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Abstract

The glycosylation of 1,3,4-oxadiazole-2-thiones has been performed with peracetylated 
β-pyranosyl bromide in the presence of potassium carbonate. Deprotection of acetylated 
thioglycosides was necessary for increasing their antibacterial effects.  The structures of 
nucleosides were confirmed by 1H NMR, 13C NMR and HRMS. The anomeric protons of 
nucleosides c1–4 were assigned to the doublet, confirming the β-configuration. The synthesized 
compounds were tested for their antimicrobial activity against Acinetobacter calcoaceticus 
(Gram-negetive) strain in-vitro in comparison with Ampicillin as a reference drug which 
is normally used for treating such infections. The synthetic compounds showed different 
inhibition zones against tested bacterial strain. Thioglycoside derivatives of 1,3,4-oxadiazole-
2-thiones (c set) were more active against Acinetobacter calcoaceticus ATCC 23055 than 
“parent” 1,3,4-oxadiazole-2-thiones (a set), confirming the relation between glyco-conjugation 
and increasing of antiproliferative activity of antibiotic agents. The best result belonged to 
nucleoside bearing 2-furyl moiety in its heterocyclic nucleus (c4). The existence of m-PhNO2 
group as Ar in structures of a set and their corresponding sugar derivatives decreased the 
antibacterial activity of them in comparison with the rest of synthetic compounds. 
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Introduction

The resistance of infective bacteria to present 
antibiotics demands research assigned to the 
discovery of new drugsin the antibacterial drug 
field. The majority of carbohydrates found in nature 
or biological systems exist as glycoconjugates in 
which the monosaccharide units are joined via 
O-, N-, or S-glycosidic bonds. Thioglycosides 
have received considerable attention, because 
they are widely employed as biological 

inhibitors, inducers and ligandsfor affinity 
chromatography of carbohydrate-processing 
enzymes and proteins (1-8). They have excellent 
chemoselectivity in glycosylation processes 
as both donors and acceptorsparticularly via 
reaction processesthat involve active and latent 
glycosylation protocols (9). The thioglycosyl 
heterocycles are sufficiently stable under a 
variety of reaction conditions and have the ability 
to be readilyconverted into a variety of other 
functionalities (10, 11). Multivalent display of 
carbohydrates is frequently used as a method to 
increase affinities in various contexts such as the 
binding of bacteria, bacterial toxins, galectins 
and other lectins (12-24). These properties may 
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affect medicinal effect of antibiotic agents.
On the other hand, oxadiazole derivatives, 

which belong to an important group of 
heterocyclic compounds, have been thesubject 
of extensive study in the recent past. Numerous 
reports have highlighted their chemistry 
anduse. Diverse biological activities, such as 
antiinflamatory, antitumor, antimicrobial and 
anticonvulsant, have been found to be associated 
with oxadiazole derivatives (25-28). Moreover, 
sulfur-containing heterocycles represent an 
important group of sulfur compounds that are 
promising for use in practical applications.

Therefore, it is interesting to report the 
synthesis of a new series of compounds in which 
the glycosyl moieties have been used as carriers 
for the heterocycles having the oxadiazole ring.

In our previous work (29), we reported the 
synthesis antibacterial properties of new series 
of thioglycoside derivatives of 1,2,4-triazole-5-
thiones, whereas in the present work, we report 
the synthesisof new groups of anti-Acinetobacter 
calcoaceticus agents in which 1,3,4-oxadiazole-
2-thiones moiety is coupled to monosaccharide 
unit.

Experimental

1H and 13C NMR spectra were recorded on 
a Bruker AVANCE-300 spectrometer at 300 and 
75 MHz, respectively in CDCl3 using TMS as the 
internal standard. High-resolutionmass spectra 
were obtained with a HPLC-Q-TOF system 
equipped with Q-TOF micromass spectrometer 
(dual ESI). Melting points were measured on 
a Philip Harris C4954718apparatus without 
calibration. Optically active samples were 
analyzed by EHARTNACKapparatus (Paris, 
France) at 20 °C in dichloromethane. Thin layer 
chromatography (TLC) analyses were carried 
out on silica gel plates. All chemicals were 
purchased from Merckand used as received.

5-phenyl-1,3,4-oxadiazole-2(3H)-thione (a1)
Yield: 74%; mp 158-160 °C; 1H NMR 

spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 7.52 (m, 3H, ArH), 7.96 (d, J = 6.9, 2H, ArH) 
10.75 (bs, 1H, N-H); 13C NMR spectrum, (75 
MHz, CDCl3), δ, ppm: 122.90, 126.47, 129.85, 
132.67, 160.90 (Ar), 177.88 (C=S).

5-(2-hydroxyphenyl)-1,3,4-oxadiazole-
2(3H)-thione (a2)

Yield: 84%; mp 162-164 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 7.10 (m, 2H, ArH), 7.49 (t, 1H, J = 7.1, ArH), 
7.72 (2, 1H, J = 8.1, ArH), 8.39 (bs, 1H, OH), 
11.34 (bs, 1H, N-H); 13C NMR spectrum, (75 
MHz, CDCl3), δ, ppm: 109.79, 111.17, 119.84, 
129.50, 133.87, 156.78, 160.27 (Ar), 177.47 
(C=S).

5-(3-nitrophenyl)-1,3,4-oxadiazole-2(3H)-
thione (a3)

Yield: 78%; mp 167-168 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 7.40-7.60 (m, 3H, ArH), 7.94 (d, J = 7.8, 1H, 
ArH), 11.10 (bs, 1H, OH); 13C NMR spectrum, 
(75 MHz, CDCl3), δ, ppm: 120.93, 124.43, 
126.85, 131.76, 132.44, 148.53, 159.15 (Ar), 
178.04 (C=S)

5-(2-furyl)-1,3,4-oxadiazole-2(3H)-thione 
(a4)

Yield: 69%; mp 152-155 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 6.62 (bs, 1H, Furyl), 7.18 (bs, 1H, Furyl), 7.66 
(bs, 1H, Furyl), 11.38 (bs, 1H, N-H); 13C NMR 
spectrum, (75 MHz, CDCl3), δ, ppm: 113.05, 
115.37, 137.99, 147.61, 153.90 (Ar), 177.10 
(C=S).

2-phenyl-5-(2,3,4,6-tetra-O-acetyl-β-D-1-
thio-glucopyranose)-1,3,4-oxadiazole (b1)

Yield: 64%; mp 102-105 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 1.95 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.09 
(s, 3H, OAc), 2.18 (s, 3H, OAc), 3.88-3.99 (m, 
1H, H-6a), 4.12-4.20 (m, 1H, H-6b), 4.27-4.30 
(m, 1H, H-5), 5.14-5.71 (m, 3H, H-2, -3, -4), 
5.96 (d, 1H, J1,2 = 9.3, H-1), 7.52 (m, 3H, ArH), 
7.94-8.04 (m, 2H, ArH); 13C NMR spectrum, (75 
MHz, CDCl3), δ, ppm: 20.56 (2C), 20.72 (2C) 
(4 × OCOCH3), 61.55 (C-6), 67.56 (C-4), 69.76 
(C-2), 73.52 (C-3), 74.71 (C-5), 83.42 (C-1), 
121.93, 126.80, 129.18, 132.03, 132.79 (Ar), 
166.52 (C−S), 168.93, 168.37, 170.06, 170.58 (4 
× OCOCH3).

2-(2-hydroxyphenyl)-5-(2,3,4,6-tetra-
O-acetyl-β-D-1-thio-glucopyranose)-1,3,4-
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oxadiazole (b2)
Yield: 66%; mp 99-101 °C; 1H NMR 

spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 2.03 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.06 (s, 
3H, OAc), 2.10 (s, 3H, OAc), 3.88-3.92 (m, 1H, 
H-6a), 4.13-4.17 (m, 1H, H-6b), 4.27-4.32 (m, 
1H, H-5), 5.14-5.37 (m, 3H, H-2, -3, -4),  5.50 
(d, 1H, J1,2 = 9.6, H-1), 7.02 (t, 1H, J = 7.8, ArH), 
7.13 (d, 1H, J = 8.4, ArH), 7.47 (t, 1H, J = 6.9, 
ArH), 7.72 (d, 1H, J = 7.8, ArH), 9.87 (bs, 1H, 
OH); 13C NMR spectrum, (75 MHz, CDCl3), δ, 
ppm: 20.54 (2C), 20.60 (2C) (4 × OCOCH3), 
61.56 (C-6), 67.72 (C-4), 69.74 (C-2), 73.46 
(C-3), 76.62 (C-5), 83.33 (C-1), 107.58, 117.66, 
120.11, 126.54, 134.04, 157.34, 160.02 (Ar), 
165.92 (C−S), 169.34, 169.43, 169.966, 170.54 
(4 × OCOCH3).

2-(3-nitrophenyl)-5-(2,3,4,6-tetra-O-acetyl-
β-D-1-thio-glucopyranose)-1,3,4-oxadiazole 
(b3)

Yield: 58%; mp 112-113 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 2.04 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.09 (s, 
3H, OAc), 2.10 (s, 3H, OAc), 3.88-4.05 (m, 1H, 
H-6a), 4.14-4.21 (m, 1H, H-6b), 4.28-4.33 (m, 
1H, H-5), 5.16-5.67 (m, 3H, H-2, -3, -4), 5.97 (d, 
1H, J1,2 = 9.3, H-1), 7.75 (t, J  = 7.8, 1H, ArH), 
8.27-8.43 (m, 2H, ArH), 8.84 (d, J = 8.1, 1H, 
ArH); 13C NMR spectrum, (75 MHz, CDCl3), 
δ, ppm: 20.53 (2C), 20.65 (2C) (4 × OCOCH3), 
61.50 (C-6), 67.70 (C-4), 69.71 (C-2), 73.49 (C-
3), 74.83 (C-5), 83.32 (C-1), 121.80, 124.93, 
126.36, 127.03, 130.52, 132.21, 148.67 (Ar), 
164.50 (C-S), 169.33, 169.44, 169.97, 170.53 (4 
× OCOCH3).

2-(2-furyl)-5-(2,3,4,6-tetra-O-acetyl-β-D-1-
thio-glucopyranose)-1,3,4-oxadiazole (b4)

Yield: 72%; mp 107-109 °C; 1H NMR 
spectrum, (300 MHz, CDCl3), δ, ppm, (J, Hz): 
): 1.97 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.07 (s, 
3H, OAc), 2.10 (s, 3H, OAc), 3.85-4.00 (m, 1H, 
H-6a), 4.13-4.21 (m, 1H, H-6b), 4.27-4.32 (m, 
1H, H-5), 5.24 (t, 1H, J1,2=J2,3 = 9.3, H-2), 5.42 
(t, 1H, J2,3=J3,4 = 9.3, H-4), 5.61 (t, 1H, J2,3=J3,4 = 
9.3, H-3), 6.34 (d, 1H, J1,2 = 9.3, H-1), 6.61 (bs, 
1H, Furyl), 7.17 (bs, 1H, Furyl), 7.66 (bs, 1H, 
Furyl); 13C NMR spectrum, (75 MHz, CDCl3), 
δ, ppm: 20.49 (2C), 20.70 (2C) (4 × OCOCH3), 

61.54 (C-6), 67.51 (C-4), 69.40 (C-2), 73.04 
(C-3), 74.75 (C-5), 83.17 (C-1), 112.36, 116.17, 
137.41, 146.80, 152.37 (Ar), 159.98 (C-S), 
168.97, 169.28, 170.04, 170.56 (4 × OCOCH3).

2-phenyl-5-(β-D-1-thio-glucopyranose)-
1,3,4-oxadiazole (c1)

Yield: 33%; mp 108-110 °C; [α]D
20= 3° (c 

= 1.0, CH2Cl2). 
1H NMR spectrum, (300 MHz, 

CDCl3), δ, ppm, (J, Hz): ): 3.92-4.03 (m, 1H, 
H-6a), 4.12-4.22 (m, 1H, H-6b), 4.27-4.30 (m, 
1H, H-5), 4.35-4.85 (m, 4H, OH), 5.12-5.70 (m, 
3H, H-2, -3, -4), 5.99 (d, 1H, J1,2 = 9.3, H-1), 7.50 
(m, 3H, ArH), 7.94-8.02 (m, 2H, ArH); 13C NMR 
spectrum, (75 MHz, CDCl3), δ, ppm: 61.76 (C-6), 
67.64 (C-4), 69.26 (C-2), 73.59 (C-3), 74.78 (C-
5), 83.37 (C-1), 122.23, 126.88, 129.40, 132.09, 
132.99 (Ar), 166.45 (C−S); HRMS spectrum 
(ESI), m/z: Calculated, 340.0729. C14H16N2O6S 
[M+H]+. Found, 341.0817.

2- (2-hydroxypheny l ) -5 - (β -D-1- th io -
glucopyranose)-1,3,4-oxadiazole (c2)

Yield: 46%; mp 144-145 °C; [α]D
20= 4° (c 

= 1.0, CH2Cl2). 
1H NMR spectrum, (300 MHz, 

CDCl3), δ, ppm, (J, Hz): ): 3.86-3.97 (m, 1H, 
H-6a), 4.11-4.16 (m, 1H, H-6b), 4.26-4.32 (m, 
1H, H-5), 4.37-4.83 (m, 4H, OH), 5.13-5.37 (m, 
3H, H-2, -3, -4),  5.57 (d, 1H, J1,2 = 9.6, H-1), 7.03 
(t, 1H, J = 7.8, ArH), 7.12 (d, 1H, J = 8.4, ArH), 
7.49 (t, 1H, J = 6.9, ArH), 7.74 (d, 1H, J = 7.8, 
ArH), 9.97 (bs, 1H, OH); 13C NMR spectrum, 
(75 MHz, CDCl3), δ, ppm: 62.46 (C-6), 68.02 (C-
4), 69.86 (C-2), 73.65 (C-3), 76.69 (C-5), 83.04 
(C-1), 109.18, 117.36, 121.01, 126.94, 133.84, 
157.86, 160.23 (Ar), 165.57 (C−S); HRMS 
spectrum (ESI), m/z: Calculated, 356.0678. 
C14H16N2O7S [M+H]+. Found, 357.0762.

2 - ( 3 - n i t r o p h e n y l ) - 5 - ( β - D - 1 - t h i o -
glucopyranose)-1,3,4-oxadiazole (c3)

Yield: 39%; mp 122-124 °C; [α]D
20= -2° (c 

= 1.0, CH2Cl2). 
1H NMR spectrum, (300 MHz, 

CDCl3), δ, ppm, (J, Hz): ): 3.84-4.01 (m, 1H, 
H-6a), 4.17-4.25 (m, 1H, H-6b), 4.24-4.33 (m, 
1H, H-5), 4.36-4.85 (m, 4H, OH), 5.16-5.68 (m, 
3H, H-2, -3, -4), 6.07 (d, 1H, J1,2 = 9.3, H-1), 7.78 
(t, J  = 7.8, 1H, ArH), 8.27-8.46 (m, 2H, ArH), 
8.81 (d, J = 8.4, 1H, ArH); 13C NMR spectrum, 
(75 MHz, CDCl3), δ, ppm: 62.20 (C-6), 67.74 (C-
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4), 69.79 (C-2), 73.67 (C-3), 74.35 (C-5), 83.44 
(C-1), 121.89, 123.90, 126.86, 127.43, 131.82, 
132.28, 149.63 (Ar), 165.22 (C-S); HRMS 
spectrum (ESI), m/z: Calculated, 385.0580. 
C14H15N3O8S [M+H]+. Found, 386.0665.

2-(2-furyl)-5-(β-D-1-thio-glucopyranose)-
1,3,4-oxadiazole (c4)

Yield: 52%; mp 111-113 °C; [α]D
20= -4° (c 

= 1.0, CH2Cl2). 
1H NMR spectrum, (300 MHz, 

CDCl3), δ, ppm, (J, Hz): ): 3.82-4.08 (m, 1H, 
H-6a), 4.17-4.23 (m, 1H, H-6b), 4.24-4.39 (m, 
1H, H-5), 4.35-4.89 (m, 4H, OH), 5.27 (t, 1H, 
J1,2=J2,3 = 9.3, H-2), 5.45 (t, 1H, J2,3=J3,4 = 9.3, 
H-4), 5.69 (t, 1H, J2,3=J3,4 = 9.3, H-3), 6.31 (d, 
1H, J1,2 = 9.3, H-1), 6.66 (bs, 1H, Furyl), 7.17 
(bs, 1H, Furyl), 7.58 (bs, 1H, Furyl); 13C NMR 
spectrum, (75 MHz, CDCl3), δ, ppm: 60.94 (C-6), 
66.98 (C-4), 69.87 (C-2), 73.54 (C-3), 74.85 (C-
5), 83.63 (C-1), 112.30, 117.20, 137.83, 146.88, 
152.52 (Ar), 162.07 (C-S); HRMS spectrum 
(ESI), m/z: Calculated, 330.0522. C12H14N2O7S 
[M+H]+. Found, 331.0609.

Bacterial Strain
The antibacterial activity of compounds 

was assayed with our previous published 
method (30). The antibacterial activity of the 
compounds was tested against Gram-negative 
strain of Acinetobacter calcoaceticus ATCC 
23055.

Resultsand Discussion

Thioglycosilation was performed according 
our previous published method (29). 1-bromide 
sugar and 1,3,4-oxadiazole-2-thione nuclei a1-4 
were synthesized to the literature procedures 
(29,31). Deprotection of acetylated nucleosides 
was performed to the literature procedure (32). 
The synthesis of the final nucleosides is depicted 
in Figure 1.

The structure of thioglycosides was confirmed 
by appropriate spectroscopic methods such 
as1HNMR,13C NMR, and high resolution mass 
spectroscopy (HRMS). The anomeric protons of 
nucleosides c1–4 were assigned to the doublet at 
5.57–6.31 ppm with J1,2=9.3–9.6 Hz, confirming 
theβ-configuration.

In our recent published research (29), there 
was not any significant change in the antibacterial 
effect of the acetylated final thioglycosides in 
comparison with the parent heterocyclic nuclei. 
Therefore, in the present work, the deacetylated 
nucleosides c1-4 have been compared to the parent 
heterocyclic nuclei a1-4 against Acinetobacter 
calcoaceticus.

The in vitro antibacterial activity of the 
synthesized compounds in DMSO against 
Acinetobacter calcoaceticusis shown in Tables 
1. Diameter of inhibition zone for ampicillin 
as reference drug is 18 mm for 10 µg/µL 
concentration of drug in the same test conditions.

Figure 1. General synthetic pathway for the synthesis of thioglycosyl oxadiazoles.
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As shown in the Table 1. these compounds 
showed higher antibacterial effects in comparison 
with Ampicillin (18 mm) which is normally used 
for treating such infections.

In general, compounds from c set 
(nucleosides) showed more antimicrobial activity 
than the other set. Thioglycoside derivatives of 
1,3,4-oxadiazole-2-thiones (c set) were more 
active against Acinetobacter calcoaceticus 
ATCC 23055 than “parent” 1,3,4-oxadiazole-
2-thiones (a set), confirming the relation 
between glyco-conjugation and increasing of 
antiproliferative activity of antibiotic agents. 
The best results in the tables belonged to c4that 
showing high activity against A. calcoaceticus 
(31 mm).

Going over the structure of these synthetic 
compounds confirmed that the existence 
of 2-furyl instead of m-PhNO2 group as Ar 
increased their antibacterial activity against 
A. calcoaceticus. The existence of m-PhNO2 
group as Ar in structures of a set and their 
corresponding sugar derivatives decreased the 
antibacterial activity of them in comparison with 
the rest of synthetic compounds.
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