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This paper reviews recent strategies used for increas-
ing specific yield and productivity in high cell density
cultures. High cell density cultures offer an efficient
means for the economical production of recombinant
proteins. However, there are still some challenges
associated with high cell density cultivation (HCDC)
techniques. A variety of strategies in several aspects
including host design consideration, tuning recombi-
nant protein expression, medium composition, growth
methodologies, and even control and analysis of the
process have been successfully employed by biotech-
nologists to increase yield in high cell density cultures.
Although most researches have focused on
Escherichia coli, other microorganisms have the
potential to be grown at high density and need further
investigation. In recent years, information on physio-
logical changes of hosts during different phases of cul-
tivation derived from functional genomics, transcrip-
tomics and proteomics is being used to overcome the
obstacles encountered in high cell density cultivation
and hence increase productivity.
Keywords: High cell density culture; Recombinant
protein; Expression system.
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1. INTRODUCTION

High cell density cultivation (HCDC) is a powerful

technique for production of recombinant proteins, the

annual market growth of which is expected to increase

at a rate of 10-15% per annum (Werner, 2004). The

combination of large scale culture processes with

recombinant DNA technology has enabled proteins

such as interferons, interleukins, colony-stimulating

factors and growth hormones to be produced in quan-

tities that might otherwise have been difficult, if not

impossible, to obtain from natural sources.

Productivity is a function of cell density and specific

productivity (i.e. the amount of product formed per

unit cell mass per unit time); so increasing the cell den-

sity as well as specific productivity increases produc-

tivity. Increasing productivity is the major objective of

fermentation in research and industry and as metioned

by Lee (1996) and Riesenberg and Guthke (1999),
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HCDCs are a prerequisite to maximize the amount of

product in a given volume within a certain time.

HCDC enables the researchers to reach a higher dry

cell weight and as a result a higher product concentra-

tion which is not possible in conventional batch and

continuous processes. So far, an exact dry cell weight

per liter has not been considered as a representative of

high cell density and different studies have considered

different values of dry cell weight like 50 g/l (Shokri

and Larsson, 2004; Rozkov, 2001) and even values in

the range of 20 g/l  for a culture to be named HCDC. 

The first step for producing protein in HCDC sys-

tems is choosing a suitable expression system, well

adapted to HCDC. Once the expression system is

developed, fermentation is carried out to increase the

protein product titer. Nutrient composition, feeding

strategy and growth conditions should be optimized in

order to reach HCDC. The advantages and disadvan-

tages of HCDC are mentioned in Table 1. It should be

mentioned that despite such disadvantages, the eco-

nomical advantages of HCDC over conventional

methods of fermentation are often so great that it is

usually just a matter of how to overcome these disad-

vantages and set up a HCDC. However, for large-scale

processes concerns like using pure oxygen, pressur-

ized bioreactor, high mechanical load on the agitation

system and sensing and probing limitations should

also be considered (Shiloach and Fass, 2005).

This review focuses on various approaches and

recent advances in solving the problems associated

with HCDC and increasing productivity via increasing

cell density and/or specific productivity.

2. Expression system improvement: Although, most

HCDCS are associated with Escherichia coli as listed

by Choi et al. (2006), other microorganisms have the

ability to be grown to high cell densities (Table 2). For

example, bacteria such as Bacillus subtilis (Vuolanto

et al., 2001), Lactobacillus plantarum (Barreto et al.,
1991), Pseudomonas putida (Lee et al., 2000),

Methylobacterium extorquens (Belanger et al., 2004),

Ralstonia eutropha (Srinivasan et al., 2003), yeasts

such as Saccharomyces cerevisiae (Shang et al., 2006),

Kluyveromyces marxianus (Hensing et al., 1994),

Pichia pastoris (Daly and  Hearn, 2005), Hansenula
polymorpha (Moon et al., 2004), Trigonopsis vari-
abilis (Kim et al.,1997), insect cells like Spodoptera
frugiperda (Elias et al., 2000), animal cells like

Chinese hamster ovary cells (Lim et al., 2006), diatom

Nitzschia laevis (Wen et al., 2002), Protozoon

Colpidium campylum (Scheidgen-Kleyboldt et al.,
2003), Tetrahymena thermophila (Kiy and Tiedtke,

1992) and even herbs such as Panax notoginseng
(Zhong et al., 1999) and Galdieria sulphuraria
(Schmidt et al., 2005) and other eukaryotic cells  have

been reported which can grow to a high cell density.

Microorganisms frequently experience different

kinds of limiting conditions during HCDC. Cells in

high density cultures are exposed to adverse condi-

tions such as lack of nutrients, elevated osmotic pres-

sure and other problems which have been mentioned

previously, so selecting and designing a suitable host

with a higher specific growth rate, increased biomass

yield, reduced secretion of overflow metabolites and

increased resistance to osmotic stress and nutrient dep-

rivation is the primary step in designing a HCDC for

producing recombinant proteins.

The traditional approach for obtaining a suitable host

is isolation and selection of mutants. Weikert et al.
(1998) reported a three fold increase in expressing

Bacillus stearothermophilus amylase using the E. coli
mutant CWML2:pCSS4-p which had been isolated
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HCDC

Advantages Disadvantages

Increased cost effectiveness

Reduced culture volume

Easier downstream processing

Reduced investment in equipments

Reduced waste water

-

-

Substrate inhibition or limitation

Limited transfer and high demand of oxygen

Cell lysis and proteolysis

Limited heat transfer

Formation of growth inhibitory byproducts

Plasmid instability

High production rates of CO2 and heat

Table 1. Advantages and disadvantages of HCDC (Choi et al., 2006; Kleman and Strohl, 1994; Lee,

1996; Riesenberg and Guthke, 1999).

www.SID.ir



Arc
hi

ve
 o

f S
ID

IRANIAN JOURNAL of BIOTECHNOLOGY, Vol. 6, No. 2, April 2008

65

Table 2. Different microorganisms used for HCDC and production of recombinant proteins, their products and methodologies. 
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Table 2. Continued.
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Table 2. Continued.
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from a mixed culture. 

Powerful tools of genetics and cellular engineering

have enabled researchers to design a better host for

HCDC by rational instead of trial-and-error methods.

Jena and Deb (2005) and Sorensen et al. (2005) listed

genetic parameters to be considered for designing a

better expression system. Moreover, redirecting the

metabolic pathways has become more common recent-

ly. Especially that proteome and transcriptome profil-

ing of microorganisms make it possible to generate

invaluable information that can be used for the devel-

opment of metabolic and cellular engineering strate-

gies. Chips and microarrays are becoming standard

tools for the high-throughput analysis at the level of

gene expression. Chip systems also enable the rapid

characterization of the desired recombinant product

even in solutions from process intermediates (Forrer et
al., 2004, Vasilyeva et al., 2004).

Analyzing the transcriptome profiles by DNA

microarrays shows that the growth phase can signifi-

cantly affect the transcriptome profiles of E. coli dur-

ing well-controlled synchronized high-cell-density

fed-batch cultures (Haddadian and Harcum, 2005).

Hermann (2004) analyzed transcriptome profiles of

recombinant E. coli producing the human insulin-like

growth factor I fusion protein during HCDC fed-batch

culture using DNA microarrays. The expression levels

of 529 genes were significantly altered after induction.

About 200 genes were significantly downregulated

during the production of protein after induction.

Physiological and metabolic changes of E. coli
observed by proteome analysis via gel electrophoresis

(2-DE) are summarized as follows: The levels of TCA

cycle enzymes (isocitrate dehydrogenase, malate

dehydrogenase, succinate dehydrogenase and suc-

cinyl-CoA synthetase) increased during the exponen-

tial phase of HCDC, while the levels of glycolytic

enzymes, (enolase, fructose-bisphosphate aldolase,

phosphoglycerate mutase 1, triose-phosphate iso-

merase) decreased during the stationary phase.

(Hermann 2004). The synthesis of isocitrate dehydro-

genase increased considerably (up to four-fold) in the

exponential growth phase. On the other hand, levels of

most amino acid biosynthetic enzymes decreased dur-

ing this phase of growth. 

Raman et al. (2005) used proteome analysis to

evaluate the differences in protein expression of

recombinant E. coli in glucose limited fed-batch fer-

mentation. The authors reported that gene up-regula-

tion in glucose limited fed-batch cultures equips cells

for the scavenging of glucose (which is present at low

concentrations), transporting and metabolizing of a

wide range of substrates, tackling energy deficiency

and coping with stressful conditions. Yoon et al.
(2003) used combined transcriptome and proteome

analysis during high cell density fed batch culture of E.
coli in order to understand physiological and metabol-

ic changes during HCDC. The authors reported that

the expression of genes involved in translation, ATP

synthesis and amino acid synthesis was downregulated

after feeding but expression of most genes of the TCA

cycle and genes which are involved in overcoming

undesirable intracellular conditions was upregulated.

Another interesting phenomenon observed by pro-

teome profiling was the change in the permeability of

the outer membrane as cell density increased. The

expression of chaperone genes increased with cell den-

sity, which is an inevitable consequence of the stress

imposed on the cell at high cell densities, which may

also turn out to be beneficial for the production of cor-

rectly formed heterologous proteins (Makrides, 1996). 

The use of these pioneering analyses is not limited

to E. coli, although high cell density cultures of other

microorganisms have rarely been studied. Examples

concerning the use of high throughput analyses for

other microorganisms like: Lactococcus lactis (Vido et
al., 2004), B. subtilis (Helmann et al., 2003),

Corynebacterium glutamicum (Ruckert et al., 2003),

Aspergillus terreus (Askenazi et al., 2003), S. cerevisi-
ae (Salusjarvi et al., 2003) and P.  putida (Heim et al.,
2003) can be found in literature.  

These findings should be invaluable in designing

metabolic pathways and fermentation strategies for the

production of recombinant proteins and metabolites by

HCDC of E. coli. Unfortunately, there is little informa-

tion on the transcriptome and proteome of other

microorganisms.

Another problem associated with HCDC is fila-

mentation which is a response to the high density of

cells. Filamentation of cells lowers the final achievable

cell concentration and the productivity of the target

protein. The expression of foreign proteins enhances

the biosynthesis of the repressor of the cell division

proteins FtsZ and FtsA and has been found to hamper

the productivity. Over-expression of FtsZ or FtsA

allows unconditional cell division and consequently,

high density growth and high productivity (Jeong and

Lee, 2003; Wang and Lee, 1998; Lee, 1994).
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3. Culture condition improvement: In order to devel-

op an optimized condition in terms of medium compo-

sition and physical conditions for reaching higher pro-

ductivity via higher cell density and/or specific pro-

ductivity, there are some points which should be con-

sidered:

3.1. Medium composition

It is desirable to make the feed solution as simple as

possible by including the essential non-carbon, non-

nitrogen components in the medium. But it should be

borne in mind that some nutrients can inhibit cell

growth when present above a certain concentration

(Lee, 1996). High amounts of substrates are needed to

achieve high cell density but these substrates should be

fed in a controlled manner because they may have

adverse effects on cell growth and production. Excess

carbon source leads to metabolic by-products which

are inhibitory and can be prevented by feeding a limit-

ed supply of carbon source. The main metabolic by-

products are acetate for E. coli, propionate for B. sub-
tilis, lactate for L. lactis and ethanol for S. cerevisiae
(Riesenberg and Guthke, 1999). 

Another point is the precipitation of media ingredi-

ents, especially when they are present at high concen-

trations, which is usually the case when the cells are to

be grown to high densities (Shiloach and Fass, 2005).

Precipitation can affect downstream recovery, purifi-

cation operations and monitoring devices. For example

precipitation of mineral salts which may occur during

medium preparation hampers the determination of the

actual concentration of minerals in the medium; it can

also complicate the measurement of cell densities

(Cereghino et al., 2002). Seeking a solution to the

above mentioned problems,  Brady et al. (2001) cut the

concentration of all salts in the medium to one quarter

of the original recipe. Another concern is the osmotic

pressure and conductivity caused by high ion concen-

trations in the growth media that may affect membrane

potential and activate different stress mechanisms that

induce reduction in growth rate or termination of the

growth cycle (Winzer et al., 2002). Generally, defined

media are used to obtain high cell density because the

nutrient concentrations are known and can be con-

trolled during culture (van Hoek et al., 2000).

Complex media such as peptone and yeast extract can

vary in composition and quality making fermentation

less reproducible. However, semi-defined or complex

media are sometimes necessary to boost product for-

mation. The use of a defined medium with a single or

a few amino-acids to achieve higher cell or/and recom-

binant protein yields would be attractive for industrial
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Table 3. Methods used to deal with acetate accumulation in recombinant E. coli.

Method Process description Reference

Using different expression 

systems

Mutants with defects in acetate

biosynthetic pathway

Enhancing acetate utilization

Converting acetate to other

(non-toxic) by-products

Blocking the pathway of by-

product production

Redirecting the metabolic fluxes

E. coli B (which produces less acetate) were

used instead of E. coli K

Mutants of E.coli w3100 were generated which

lacked acetate associated enzymatic activity

and produced less acetate

Mutants were generated which could consume

acetate as carbon source even in the presence

of glucose

Acetate was converted to other by-products

(e.g. acetone or acetoine) which are not toxic

for the cell

Antisense RNA was used to partially block the

production of toxic by-products without affecting

other vital processes of the cell

Carbon flux was redirected through phosphor-

phenol puyruvate and glyoxylate shunt and pro-

duction of acetate was minimized

Noronha et al. (2000); 

Phue et al. (2005)

Contiero et al. (2000)

Oh et al. (2002)

Bermejo et al. (1998)

Aristidou et al. (1995)

Kim and Cha (2003)

Farmer and Liao (1997)
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conditions. It has been reported that adding a dose of

leucine at the beginning of an E. coli culture with con-

tinuous feeding of glucose, threonine, tryptophan, and

histidine improved productivity of β-isopropylmalate

dehydrogenase (Rozkov et al., 2001).  Li et al. (1998)

reported that the addition of precursor amino acids

(glutamate, cysteine and glycine) and ATP improved

intracellular glutathione accumulation in HCDC of

E. coli Addition of certain amino acids has also been

shown to be fruitful in yeasts such as S. cerevisiae.

Gorgens et al. (2005) supplemented the medium with

a balanced mixture of alanine, arginine, aspargine, glu-

tamic acid, glutamine and glycine to enhance heterol-

ogous protein production in a defined medium, such an

approach has also been shown to be useful in another

study (Jin and Shimizu, 1997). But, it is worth men-

tioning that sometimes the addition of amino acids

which are present in the biomass and recombinant pro-

tein in similar amounts may even decrease the yield.

For example, increasing concentration of phenylala-

nine resulted in a lower chloramphnicoleacetyl trans-

ferase (CAT) concentration, presumably due to feed-

back inhibition of biosynthesis of this amino acid and

sharing common biosynthetic pathways (Ramirez and

Bentley, 1993). Lee et al. (2000) applied phosphorus

limitation during fed-batch culture by reducing the ini-

tial KH2PO4 concentration in order to increase the

polyhydroxy alkanoate concentration. Cell density of

P. putida also increased with this modification to 141

g/l. Lau et al. (2004) increased the maximum cell den-

sity by two-fold, and the final titer of product (6-

deoxyerythronolide B) by 11-fold by doubling the con-

centration of phosphate and continuous feeding of pro-

pionate and maintaining a low propionate concentra-

tion (5-10 mM) in the medium. 

For fed-batch process, which is the most common

strategy for HCDC, it is desirable to simplify the feed

solution as much as possible by including sufficient

non-carbon and non-nitrogen nutrients in the starting

medium (Lee, 1996). However, different studies report

that the addition of some materials to the feeding solu-

tion can significantly improve the productivity. Oh et
al. (2002) controlled the density of B. subtilis by con-

trolling the ratio of glucose and peptone concentra-

tions in the feeding medium. Jeong et al. (2004) inves-

tigated chemically defined-, yeast extract-containing,

and casamino acid-containing-feeding solutions for

the production of human leptin by fed-batch culture of

recombinant E. coli. Among these solutions, casamino

acids led to the highest productivity.

In short, new medium optimizations are necessary

for the production of new recombinant proteins which

seem to differ with respect to the type of microorgan-

ism and the product. It appears that enhancing amino

acids and other compositions are still a good choice

which have been used by many researchers. The basic

approaches used to develop optimal media were trial-

and-error processes. However, the use of statistical

techniques for experimental design has provided a

more elegant means of designing. 

3.2. Physical conditions

Temperature: For high cell density cultures, tempera-

ture control is much more important due to significant

heat release in spite of limited heat transfer because of

high viscosity. Temperature should support cell growth

as well as product formation. Since in most fermenta-

tion processes, growth phase is separated from produc-

tion phase, temperature should be optimized for each

phase while maintaining nutrient characteristics. It has

been reported that temperature affects plasmid stabili-

ty and consequently the yield of protein production in

culture (Donovan et al., 1996). It has been demonstrat-

ed that the rate of mRNA degradation is a first order

reaction and decreases with temperature. Thus it is

possible that lowering culture temperature could be a

simple and a potentially important method for increas-

ing protein production (Shin et al., 1997). 

Oxygen: In high cell density cultivation, a high capac-

ity of oxygen supply is required. Oxygen often

becomes limiting in HCDCs owing to its low solubili-

ty. The saturated dissolved oxygen (DO) concentration

in water at 25ºC and 1 atm is ∼7 mg/l, but oxygen sup-

ply can be increased by increasing the aeration rate or

agitation speed (Lee, 1996). Oxygen-enriched air or

pure oxygen has also been used to prevent oxygen lim-

itation. Cells can also be cultured under pressurized

conditions to increase oxygen transfer (Belo and Mota,

1998; Lee, 1996). By increasing oxygen transfer

capacity of the bioreactor, it is possible to achieve

higher cell productivity and final biomass concentra-

tion; because oxygen limitation results in formation of

several metabolites of the mixed acid metabolism such

as succinate, acetate, lactate, ethanol, and hydrogen

which are undesirable and decrease the productivity of

the bioreactor. (Castan et al., 2002; Enfors et al.,
2001). However, when oxygen enriched air or pure
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oxygen is used to achieve high feed rate, the impact of

high oxygen concentrations on the productivity and

quality of recombinant proteins production needs to be

investigated. Also it should be considered that oxygen

itself is potentially toxic to some microorganisms.

Carbon dioxide: Carbon dioxide can also affect cell

growth and recombinant protein production especially

in high cell densities (Lee, 1996). High feed rate of the

limiting substrate results in high carbon dioxide pro-

duction rates and thus a high carbon dioxide concen-

tration in the bioreactor. The dissolved carbon dioxide

concentration depends on the partial pressure of the

carbon dioxide according to Henry’s law. Growth inhi-

bition and toxic effects of carbon dioxide have been

reported (Castan et al., 2002). High partial pressure of

CO2 (>0.3 atm) decreases growth rate and stimulates

acetate formation (Lee, 1996). Therefore, the pressur-

ized culture regime which has been used to increase

oxygen transfer may also enhance the detrimental

effect of CO2 (Matsui et al., 2006).

Mixing: Reduced mixing efficiency of the bioreactor

is another physical limitation of HCDC due to high

viscosity. This problem intensifies with increasing

bioreactor size (Lee, 1996). In large scale bioreactors

there are fluctuations in the concentration of the limit-

ing substrate due to difficulties in mixing. In these

processes, zones of high and low substrate concentra-

tions are formed. In high concentration zones cells

may produce toxic by-products and are prone to oxy-

gen limitation but in low concentration zones cells

may be starved of substrate. Another problem associat-

ed with this situation is that cells also have to face an

imposed stress because of continuously passing

through zones of high and low substrate concentra-

tions. Increasing the rate of agitation is the main solu-

tion of these problems, this method can enhance pro-

tein formation and the volumetric oxygen transfer

coefficient (Zhang et al., 2005; Kapat et al., 1998) but

it may have detrimental effects on cells which are sen-

sitive to shear stress like animal cells (Pan et al.,
2000). Considering these disadvantages feeding in

several points in the reactor and reducing the concen-

tration of the feed have been proposed as possible

solutions (Enfors et al. 2001). 

Foaming: Foam formation may cause serious opera-

tional difficulties in aerated stirred bioreactors, espe-

cially in high cell density cultivation for recombinant

protein production. Because with increasing cell den-

sity, cell lysis and consequently, protein concentration

in the medium increases thus enhancing foam forma-

tion. Various procedures have been used in industry to

reduce foam formation rate, with each of them having

its own advantages and disadvantages. Stirring as

foam disruption (SAFD) technique is a novel method

to reduce foam in fermentation processes. The princi-

ple of this method is to reduce the foam layer with liq-

uid flow generated by a stirrer placed just under the

gas-liquid interface (Hoeks et al., 2003).

4. Growth technique improvement: Method of culti-

vation is important to the success of high cell density

and recombinant protein production, because it affects

environmental and nutritional conditions that are

effective in microorganism’s growth and recombinant

protein production. For this reason different methods,

focusing on nutrient feeding strategies, have been

developed to grow cells to high cell densities and to

overproduce protein. The most important function of

every strategy is to prevent overfeeding in which

inhibitory concentrations of the feed components

accumulate in the fermentor, or underfeeding in which

the organism is starved for essential nutrients. The

method of choice depends on many different factors,

including the metabolism of the organism, the poten-

tial for production of inhibitory substrates, induction

conditions and the capacity to measure parameters.

Batch (Castrillo et al., 1996), continuous (Domingues

et al., 2005 and 2000), semi-continuous (Elias et al.,
2000), continuous with recycling (Tashiro et al., 2005)

and  a variety of fed-batch processes (see below for

examples) have been reported for growing cells to high

densities. Fed-batch is the most commonly used

method to produce recombinant proteins by HCDCs.

4.1. Fed-batch processes

The fed-batch process is a suitable strategy for produc-

tion in high cell density culture due to (1) extension of

working time (particularly important in the production

of growth-associated products), (2) controlled condi-

tions for the provision of substrates during fermenta-

tion and (3) control over the production of by-prod-

ucts, or catabolite repression effects, due to limited

provision of only those substrates which are solely

required for product formation. 

In fed-batch cultivation, feeding strategy is the most
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important factor in success of the process. Different

feeding strategies including constant-rate feeding,

stepwise increase of the feeding rate, and exponential

feeding have been used to obtain high cell densities in

fed-batch cultures (Shiloach and Fass, 2005; Lee,

1996). In constant-rate feeding, concentrated nutrients

are fed into the bioreactor at a predetermined rate.

Because of the increase in culture volume and cell

concentration in the bioreactor, the specific growth

rate continuously decreases, and the increase in cell

concentration slows down over time (Jensen and

Carlsen, 1990). Variable feeding rates can be con-

trolled with feedback or without feedback. The step-

wise (or gradual) increase of the feeding rate can

enhance cell growth by supplying more nutrients at

higher cell concentrations (Jensen and Carlsen, 1990;

Konstantinov et al., 1990). Cells can grow exponen-

tially during the entire culture period if the feed rate

of the growth-limiting substrate is increased in pro-

portion to growth (Shiloach and Fass, 2005; Yee and

Blanch, 1993; Strandberg and Enfors, 1991). The

exponential-feeding method has been developed to

allow cells to grow at constant or variable specific

growth rates; it also provides the advantage that

acetate production, a serious problem associated with

the process, can be minimized by controlling the spe-

cific growth rate below the critical value of acetate

formation (Table 3). Exponential feeding is a simple

but efficient method that has been successfully used

for high cell density cultivation of several non-recom-

binant and recombinant microorganisms; the specific

growth rate is usually maintained between attainable

maximum and minimum values. Maintaining the spe-

cific growth rate at an appropriate range can provide a

desirable metabolic condition and results in maximum

productivity (Babaeipour et al., 2007). Therefore,

exponential feeding can be used as a convenient

method to avoid by-product formation and to obtain

maximum attainable cell density (Shiloach and Fass,

2005; Khalilzadeh et al., 2004 and 2003; Tabandeh et
al., 2004; Thuesen et al., 2003; Lee, 1996; Yee and

Blanch, 1993) but, the details of such feeding are still

a matter of debate and new researches aim at optimiz-

ing the feeding method (Babaeipour et al., 2008;

Bahrami et al., 2008; Ting et al., 2008). 

In addition to conventional fed-batch processes,

there are some modified fed-batch cultivation tech-

niques, mentioned below, which use special strategies

to control the process.

4.2. Two stage, cyclic fed-batch process

Two stages, cyclic fed-batch process is a modified fed-

batch process that entails transfer of a portion of the

whole fermentation broth from the growth stage to the

production stage while leaving a smaller fraction of the

broth for continued cell growth in the growth stage.

The volume of broth in the growth stage can then be

replenished to its pre-transfer volume at a predeter-

mined optimal rate while induction of gene expression

and production are taking place in the production

stage. The optimal process conditions in the produc-

tion stage, such as pH, temperature, cell growth rate

and medium composition can be controlled and main-

tained independently from the optimal conditions in

the growth stage (Chang et al. 1998; Curless et al.
1991). Chang et al. (1998) obtained a two fold increase

in volumetric productivity of rice α-amylase produc-

tivity by the yeast Yarrowia lipolytica SMY2 in com-

parision with a conventional fed-batch process. Choi et
al. (2001) used a two-stage fed-batch process for the

production of human granulocyte-colony stimulating

factor. They optimized the pre-induction growth rate

and the feeding strategy during the production stage.

Genetic stability of the recombinant strain and the

design of optimal media for growth and production

stages are also critically important to a successful imple-

mentation of the two-stage, cyclic fed-batch process for

production of heterologous protein and when working

in large scale. Thus the risk of contamination and eco-

nomical concerns will also become an issue.

4.3. Temperature-limited fed-batch (TLFB) process

The temperature-limited fed-batch process is a tech-

nique where the oxygen consumption rate is controlled

by a gradually declining temperature profile rather

than a growth-limiting glucose-feeding profile. Two

mechanisms that may contribute to the much higher

accumulation of product in the TLFB process are:

1) reduced proteolysis due to lower temperature,

2) reduced proteolysis due to lower cell death and pro-

tease release to the medium (Jahic et al., 2003).

In E. coli cultures, this method has been proved to

prevent an extensive release of endotoxins, i.e.

lipopolysaccharides, which occur in glucose-limited

fed-batch processes at specific growth rates below 0.1

h-1 (Svensson et al. 2005; Han and Zhong, 2003). This

technique stabilizes the cell membrane towards osmot-

ic shock which results in reduced contamination of the

considered periplasmic protein extract with cytoplas-
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mic proteins and DNA (Svensson et al., 2005).

Mare et al. (2005) used a cultivation strategy com-

bining the advantages of temperature-limited fed-

batch and probing feeding control. The temperature

was decreased to lower the O2 demand and the growth

rate. A mid-ranging controller structure was used to

manipulate the temperature and the stirrer speed to

control the dissolved O2 tension. The probing feeding

strategy is changed when the maximum stirrer speed is

reached to obtain a slight excess of glucose. The result-

ing strategy thus limits the growth rate without the risk

of acetate accumulation. A 20% increase in cell mass

was achieved and the usual decrease in specific

enzyme activity normally observed during the late pro-

duction phase diminished with the new technique.

4.4. A-stat

The A-stat technique is a combination of continuous

and fed-batch techniques (Paalme et al., 1995; Paalme

and Vilu, 1992). It is basically a continuous culture

with a smooth change of the desired growth rate. At

first, like in a chemostat, a steady-state culture is

obtained. After that, the computer controlled smooth

change of dilution rate, while keeping its time deriva-

tive constant, is started and continued up to almost

complete washout. This technique showed to be a

powerful technique for the quantitative study of cell

physiology, being at the same time considerably less

time consuming and more informative than the con-

ventional chemostat. Also, cultures seem to react bet-

ter to a smooth rather than an abrupt change in the

dilution rate (Paalme et al., 1997; Paalme et al., 1995).

However, the system is more suitable for academic

purposes and no reports about using this system in

industry have been reported to date.

4.5. Dialysis fermentation

Dialysis fermentation is a way to overcome the

inhibitory effect of acetate and other nutrients and to

obtain high cell density growth. Dialysis is defined as

the separation of solute molecules by their unequal dif-

fusion through a semi-permeable membrane based on

a concentration gradient. Two configurations of vessel

arrangement as mentioned by Shiloach and Fass

(2005) were proposed for dialysis reactors: 1) two-ves-

sel reactor consisting of a culture reactor that had  a

medium reservoir connected by a dialysis device; 2) a

single-vessel dialysis reactor consisting of two cham-

bers separated by a dialysis membrane. The single ves-

sel arrangement is less preferable because it is difficult

to sterilize and sensitive to mechanical stress and oxy-

gen limitation (Fuchs et al., 2002; Markl et al., 1993).

The highest cell density recorded by membrane dialy-

sis reactors is 190 g/l for E. coli (Nakano et al., 1997).

Because of successful high cell density cultivations of

E. coli in a laboratory dialysis reactor, a scale-up of the

process was investigated by Fuchs et al. (2002).

Seeking to provide sufficient membrane area for dial-

ysis in a technical scale fermentor, they used an exter-

nal membrane module, which was also applied for

oxygen supply to the culture in the external loop. Cell

densities exceeding 190 g/l, previously obtained in

laboratory dialysis fermentation, were also produced

with external dialysis modules. Protein concentration

in a 300-L reactor was increased to 3.8-fold of indus-

trial fed-batch-fermentations. However, despite the

promising results obtained in this study, no further

reports about the academic or industrial usage of this

technique for HCDC have been reported to date.

4.6. Pressurized cultivation

Matsui et al. (2006) showed that an air-pressurized

culture is able to meet the high demand for oxygen in

the HCDC of E. coli Carbon dioxide generated by the

cells under increased pressure was inhibitory and as a

result, cellular growth stopped in the air-pressurized

culture at a constant mass flow rate. Increasing the

flow rate along with the pressure in the reactor enabled

the E. coli cells to grow to 130 (non-recombinant) and

104 (recombinant) g/l due to the release of the CO2. In

addition, the specific activity of the product, trypto-

phan synthase, was increased.

4.7. Perfusion techniques

The basic characteristics of perfusion systems are con-

stant medium flow, cell retention and in some cases,

selective removal of dead cells.  Cell retention is usu-

ally achieved by membranes or screens, or by a cen-

trifuge capable of selective cell removal. Perfusion

systems are most often used for animal cell culture.

Advantages and disadvantages of using this technique

are shown in Table 4.

Kiy et al. (1996) by continuous exchange (at an

optimized perfusion rate) of the medium, after an ini-

tial batch phase, obtained cell densities and enzyme

activity,  20 and 50 times, respectively higher than

standard batch fermentations of Tetrahymena ther-
mophila. Scheidgen-Kleyboldt et al. (2003) applied
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the same strategy for producing hydrolytic enzymes by

continuous high cell density cultivation of Colpidium
campylum. Yang et al. (2000) increased the volumetric

antibody productivity by using a “controlled-fed per-

fusion” approach, nearly twofold over the perfusion

process, and surpassed fed-batch and batch processes

by almost tenfold. The substantial boost in the overall

productivity is attributable primarily to the combined

effects of increased cell density as well as reduced

product dilution. Perfusion techniques seem to be a

very good choice especially for the production of

recombinant proteins from plant cell cultures.

However, it seems that investigations should still be

carried out to optimize bleeding rates and study cell

physiology in perfusion cultures (Su and Arias, 2003). 

5. Induction condition: As previously mentioned,

over expression of a protein places an additional meta-

bolic burden on the cell’s energy and carbon and

amino acid pools, which may result in reduced cell

growth. This can be avoided by employing inducible

expression systems. Of course, induction of recombi-

nant protein production results in a great change to the

transcriptome. The major difference between the

induced recombinant cultures and the non-induced

wild-type cultures is the significant down-regulation

of the gene families responsible for protein production,

i.e. energy synthesis, transcription, and translation

genes (Haddadian and Harcum, 2005). The inducer

can be a chemical or change of a physical parameter

such as temperature. The amount of inducer, the strat-

egy of its addition and culture conditions in time of

induction can affect the efficiency of induction. The

optimum induction strategy can be determined by

trial-and-error methods or taking the effects of various

cultivation conditions on the recombinant gene expres-

sion into account (Shin et al., 1997).

5.1. Quality of inducer

Many inducible promoters have been developed,

which can be induced by various mechanisms such as

temperature shifting, pH change and addition of chem-

ical inducers. An overview of inducible promoters for

HCDC has been shown in Table 5.

Considering the advantages and disadvantages of

using different promoters, it can be concluded that lac
based promoters are still the first choice to be used in

HCDC. But, there is a chance that in the near future

lactose can replace IPTG as the inducer as it is less

expensive and can be used as an additional carbon

source. Other promoters, although less expensive than

lac based ones, still have many disadvantages. Should

the researchers or the industry want to use these pro-

moters, there are still lots of improvements that should

be done to overcome these disadvantages.     

5.2. Quantity of inducer

The amount of inducer required to titrate the repressor

molecules is proportional to the total cell mass and the

optimal specific concentration of the inducer, therefore

it needs to be determined for maximizing the recombi-

nant protein synthesis at any cell concentration. The

level of inducer required for optimal expression

depends on the strength of the promoter, the presence

or absence of repressor genes on a plasmid, the cellu-

lar location of the product, the response of the cell to

recombinant protein expression, and the solubility of

the target protein and the characteristics of the protein

itself (Cserjan-Puschmann et al., 2002; Donovan et al.,
1996). 

For example, Shin et al. (1997) tested a range of

specific amounts of inducer (IPTG) (3.26×10-3 to

5.11×10-2 mmol/g of cell) on production of mini-proin-

sulin and reported 5.11×10-2 mmol/g of cells as opti-

mum concentration. Vidal et al. (2005) investigated the
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Table 4. Advantages and disadvantages of using the perfusion technique

Advantages Disadvantages

Removal of cell debris and inhibitory byproducts

Removal of enzymes produced by dead cells

Shorter exposure of product to harsh operational

conditions (pH or temperature)

High volumetric productivity

Large amounts of medium are needed

Nutrients are less completely utilized than in batch

and fed-batch cultivation

Increased cost of waste treatment

-
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influence of induction and operation mode on recombi-

nant rhamnulose 1-phosphate aldolase production by E.

coli using the T5 promoter. They reported that working

in fed-batch, batch and shake flask cultures at the same

IPTG concentration gives the same level of specific

activity. They also reported that growth and enzyme

production rates are reduced by increasing the IPTG

concentration in batch and fed-batch strategies up to the

range of 200 to 1500 µmol IPTG/l.

In general, for inducing the expression of an intra-

cellular recombinant protein, the use of 1mmol IPTG/l

is a reasonable starting point because maximal induc-

tion is predicted to occur for both lacI and lacIq at this

level (Laffend and Shuler, 1994). For secreted proteins

however, IPTG concentrations of 0.01 to 0.1 mmol/l is

suitable to minimize potential problems due to product

insolubility, growth inhibition and cell lysis (Lee and

Ramirez, 1992). 

5.3. Induction time 

The other important parameter for the development of

the optimized induction strategy is induction time,

because maximum yield of foreign proteins in fermen-

tation depends on the point in the growth cycle at

which expression is induced. For strains whose growth

and/or viability are drastically reduced following

induction, induction in late-logarithmic or stationary

phase provides high cell densities for increased prod-

uct formation. However, as shown for chlorampheni-

col acetyl transferase (CAT) expression under the con-

trol of the tac promoter (Donovan et al., 1996), low

growth rates and protease activity brought on by deplet-

ed nutrient levels in the stationary phase can reduce the

yield of foreign protein. In this case, optimal induction

in the mid-logarithmic phase provided sufficient levels

of CAT protein within the cell while achieving a high

cell density to produce the maximal yield. When prod-

uct expression is low and/or does not significantly

influence cell growth, overall foreign protein yield will

be maximized by inducing expression throughout the

entire growth phase (Donovan et al., 1996). 

Tuning the expression of recombinant gene in rela-

tion to the metabolic capacity of the host cell synthesis

machinery to extend the production phase and to attain

maximal yield is a new suitable strategy for increasing

productivity and yield of recombinant protein. In this

regard, a novel concept of transcription rate control by

continuous supply of limiting amounts of inducer in a

constant ratio to biomass was developed and imple-

mented in process with a carbon limited exponential

feed regime of medium and inducer (Striedner et al.,
2003; Cserjan-Puschmann et al., 2002; Grabherr et al.,
2002). Although, increasing the duration of the induc-

tion phase enhances the release of periplasmic proteins

to the surrounding environment (Mergulhao et al.,
2005). Gombert and Kilikian (1998) investigated ade-

quate induction strategies for adding lactose as induc-

er to the bioreactor by testing the number of pulses and
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Table 5. Inducible promoters which are usually used in HCDC.

Promoter Example Inducers Advantages Disadvantages

T7 or lac-based

promoters

Positively regulat-

ed systems

Starvation-induced

promoters

Heat-inducible

promoters

tac, trc, lac, lacUV5-T7
hybrid

arabinose-inducible PBAD
promoter, Rhamnose-

inducible rhaBAD promoter

Trp, phoA

λPL

Isopropyl-β-D-thio-

galactopyranoside

(IPTG)

Lactose

----

Exhaustion of a specific

substrate

Temperature shift

Products are effec-

tively induced

Less expensive and

toxic than IPTG, can

be used as extra car-

bon source

----

----

----

Toxicity and high costs

of IPTG, Difficult to use

in large scale

Difficult to use in large

scale

Product quality

decreases as cell densi-

ty increases

Substrate exhaustion

interferes with produc-

tion, time of induction is

not known

Temperature shift

adversely affects pro-

duction, difficult to use

in large scale
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time intervals between two consecutive pulses. The

time when glucose is nearly depleted may be an opti-

mal time for inducing recombinant protein expression

with lactose (Donovan et al., 1996; Neubauer et al.,
1992). This may be because of the induction of starva-

tion responses, which results in a longer production

phase of the recombinant product (Lin et al., 2004). 

5.4. Medium condition at induction phase

Temperature and composition of growth medium dur-

ing induction can significantly affect foreign protein

expression. Inducer (s) can also be used as carbon or

nitrogen source. Resina et al. (2005) applied methy-

lamine and sorbitol as nitrogen and carbon sources,

respectively for the induction phase of recombinant

lipase production in a high cell density culture of

Pichia pastoris. Furthermore, according to cells’ need

some materials may be added during the induction

phase to improve foreign protein expression. It has

been shown that providing additional amino acids by

supplementing the medium with casamino acids, pep-

tone or yeast extract during induction leads to an

increase in productivity (Madurawe et al., 2000;

Gombert and Kilikian, 1998; Nancib et al., 1991; Li et
al., 1990) and stability (Whitney et al., 1989). For

example, supplementing the medium with particular

amino acids based on the amino acid sequence of

recombinant interferon-γ significantly increases the

productivity (Khalilzadeh et al., 2003). 

Induction temperature can also affect productivity.

Decreasing induction temperature may enhance func-

tional protein formation by reducing the rate at which

an over-expressed protein is formed. Reduced expres-

sion rates reduce the concentration of unfolded

(recombinant) intermediates in the cell. However, at a

case study it has been reported that with lowering

induction temperature from 37 to 30ºC recombinant

proinsulin production decreased considerably during

fed-batch cultivation of E. coli (Shin et al., 1997).

Therefore, decreasing induction temperature is not a

general rule for increasing production and optimiza-

tion of induction temperature is necessary for all

expression systems.

6. Process analysis and control

Analytical controls ensure a consistent performance of

the defined process while makeing it possible to eval-

uate the effect of applied changes to the process on

productivity before and after implementation of

process changes (Graumann and Premstaller, 2006).

As Shimizu et al. (1993) pointed out, the control-sys-

tem development for biological systems is not straight-

forward due to (1) the lack of accurate models describ-

ing cell growth and product formation, (2) the nonlin-

ear nature of the bioprocess, (3) the slow process

response, and (4) a deficiency of reliable on-line sen-

sors for the quantification of key state variables, sever-

al attempts have been done to analyze and control

HCDC.

Several variables are being used for control purpos-

es and can be classified (Lee et al., 1999a) as either

measured or manipulated. Measured variables can be

classified further as either directly measured (on-line

or off-line) or indirectly determined. Directly meas-

ured variables include temperature (T), pH, dissolved

oxygen concentration (DO), optical density (OD), sub-

strate concentration (s), pressure and exit gas compo-

sition. These variables can be measured directly during

cultivation by various instruments such as DO probes,

pH probes (pH), T probes (T), spectrophotometers

(OD), high-performance liquid chromatography (s),

glucose analyzers, gas chromatographs and mass spec-

trometers. Indirectly determined variables include spe-

cific growth rate (µ), cell concentration (x), oxygen

uptake rate (OUR), oxygen transfer rate (OTR), carbon

dioxide evolution rate (CER), glucose (or other sub-

strates) uptake rate (GUR), glucose (or other sub-

strates) demand (GD) and respiratory quotient (RQ).

Indirect variables are estimated or calculated from one

or more of the directly measured ones. The manipulat-

ed variables include agitation speed and substrate feed

rate. Most of these variables have been used in combi-

nation to determine the nutrient feed, usually the most

critical factor in high cell density processes. For eval-

uating the quality of a measurement,

calibration/checking prior to and after cultivation by

mounting identical sensors in well comparable posi-

tions and checking the individual signals for quality

and elemental balancing often for carbon and nitrogen

is usually carried out (Galvanauskas et al., 1997;

Chattaway et al., 1992; Shuler and Kargi, 1992).

The analytical method should be easy-to-use, quick

and reproducible while maintaining an adequate infor-

mation content. Graumann and Premstaller (2006)

reviewed a number of new analytical systems that have

recently been introduced to the field of biotechnologi-

cal production of recombinant proteins which increas-

es the flexibility and sophistication of feed control
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schemes available for HCDC process.

The new advances such as chemometric sensors

(Clementschitsch et al., 2005), optical sensors (Marose

et al., 1999) and other on-line or off-line measure-

ments of product, nutrients and metabolites (for exam-

ples see Meuwly et al., 2006; Crowley et al., 2005;

Bélanger et al., 2004; Peuker et al., 2004; Baker et al.,
2002; Rocha and Ferreira, 2002; Hoffmann et al.,
2000) contribute to close gaps remaining in the under-

standing and control of HCDC process. In spite of all

the researches mentioned above, widespread usage of

new analytical systems has been hampered by several

problems including poor thermal stability (e.g. enzyme

electrodes), poor reliability or a high level of complex-

ity (e.g. filtration type systems and flow injection

analysis (FIA) systems) (Lee et al., 1999). 

As previously mentioned, usually the most critical

factor is nutrient feeding which should support cell

growth and recombinant protein production while

avoiding substrate inhibition and other related prob-

lems. The simplest control is open-loop control, which

means controlling without feedback. Open-loop con-

trols can be applied for constant-rate feeding, gradual

stepwise or linear increase of the feeding rate and

exponential feeding based on fermentation model

equations derived from mass balances (Lee, 1996,

Shiloach and Fass, 2005). Combination of these trends

is also possible. In feedback control (close-loop), a

measured variable and a manipulated variable will be

considered to be controlling the process. In direct feed-

back control, the measured variable and the manipulat-

ed variable are the same, but usually these are different

(indirect feedback control) and the measured variable

can be used directly to adjust manipulated variable or

can be used for estimating a variable that will be used

to set a manipulated variable. 

On-line analyzing of substrate is an example of

direct feedback control in fed-batch processes. The

concentration of carbon source in the culture medium

can be controlled at a desired value if we can measure

it on-line (Lee et al., 1999). As an example, Kim et al.
(1994) used a glucose analyzer for fed-batch culture of

Alcaligenes eutrophus for the production of poly (3-

hydroxybutyrate). They clearly showed that control-

ling nutrient concentration in an optimal range is an

efficient way of cultivating cells to high concentration,

even though this is a simple single-input/single-output

(SISO) system. Kellerhals et al. (1999) developed a

closed-loop control system based on on-line gas chro-

matography for assaying Na-octanoate, as the sole car-

bon source, to maintain continuously fed substrates at

desired levels. In another study, Shang et al. (2006)

controlled glucose feeding rate in accordance with

ethanol concentration which is the by-product of the

process of ergosterol production in high cell density

cultivation of S.  cerevisiae. Due to the delay in meas-

urement and instability of on-line glucose systems,

methods that estimate and predict substrate consump-

tion rate are generally preferred (Lee et al., 1999).

Meuwly et al. (2006) illustrated that glucose consump-

tion rate (GCR) can be successfully applied as an indi-

rect method to monitor and control high-density perfu-

sion cultures of Chinese hamster ovary cells in packed-

bed bioreactors.

Other direct feedback control strategies such as DO,

pH, cell concentration and exit gas composition have

been applied to control the process. The DO-stat

method is based on the finding that the DO increases

sharply when the substrate is depleted. Therefore, the

substrate concentration can be maintained within a

desired range of nutrient when the DO rises above the

preset value (Lee, 1996). Konstantinov et al. (1990)

introduced the balanced-DO-stat method which guar-

anties sufficient oxygen supply and prevents overfeed-

ing. They measured the exit gas composition from the

fermentor in real time, estimated the GUR and deter-

mined the nutrient (or glucose) feed rate. Akesson et
al., (2001) avoided acetate accumulation in HCHC by

feedback controlling of glucose feeding based on oxy-

gen probing. Whiffin et al. (2004) developed a starva-

tion-based dissolved oxygen (DO) transient controller

to supply growth limiting substrate to high cell densi-

ty fed-batch cultures of recombinant E. coli. The algo-

rithm adjusted a preexisting feed rate in proportion to

the culture’s oxygen demand, which was estimated

from fluctuations in DO concentration. 

The pH-stat method is based on the observation that

the pH changes when the primary carbon substrate

becomes depleted or abundant (Kim et al., 2004; Choi

and Lee, 1999a,b; Lee and Chang, 1993). When the

carbon substrate in the culture is exhausted, pH begins

to rise mainly as a result of catabolizing organic acids

or amino acids as carbon or energy sources. Shin et al.
(1997) increased the volumetric media feed rate in a

stepwise manner during the feeding-on period as the

cell concentration increased during the pH-stat pro-

duction of mini-proinsulin with E. coli. Kim et al.
(2004) used this control strategy to grow recombinant
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E. coli up to 101 g/l by controlling the specific growth

rate at 0.11/h, when pH rised above an upper limit due

to the depletion of substrate, feeding got started.

In a defined medium, the DO-stat responds more

rapidly to nutrient depletion than the pH-stat. But,

when complex carbon-nitrogen substrates such as

yeast extract or peptone are used together with carbo-

hydrate substrates, the DO change is not as large as

when the carbon source is depleted, since the cells uti-

lize the complex substrates (Lee, 1996). Therefore, the

pH-stat method is more suitable when semi-defined or

complex media are used. 

Cell concentration can also be used for indirect

feedback control if suitable detectors such as a laser

turbidimeter for on-line analyzing of the cell concen-

tration exist.  Exit gas compositions are measured to

estimate specific state variables, namely OUR, CER,

RQ, GUR and the ratio of OUR to GUR (Lee et al.,
1999). For example, cells produce CO2 during growth

and the CER is roughly proportional to the carbon

source consumption rate. Therefore, nutrient feeding

can be controlled by using CER data that can be calcu-

lated from the concentration of CO2 in the gas outlet

(lee, 1996). 

Chung et al. (2006) reviewed robust adaptive con-

trollers and expert systems based on fuzzy control or

neural networks and introduced a new multiple-model

control strategy for fed-batch high cell-density culture

processing.

7. Concluding remarks and future prospects: As

discussed in this review, several approaches at differ-

ent levels are available for increasing productivity in

high cell density cultures. Information on genome,

transcriptome and proteome levels is a great help for

genetic engineers and biochemists to design and con-

struct a well-adapted host for HCDCs. Designing a

suitable medium as well as nutrient strategy for sup-

porting growth and the production phase is another

concern for biotechnologists. Optimizing physical

conditions for enhancing mass and heat transfer and

decreasing foam formation is an obstacle for chemical

engineers. Although, the effects of high cell density on

E. coli metabolism has been studied,  further investiga-

tions should be focused on understanding the global

cellular response of E. coli and other microorganisms

to harsh conditions especially related to recombinant

protein production in high cell density cultures.
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