor and antifungal 
compound that may have more significant 
therapeutic potential against candidiasis, 
especially in immunocompromised patients, 
due to its low toxicity and antitumor activity. 
In conclusion, the results of this study suggest 
that CHT can markedly enhance the effects of 
ECZN against isolates of C. albicans. Moreover, 
this synergism can markedly reduce the dosage 
requirements of ECZN, decreasing the ECZN 
toxic side effects. This ECZN-CHT synergism 
may have significant clinical implications for the 
treatment of superficial mycosis.
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