
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most
usual form of polymorphism in human genome.
Analyses of genetic variations have revealed that indi-
vidual genomes share common SNP-haplotypes. The
particular pattern of these common variations forms a
block-like structure on human genome. In this work,
we develop a new method based on the Perfect
Phylogeny Model to identify haplotype blocks using
samples of individual genomes. We  introduce a rigor-
ous definition of the quality of the partitioning of haplo-
types into blocks and devise a greedy algorithm for
finding the proper partitioning in case of perfect and
semi-perfect phylogeny. It is shown that the minimum
number of tagSNPs in a haplotype block of Perfect
Phylogeny can be obtained by a polynomial time algo-
rithm. We compare the performance of our algorithm
on haplotype data of human chromosome 21 with
other previously developed methods through simula-
tions. The results demonstrate that our algorithm out-
performs the conventional implementation of the Four
Gamete Test approach which is the only available
method for haplotype block partitioning based on
Perfect Phylogeny.
Keywords: Single Nucleotide Polymorphisms; haplo-
type; tagSNP; perfect Phylogeny

INTRODUCTION

One of the major interests of current researches in

genomics is to understanding the genomic differences

in human population so as to be able to find out what

makes us different rather than what we have in com-

mon. Single Nucleotide Polymorphism (SNP), i.e. sin-

gle base pair difference between individuals in a pop-

ulation, is believed to be an important reason for vari-

ations that occur in human genome. SNP is the result

of a substantiated single site mutation in population.

Genome of a new child is affected by many single site

mutations of which some spread over population.

Currently more than 14.5 million SNPs have been

reported to and validated by dbSNP which is almost

0.5% of whole genome nucleotides

(www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi). An

SNP-haplotype is a sequence of SNP alleles in a cer-

tain region of chromosome. For simplicity, we will use

haplotype rather SNP-haplotype from now onwards.

Soon after the completion of Human Genome Project,

researchers have shown that genome comprises

regions of certain boundaries in which haplotypes are

inherited through generations without any change. 

The studies suggest that human genome can be

viewed as a partitioning of haplotype blocks in which

common variations of haplotypes within a certain pop-

ulation are distinguished by a relatively small number

of SNPs, called haplotype tagging SNPs (tagSNPs),

(Dawson et al., 2002; Johnson et al., 2001). 

Different models have been introduced to define

the block-like structure of genome. Haplotype blocks

in methods of Patil et al. (2001) and Zhang et al.
(2002) are subjected to get a limited Haplotype

Diversity. The former approach applies a greedy algo-
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rithm to find edges of the haplotype blocks and the lat-

ter performs a dynamic programming to achieve mini-

mum number of tagSNPs. Methods based on statistical

association are essentially derived from the measures

of Linkage Disequilibrium (LD) (Daly et al., 2001),

(Gabriel et al., 2002), (Katanforoush et al., 2009). The

method introduced by Gabriel et al. (2002) is the most

commonly used in this category. Since there are some

parts of haplotype in which no strongly associated

SNPs exist, Gabriel’s method results in obtaining

“islands” of haplotype blocks separated by some

uncertain gaps. 

In this paper we present an algorithm for haplotype

block partitioning based on Perfect Phylogeny. To con-

sider how the actual data are fitted to the model, a

measure for deviation is introduced. For a given con-

stant σ, (0<σ≤1) denoting the amount of deviation, we

refine haplotype samples by changing at most (1- σ)

×100% of SNPs alleles. By setting σ =1, our method

finds the partitioning in which no recombination with-

in each block can be observed. This case corresponds

to pure perfect haplotypes. In a partially perfect phy-

logeny, by setting σ < 1, at most (1- σ)×100% of SNPs

has to be ignored so that the rest satisfy the Perfect

Phylogeny constraints. The conventional approach to

find haplotype blocks under the model of Perfect

Phylogeny is the Four Gamete Test approach (Hudson

and Kaplan, 1985). In this approach, a pair of SNPs

passes the test if no recombination occurred between

them. The first and only practical implementation of

this approach is attributed to Wang et al. (2002) in

which haplotype blocks starting with a single SNP

extended until δ percent of SNP pairs fail the Four

Gamete Test. Gramm et al. (2009) have shown that

problem of haplotype partitioning with minimum hap-

lotype blocks under the Perfect Phylogeny model is

NP-hard. Our approach obtains an optimal partitioning

for the problem assuming that blocks are continuous

regions and are governed by the model of Perfect

Phylogeny. 

It is also shown that if there is no missing data in a

perfect block, then the number of tagSNPs is equal to

the number of mutually distinct haplotypes minus one

and in this case, tagSNPs can be identified using a

polynomial time algorithm. For blocks with missing

data, we use an approximation algorithm to find mini-

mum set of tagSNPs. 

In what follows, we first introduce methods which

consist of missing SNPs reduction, measurement of

block perfectness, perfect block partitioning and

tagSNP selection. We then assess the accuracy of the

block inference and discuss the results of applying the

method on a set of real haplotype samples of human

genome.

METHODS

The outline of the method is as follows. Samples of

individual haplotypes are given. We assume that all the

haplotypes are taken from a certain region of human

genome. Each of the next procedures is performed on

various sub-intervals of this region, which finally

some of these sub-intervals will be assigned as haplo-

type blocks. Starting from a singleton interval, we

extend the interval by adding one SNP to the right

boundary of the interval and then re-evaluate the same

procedures on this interval. An interval is considered

as a block if certain criteria on Perfect Phylogeny are

satisfied. The procedures include the calculation of

pattern matrices, missing data reduction, perfectness

measurement, and tagSNP selection. Following this

section, we will provide details of the procedures.

SNPs are usually bi-allelic, i.e. every SNP variation is

on two nucleotide forms. Thus haplotypes can be rep-

resented by 0/1 vectors. From now on, we suppose that

haplotype samples are given by a matrix in which

columns correspond to SNPs and rows correspond to

individuals. We denote this matrix with A. We assume

that the major and minor alleles are represented by 0

and 1, respectively and the letter N indicates missing

entries.

Let c1 and c2 be two columns of A. Let V (c1,c2) be

the set of different combinations that the pair of

columns takes on over all rows of A, so V (c1,c2)={(0,

0), (0,1), (1,0), (1,1)}. It has been shown (Estabrook et
al., 1975) that a necessary and sufficient condition for

A to be a Perfect Phylogeny is that for every pair c1

and c2 of columns of A, |V (c1,c2)| ≤ 3. This criterion is

known as Four Gamete Test. We assume that the num-

ber of 1-entries in each column that is also called

Minor Allele Frequency (MAF) is less than the half.

As a consequence, in every pair of columns of A,

gamete (0,0) exists so we can consider only three

gametes {(0,1), (1,0), (1,1)} for the Four Gamete Test,

so we state the test by |V(c1, c2)-{(0, 0)}| ≤ 2.

Reducing Missing Data using Pattern Matrix: A

haplotype h’ of length n is said to be a cover of type (1)

of another haplotype h (of the same length as h’ ) if for

each SNP i, 1 ≤ i ≤ n, which h(i)≠N then h’(i)=h(i). We

denote this by h << (1) h’. The haplotype h’ is called the

cover of type (2), if for another haplotype h for which
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h(i)≠N, then h’(i)=h(i) or h’(i)=N. It is denoted by h
<<(2) h’.

A haplotype matrix Pm’×n is said to be a pattern
matrix for another haplotype matrix Am×n,(m’≤m), if it

satisfies following conditions,

(1)

(2)

(3)  

Theorem 1. Suppose that P is a pattern matrix for A.

If P is perfect then A is perfect, too.

Proof. Suppose on the contrary, A is not perfect. So

there exist three rows, say, r1, r2 and r3 and two

columns, say i and  j, such that

(1)  ar1i = 1  and  ar1 j = 0 ,

(2)  ar2i = 1  and  ar2 j = 1 ,

(3)  ar3i = 0  and  ar3 j = 1 .

Suppose rk <<(1) hlk
, in which hlk

is the lk-th row of P.

Therefore, 

(1’)  Pl1i =1  and  Pl1 j =0 ,

(2’)  Pl2i =1  and  Pl2 j =1 ,

(3’)  Pl3i =0  and  Pl3 j=1 .

This is a contradiction because we have assumed that

P was perfect.

Pattern Matrix: We take the following steps in con-

structing a pattern matrix;

(1) Sort haplotypes of A into an increasing order

depending on the number of missing SNPs, say A1, A2

, …, An.

(2) At the beginning, let A1 be the first row of P. In the

k-th step, k ≤ 2, compare Ak with all the existing rows

of P. If none of the rows of P covers Ak of type (2) then

add Ak to P as a new row. Otherwise, for each row pi
of P for which Ak<<(2) pi , take pi(j)=Ak(j) for each j
that 1≤ j ≤ n and pi (j)=N.

Once the above procedure is completed, each row

of A is covered, of type (1) by some rows of P. From

now on, when we use the term “cover” we mean cover

of type (1). 

In what follows, we show that the matrix P is a pattern

matrix for A.

1. To prove the condition (1) of pattern matrix defini-

tion, let us assume that we arrived at the k-th step. We

consider two cases:

Case (I): If there is no p∈P such that Am<<(2) p then

we add Ak to P as a new row. The 0-1entries of Ak will

never change through the next steps. Therefore this

row ultimately will cover Ak.

Case (II): If there exists p∈P such that Am<<(2) p then
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Pattern id Pattern haplotaype Haplotype matrix Covering pattern

1

2

3

4

5

6

7

8

9

11111101111101110111111111111

00000010000010001000000000000

00000000000000001000000000000

0011N1011010000101110000000NN

001101011010000101110N00N01NN

N0N101011N10010101110N00N01NN

0011110111110101011NNNNNNNNNN

0011010010100001011NNNNNNNNNN

00N000001010000101NNNNNNNNNNN

0000000000000000100NNNNNNNNNN

001101011010000101110N00N01NN

0011N1011010000101110000000NN

0011010010100001011NNNNNNNNNN

0000000000000000100NNNNNNNNNN

000000000000000010000000000NN

0011110111110101011NNNNNNNNNN

0000000000000000N00NNNNNNNNNN

00N000001010000101NNNNNNNNNNN

1111110111110111011NNNNNNNNNN

000000000000000010000000N0000

1111N101111101110111111111111

00000000000000001000000000000

00000010000010001000000000000

00000010000010001000000000000

N0N101011N10010101110N00N01NN

11111101111101110111111111111

0000000000000NN01000000000000

3

5

4

8

3

3

7

3

9

1

3

1

3

2

2

6

1

3

Table 1. Example of haplotype matrix and the covering pattern matrix.

( )
h'hPh',Ah <<∋∈∃∈∀

1

( )
h'hAh,Ph' <<∋∈∃∈∀

1

( )
h'hPh',Ph <<∋∈∃∈∀

2
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the row corresponding to P will ultimately cover Ak.
So we conclude that the condition (1) of pattern matrix

holds.

2. Since each row of P is obtained from a row in A, so

the condition (2) holds.

3. In every step that we intend to add a new row, say q,

to P we check that if for an arbitrary row q’ of P there

exists at least a column j for which q(j)≠q’(j) and none

of these entries are missing that yields none of rows of

P covers each other.

Table 1 presents an example of haplotype matrix and

its associated pattern matrix. As shown in Table 1,

missing data could be inferred. Based on Theorem 1,

many of missing SNPs, N, are replaced by 0 or 1. This

is done so that the condition of perfectness holds.

Measure of “Perfectness”: The conventional method

to measure the deviation from “perfectness” considers

the ratio of Four Gamete Test failures to all pairs of

columns of a haplotype matrix (Wang et al., 2002). For

example, in Figure 1, the deviation from “perfectness”
is 0.2. Instead, we consider 1-entries while changing

them to 0, a test failure is resolved. We then obtain a

minimal set of such entries that addresses all failures.

We use the size of the minimal set divided by the num-

ber of all entries as our measure of deviation from

“perfectness”. As an example, it is 1/18 in Figure 1. It

should be noted that changing all entries of the set does

not necessarily transform the matrix to a perfect matrix

and in fact, we are just interested in the least necessary

number of such changes.

In detail, for every column i and j (i<j) of a pattern

matrix P, we define three conflict sets, Cij1, Cij2 and

Cij3 as follows;

Cij1 = {r | pri = prj =1},

Cij2 = {r | pri = 1 ∧ prj = 0},

Cij3 = {r | pri = 0 ∧ prj = 1}.

Now, the problem is to find the minimal set of coordi-

nates, S={(r,s) | prs =1} such that for every pair (i, j)
which has conflict, one of the following conditions is

satisfied;

(1)  if  r ∈ Cij1 ⇒ (r, i) ∈ S  or  (r, j) ∈ S ,
(2)  if  r ∈ Cij2 ⇒ (r, i) ∈ S ,
(3)  if  r ∈ Cij3 ⇒ (r, j) ∈ S .

Therefore, for columns i and j which fail in Four

Gamete Test, there exist 1-entries in S such that chang-

ing them to 0 resolves the failure. In what follows, a

heuristic approach is introduced which approximately

finds the minimal set S.

Algorithm: Let ~ be a total order on the set of column

pairs, Σ={(i, j)|1≤ i<j ≤ n}. Based on the ordering of Σ
and in each step, the algorithm considers a pair of

columns of the pattern matrix and adds coordinates of

some of the 1-entries to the solution set. The subset of

1-entries in each step is selected among subsets of 1-

entries which resolve the test failure that possibly

occurs in the pair of columns. We select the subset of

1-entries for each column pair by using a greedy algo-

rithm as follows;

Suppose that (i0,  j0) is the minimum element of (Σ, ~).

At the first step of the algorithm, let S0
1={(r, i0)|r

∈C1i0j0}, S0
2={(r, i0)|r∈C2i0j0}, and S0

3={(r,j0)|r∈C3i0j0}.

At the k-th step of the algorithm, define

S1k = min ( Slk-1 U {(r, ik) | r∈C1ik jk and (r, jk) ∉ Slk-1}) ,

S2k = min ( Slk-1 U {(r, ik) | r∈C2ik jk}) ,

S3k = min ( Slk-1 U {(r, jk) | r∈C3ik jk}) ,

in which min(.) denotes the set with minimum number

of elements. After the final step, the solution set S is

obtained by S = min (SlK), where K=|Σ|.

Our measure of deviation from “perfectness” is

now obtained by δ (A)=|S|/(mn). Obviously, the result

of the algorithm depends on the total order of Σ. Thus,
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Figure 1. Measuring the deviation from ''perfectness''. Three pairs
of columns (shaded gray) fail in Four Gamete Test that is counted 3
failures out of 15. As another approach, we consider two entries (in
circles) which changing them from 1 to 0 turn whole matrix into a
perfect matrix. 

1≤ l ≤3

1≤ l ≤3

1≤ l ≤3

1≤ l ≤3

1≤ l ≤3
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the algorithm should be performed several times using

different total orders to find the size of the optimal set

S. In practice, we examined few total orders among

those in which (i, j) ~ (i’, j’) implies that j < j’. The fol-

lowing algorithm obtains haplotype blocks of a chro-

mosomal region of n SNPs and m haplotype samples in

O (n2m).

Block partitioning: In this section we present an algo-

rithm for partitioning a haplotype matrix into blocks.

Given a set of m haplotypes on n SNPs by an m×n
matrix A, we find an increasing sequence <ξ1=0, ξ2,…,

ξk = n > indicating boundaries of haplotype blocks in

such a way that δ (Pi)≤1-σ, for i=1,…,k-1, where Pi is

the pattern matrix of the submatrix starting from col-

umn ξi+1 to column ξi+1 and σ is an arbitrary threshold

which denotes how much a certain block is near to per-

fect. We also add another option to the algorithm by

which at least 100α% of individuals share “common

haplotypes” in each block. In detail, the percentage of

“common haplotypes” in a block is defined as 1-t/m,

where t is the number of patterns which cover exactly

one haplotype.

For a given haplotype matrix, our algorithm consid-

ers the first column as the current block. In each itera-

tion, the pattern matrix of the current block is obtained,

and then the percentage of common haplotypes and the

measure of “perfectness” are calculated. The algo-

rithm extends the current block to the next right col-

umn until at least one of conditions on perfectness or

“common haplotypes” fails. The same procedure iter-

ates on the rest of columns. 

Selection of tagSNPs: Let B be a block of haplotypes

with n SNPs. We call S ⊆ {1, … ,n} a set of tagSNPs

if for each two different haplotypes i and j in B, there

exists an element t of S such that Bit ≠ Bjt , Bit ≠ N and

Bjt ≠ N.

Theorem 2: Let B be a set of perfect haplotypes with

no missing data. If T(B) is the set with the minimum

tagSNPs then |T(B)|= m-1 and T(B) could be found by

a polynomial time algorithm of order O(mn). 

Proof: We apply strong induction on the size of B. The

result is obvious for the case where |B|=2. Assume that

the induction hypothesis holds for every set A of size

of at most m-1. Also assume that the set

B={h1,h2,…,hm} satisfies the condition of the theorem.

Then there exists a SNP, x, for which none of sets

X0={h∈B|h(x)=0} and X1={h∈B|h(x)=1} are empty;

this SNP is found in O(n). Therefore |X0|≤m-1 and

|X1|≤m-1. So by induction assumption, |T(X0)|=|X0|-1

and|T(X1)|=|X1|-1. These sets can be found by an algo-

rithm of O (n(|X0|+|X1|)). It is obvious that

x∉T(X0)UT(X1). Now we show that T(X0)∩T(X1)=∅.

In contrary, let us assume y∈T(X0)∩T(X1) then there

exist four haplotypes hi,hj ∈ X0 and hk, hl ∈ X1 such

that,

hi(x)=0,   hi(y)=1, 

hj(x)=0,   hj(y)=0, 

hk(x)=1,  hk(y)=1, 

hl(x)=1,  hl(y)=0 .

Hence, four gametes 00, 01, 10, and 11 could be

observed at SNPs x and y that is a contradiction

because we have already assumed that B is perfect.

Therefore, T=T(X0)UT(X1)U{x} is a set of tagSNPs of

size m-1. It means that |T(B)|≤m-1. Now suppose that

z∈T(B). Similar to the above argument we define two

sets Z0 and Z1 to obtain T(B)=T(Z0)UT(Z1)U{z}. So

|T(B)|=|T(Z0)|+|T(Z1)|+1 that is equal to m-1 by the

induction hypothesis. 

Based on the proof of Theorem 2, we introduced an

algorithm to select a set of tagSNPs for blocks of hap-

lotype samples. For a general haplotype block, the

problem of minimum tagSNP set is NP-hard (Huang

and Chao, 2008; Vinterbo et al., 2006). However, for

blocks of perfect haplotypes, the following algorithm

finds a set of tagSNPs with minimum size in polyno-

mial time. The result is also a reasonable approxima-

tion of minimum tagSNPs for general cases. 

Assume that T(B)=min{T | T is a set of tagSNPs for

B}. Recall that in Theorem 2, we proved that for each

SNP x if X0={h∈B|h(x)=0}≠∅ and X1={h∈B|h(x)=1}

≠∅ then there exists a minimal set of tagSNPs for

which x∈T(B). We use this proposition to derive an

algorithm for tagSNP selection. 

For each SNP i, define Ai={p∈P|p(i)=0},

Bi={p∈P|p(i)=1}, and let mi=min(|Ai|,|Bi|) and

Mi=max(|Ai|,|Bi|). Choose one SNP of maximum Mi
among those maximizing mi, say i1, and let T={i1}.

Assume that after the k-th step of algorithm, we have

T={i1, i2, …, ik}, and Dk={(x1,…, xk)| Qx1,…,xk ≠∅ for

1≤j≤k and xj∈{0,1} for 1≤i≤k}, where Qx1,…,xk
={p∈P|p(ir)∈{xr ,N} for 1∈r∈k}.

For each (x1,…, xk)∈Dk and each i∈{1,2,…,n}-T, we

define Ax1,…,xk;i={p| p∈Qx1,…,xk and p(i)=0} and 

Bx1,…,xk;i={p| p∈ Qx1,…,xk and p(i)=1}.

Let

mik =    Σ min (|Ax1,…,xk;i|,|Bx1,…,xk ;i|) , and
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Mik =    Σ max (|Ax1,…,xk;i|,|Bx1,…,xk;i|) ,

Similarly for the next step, we choose one SNP of

maximum Mik among those maximizing mik, say ik+1,

and add it to T. The algorithm stops at step r if for each

(x1,…, xr)∈Dr, we have |Qx1,…,xk|≤1.

Method evaluation: In this section, we assess our pro-

posed methods through evaluations on real and simu-

lated haplotype data.  In the first assessment, we esti-

mate the accuracy of methods to detect perfect and

partially perfect blocks using simulation generated

samples. By the other evaluations, we compare gener-

al features of haplotype blocks of two previously

reported block structures of human chromosome 21

with results obtained by our algorithms. In the assess-

ment, length of blocks and its distribution on genome,

coverage of “common haplotypes” and number of

tagSNPs are compared among different partitioning

for chromosome 21.

Accuracy of block inference: To assess how much a

haplotype partitioning method accurately detects

boundaries of perfect haplotype blocks, we evaluated

our proposed method and Wang’s approach of Four

Gamete Test through simulations. At first, we devel-

oped a simple algorithm to produce a library of ran-

domly generated haplotype samples under the model

of perfect phylogeny and with various sample size.

Each entry set of the library contained a set of perfect

haplotypes on three to 25 SNPs. The sets comprised

haplotype blocks of the final dataset. Precisely, we ran-

domly chose haplotype sets and joined them to each

other until samples with at least 200 SNPs were

obtained. We rearranged the order of SNPs in each

block such that at least a failure on Four Gamete Test

among pairs of two neighboring columns of two differ-

ent blocks was assured. We recorded coordinates of the

block boundaries for further assessment. We also

added noise to the sample by changing 0 entries to 1

with a noise ratio 0.02.

We considered the following correlation coefficient

of partitioning as the measure of accuracy,

where uj, vk and wi are lengths of the simulation

generated blocks, the inferred blocks and the length of

overlaps between partitions, respectively. In Figure 2,

results of evaluation of Wang’s method (Four Gamete

Test), and our proposed method for block partitioning

(PerfectBlock) are shown. Each method was per-

formed on simulated samples, before and after intro-

ducing noise. Independently, each method was also

performed with two different settings for

“perfectness” threshold.

It is shown that when haplotype samples are purely

governed under the perfect phylogeny model, the

inference of PerfectBlock with σ=1 is persistently

exact. This denotes that the proposed measure fits the

model as it should be expected. In contrast, it seems

that Wang’s method lacks total compatibility with the

model, at least in its available implementation in

Haploview (Barrett et al., 2005). The noise added to

the samples makes haplotype blocks to lose features of

perfect phylogeny. As shown by Figure 2, in the pres-

ence of noise, the accuracy of our method is higher

than Wang’s application of Four Gamete Test. It is

noticeable that in this case, accuracy of both methods

drops when the parameter of pure perfect model is

used.

Evaluation on chromosome 21 haplotypes: We
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Figure 2. Accuracy of perfect block inference versus number of hap-
lotype samples.
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applied our algorithm to haplotype data of human

chromosome 21 from Patil et al. (2001). The data set

included 20 haplotypes of 24, 407 SNPs of minor

allele frequency at least 0.1, spanning over 32.4 MB

that were located in four contigs.

Table 2 represents the properties of haplotype

blocks for two different settings for parameters;

(α,σ)=(0,1.00) and (α,σ)=(0,0.98). The first setting

implies that no recombination may occur within each

block (i.e. pure perfect) and there is no bound on hap-

lotype diversity. By the second setting, we assumed

that at most 2% of SNPs within each block are allowed

to change so that a perfect tree could be obtained (i.e.

partially perfect) and again no bounds on haplotype

diversity impose. 

As shown by Table 2, total number of blocks con-

siderably reduces from 3,737 to 1,860 when the

parameters are changed to (α,σ)=(0,0.98). Also, total

number of tagSNPs capturing all haplotype informa-

tion in all chromosomes reduced from 11,217 to 7,837.

In pure perfect analysis, (α,σ)=(0,1.00), 657 blocks

containing more than 10 SNPs per block accounted for

17.6% of all blocks, 48.6% of common SNPs and

40.8% of all nucleotides. The largest purely perfect

block contained 95 SNPs. 

In partial perfect analysis, (α,σ)=(0, 0.98), the

number of blocks containing more than 10 SNPs

increased to 744 which covered 74.8% of common

SNPs and 68.6% of all nucleotides. In this case, the

largest block contained 165 SNPs. Generally, purely

perfect haplotype blocks were smaller than those

restricted by weaker constraint, as it was expected. 

Comparison of the greedy algorithm with the pure

perfect analysis showed that the number of 4135

blocks obtained by the greedy algorithm reduced to

3737 blocks and also the number of blocks containing

more than 10 SNPs increased from 589 to 657. The

average number of SNPs reduced from 23.2 to 17.8.

The number of blocks containing less than 3 SNPs

reduced from 2138 to 1116 without significant changes

in average block size. Comparison of dynamic pro-

gramming algorithm and pure perfect analysis showed

an increase in the number of blocks from 2575 to 3737

and also a decrease in the number of blocks containing

more than 10 SNPs. Also it is observed that the num-

ber of blocks containing less than 3 SNPs was

increased. It is notable that block partitions in pure

perfect analysis covered all 20 chromosomes in the

data set but the results of two others were based on

80% coverage. 

Comparison of the results obtained by pure perfect

analysis with the dynamic programming algorithm
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Method SNPs/ block No. of blocks Ave. block size,

(SNPs)

Coverage of

common hap.

Block

distribution

tagSNPs

σ = 1.00

σ = 0.98

Patil et al.
(2001)

Zhang et al.
(2002)

>10

3-10

<3

Total

>10

3-10

<3

Total

>10

3-10

<3

Total

>10

3-10

<3

Total

657

1964

1116

3737

744

1019

97

1860

589

408

2138

4135

742

909

924

2575

17.8

5.4

1.5

6.4

24.2

5.8

2.0

12.9

23.2

5.2

1.4

5.8

24.5

5.2

1.3

9.3

0.91

0.95

0.99

0.95

0.76

0.87

0.93

0.83

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

0.17

0.53

0.30

1.00

0.40

0.55

0.05

1.00

0.14

0.34

0.51

1.00

0.29

0.35

0.36

1.00

11217

7873

4563

3582

Table 2. Haplotype blocks of human chromosome 21 obtained by different methods.

The results of block partitioning of Patil et al. (2001), based on a greedy algorithm, and those of Zhang et al. (2002), based on dynamic
programming are given in Table 2. These results are based on the criteria that 80% of haplotypes within each block are common. 
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with 80% coverage shows an increase of only 4% in

the number of blocks. The results of block partitioning

using  (α,σ)=(0,0.98) and the other methods indicated

a considerable decrease in the number of blocks up to

55% compared to greedy algorithm and a decrease of

27% compared to the dynamic programming algo-

rithm. Also the number of blocks containing more than

10 SNPs increased and the number of blocks contain-

ing less than 3 SNPs decreased significantly. 

It is notable that σ=0.98 indicates that for a block

with size of , e.g. 5 SNPs at most 2 SNPs are allowed

to change so as to be able to have a perfect block

whereas the results obtained by 80% coverage indicate

that 4 haplotypes which contain 20 SNPs are lost. We

next examined haplotype diversity within blocks. It

should be noted that although our block definition,

unlike diversity based definitions, was based on

recombination but we used diversity as an additional

factor. 

Nevertheless, in pure perfect analysis with no

recombination and no bound on haplotype diversity

within blocks (α,σ)=(0, 1.00), we observed that more

than 90% of haplotypes within each block were com-

mon haplotypes and they appeared more than once.

The average number of distinct common haplotypes in

each block was less than four. In partial perfect analy-

sis with (α,σ)=(0, 0.98) more than 80% of haplotypes

in each block were common and the average number

of distinct common haplotype was less than five. Thus,

the low haplotype diversity is an important feature of

regions with low rates of historical recombination.

This low haplotype diversity makes it possible to cap-

ture all haplotype information in all chromosomes

using a small number of Tag SNPs.

Missing data: Missing data are common in haplotype

data sets. The missing SNPs will cause ambiguities in

haplotypes and affect block partitioning. The number

of missing data in the haplotype matrix of chromo-

some 21 is 97513 which are 18.5% of data. As

explained in methods, using pattern matrix, our algo-

rithm infers many of the missing SNPs in each block.

After block partitioning by using our algorithm with

parameter values (α,σ)=(0, 0.98) the number of miss-

ing data was reduced to 18641 which were 3.5% of

whole data set. It is considerable that by parameter val-

ues (α,σ)=(0, 1.00) the number of missing data was

reduced to 6451 or 1.2% of whole data set, which

means that we inferred almost all of the missing data.

TagSNP Selection: One of our main concerns in this

work was defining a subset of haplotype Tag SNPs that

characterized the haplotype diversity of a data set.

These tags can be used to discriminate haplotypes

within the same block. After partitioning SNP data into

blocks, Tag SNPs should be selected for each block. It

should be noted that our method for tagSNP selection

finds tagSNPs that discriminates all the haplotypes of

a block whereas the tagSNP selection which is applied

by Patil et al. (2001) and Zhang et al. (2002) discrim-

inates only a partial subset of haplotypes (i.e. common

haplotypes). On the other hand, they used an exhaus-

tive search for tagSNP selection while we applied a

greedy algorithm that in blocks with missing data or

partial perfect it may overestimate the number of

tagSNPs. Therefore, the number of tagSNPs obtained

by our algorithm is more than those previously report-

ed (the last column, Table 2). 

However, in pure perfect blocks 46% of SNPs are

required to capture the information of the all SNPs in

data set. In partial perfect blocks with (α,σ)=(0, 0.98),

the number of Tag SNPs were reduced to 32%.

Block dissimilarity: Aspects of the result sensitivity

to the algorithm parameters can be figured out by the

block dissimilarities which are shown in Table 3.

Eslahchi et al.
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(α,σ) (0.8, 1) (0.9, 1) (0, 0.98) (0.8, 0.98) (0.9, 0.98) (0.8, 0.8) (0.9, 0.8) (1, 0) Patil et al.

(0, 1)

(0.8, 1)

(0.9, 1)

(0, 0.98)

(0.8, 0.98)

(0.9, 0.98)

(0.8, 0.8)

(0.9, 0.8)

(1, 0)

2438 14769

13277

66609

67645

80869

43778

24606

50411

35546

34074

32710

22356

65810

39033

58669

58248

68552

52241

29790

54007

36911

35479

25629

67952

42163

7506

49646

50847

48303

36040

132494

84687

45942

111429

48756

67911

67145

69969

94620

64762

61786

63903

59705

98399

Table 3. Dissimilarity between haplotype block structures defined by various parameters.
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Assume that A={a1, a2 , …, an}and B={b1, b2 ,…, bm}

are two block partitions, where ai and bj denote inter-

vals on the chromosome. We defined the distance

between A and B by

Using our algorithm with parameters (α,σ)=(0, 0.98),

we almost obtained the results of greedy algorithm of

Patil et al. (2001). If we take (α,σ)=(0, 1.00) (i.e. only

the common haplotype matters) the nearest block par-

titioning to this partition is obtained when the parame-

ter values are (α,σ)=(0.9, 1.00). It is noticeable that if

α=0.90 and σ varies between 0.8 up to 0.9 we

obtained almost the same block partitioning. This is

the case for σ=0.8. It turns out from Table 2 and Table

3 that when we ignored the condition on common hap-

lotypes, a small change in the condition on perfectness

resulted in big change in block partitioning. On the

other hand, for  0≤α≤0.8 and σ=1 we obtained almost

the same block partitioning. This implies that the con-

dition on perfectness, forces to obtain a high percent-

age of common haplotypes.

CONCLUSIONS

In this paper, we introduced a polynomial time algo-

rithm to partition genome into haplotype blocks under

the perfect phylogeny model. We extended the applica-

tion of Four Gamete Test, a previously known measure

of haplotype perfectness and introduced a new meas-

ure of perfectness which was shown more accurate in

recognition of perfect blocks. In presence of noise, our

method was able to find semi-perfect blocks with an

acceptable accuracy.

We applied our algorithms on a set of real samples

of human chromosome 21. It was shown that haplo-

type diversity within the perfect blocks is close to 0.8

coverage of common haplotype which was the pre-

sumed threshold to block identification in other meth-

ods.
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