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Context: In this review, we discuss empirical and stoichiometric models, which have been developed recently in SSF processes and the 
influence of environmental conditions on the variables of these models. Additionally, new studies on modeling of product formation 
are also mentioned.
Evidence Acquisition: Solid-state fermentation (SSF) is recognized as a cheap process for producing many valuable products like 
industrial enzymes and bioethanol. To develop, optimize, and scale-up this process, mathematical models are required. In this review, 
we collected all the papers regarding microbial growth and product formation modeling in SSF. The pros and cons of each model and 
confirmation with experimental data were also discussed. We discussed here the simple empirical growth kinetics models and the effect 
of environmental conditions on these models parameters, stoichiometric models and product formation models.
Results: Simple empirical models are used widely in the kinetic modeling of SSF processes due to their simplicity and ease of use. However, 
more studies should be done in this field to make them more accurate, especially; the effect of environmental conditions, like temperature 
and moisture, on key variables of the model must be considered. Robust modeling methods, like stoichiometric models, are in their 
early stages in SSF processes and require more studies. Developing models in which transport phenomena models are coupled with the 
growth kinetics models can help better SSF bioreactor designing. On the other hand, to use SSF for producing valuable products, product 
formation models, which are not developed well in SSF processes, are necessary.
Conclusions: To use SSF for producing valuable metabolites in large scales, more attention is required for modeling the SSF processes, 
especially for product formation models and using modern methods like stoichiometric models.

Keywords: Growth Kinetics; Mathematical Modeling; Product Formation Model; Solid-State Fermentation

Implication for health policy/practice/research/medical education:
Solid state fermentation (SSF) is recognized as a cheap process for producing many valuable products like industrial enzymes and bioethanol. To develop, 
optimize and scale-up this process to industrial scales, mathematical models are required. In this review, the mathematical models on microbial growth 
and product formation in solid-state fermentation were discussed.
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the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

1. Context

Solid-state fermentation (SSF) is a kind of fermentation, 
in which microorganisms grow on solid material in the 
absence (or near absence) of free water; however, suffi-
cient moisture should exist in the solid material to sup-
port the growth and metabolism of the microorganisms 
(1). In this process the solid material may act as carbon/
energy source or as an inert support (2). The inert support 
may also provide enough surface for microbial growth (3). 
SSF has some advantages over submerged fermentation 
such as cheaper substrate (usually agricultural wastes), 
lower energy requirements and investment cost, better 
volumetric yield and less wastewater production (which 
makes the downstream processes easier) (2, 4). Fungi and 
other microorganisms exhibit different physiologies in 

SSF that has been called physiology of solid medium. As 
a result of these different physiologies, enzymes and sec-
ondary metabolites are often produced at higher yields 
in SSF (5). According to studies on lovastatin production 
in SSF, the specific environment of SSF may induce higher 
transcription of the specific transcription factor.

On the other hand, some drawbacks cause difficulties 
in application and scale-up of SSF processes. For example, 
due to low heat conductivity of solid particles and lack 
of free water, heat removal is difficult in SSF processes, 
especially in large scales (6, 7). Additionally, due to the 
solid nature of the substrate, mixing is not effective in 
SSF. Thus, significant water and temperature gradients 
may appear in the solid bed. As a result of this heteroge-
neous composition of solid substrate, monitoring and 
controlling of the process parameters like temperature, 
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moisture, pH and biomass content is difficult in SSF pro-
cesses (2, 4, 8).

The application of SSF in industrial processes was held 
back due to difficulties in monitoring and controlling dif-
ferent involved variables. To study the growth kinetics 
of the microorganisms and mathematically model the 
heat and mass transfer in SSF, measurement of biomass 
content, substrate and produced metabolite concentra-
tions and other process parameters are required (8). Un-
fortunately, direct measurement of biomass content is 
difficult in SSF, because separating the microorganism 
from solid particles is difficult, especially for fermenta-
tions involving filamentous fungi, because the fungal 
hyphae penetrate into the substrate (9). Therefore, many 
researchers used indirect measurement methods such as 
production of primary metabolites (10), carbon dioxide 
and oxygen metabolism (11-15) and extracellular enzymes 
(16), protein content of biomass (17), variation in the elec-
trical conductivity between biomass and solid substrate 
(18), changes in the color of the fermentation medium 
(19), measuring other compounds such as ergosterol, 
glocusamine (20), nucleic acids (21), quantification of 
antibody reactivity in the mycelium cell wall via enzyme-
linked immunosorbent assays (22), using FT-NIR (Fourier 
transform near-infrared) spectroscopy, and support vec-
tor data description (23).

Like other processes, SSF requires mathematical mod-
els for optimization and scale-up. However, due to the 
above-mentioned reasons, modeling of the SSF processes 
is quite complicated, and many of the proposed models 
in SSF have been simple empirical models that are under 
developed (8).

As Mitchell et al. mentioned in their review article (8), 
SSF mathematical models consist of two sub-models: (1) 
models that use transport phenomena relations to de-
scribe the mass and heat transfer within and between 
various phases of the process and (2) models that de-
scribe the growth kinetic of the microorganisms. For 
evaluating the growth kinetic models, simple empirical 
equations or mechanistic models can be used. The latter 
is more difficult and is considered as the intraparticle 
phenomena that occur at the level of individual particles 
(8, 24). Since there were no recent developments in this 
field, we do not consider such models in this review, and 
instead, we review the kinetic sub-models, which have 
been developed recently.

In recent years, some new models were developed based 
on the interactions within cells. These models (Stoichio-
metric models) considered of the microbial metabolism, 
metabolic pathways and metabolism regulation (25). In 
these models, steady-state mass balances were written 
within the cell, as a result, extracellular phenomena like 
biomass formation rate, substrate uptake and product 
formation rates could be coupled with intracellular car-
bon and energy fluxes. This kind of modeling is rarely 

used in SSF processes and we have also considered these 
models in this review.

SSF was reported to be a favorable process for the pro-
duction of enzymes. Using agricultural wastes as solid 
substrates makes SSF a cost-effective process for produc-
tion of different metabolites. In addition to enzymes, 
there is an increasing interest for production of bioetha-
nol using SSF as an economic process in recent years. To 
scale-up these researches to the industrial scale, we need 
product formation models. Like the biomass measure-
ment, determination of the product formed in the SSF 
process is also complex. Consequently, many research-
ers have only reported the production of a specific me-
tabolite in the SSF process and have not included product 
formation rate in their model. As a result, we can observe 
the lack of product formation models for the SSF process-
es. Here, we also mention some new product formation 
models.

The current work reviews both simple empirical micro-
bial growth rate models that have been used in most bio-
reactor models and recently developed stoichiometric 
models. Additionally, some new models on product for-
mation are also discussed.

2. Evidence Acquisition

2.1. Empirical Growth Kinetics Models
One of the most important models is growth kinetic 

models which are essential for controlling and modeling 
processes (8). To develop a suitable mathematical model 
for describing the SSF processes, a growth kinetic model 
should be developed first. In SSF processes, heteroge-
neous solid substrates and low heat conductivity of solid 
particles will cause significant gradients of temperature, 
moisture content, O2, and other nutrient concentrations 
(1, 8, 26). Of course, mathematical modeling of such sys-
tems is more complicated and requires partial differen-
tial equations. Although mechanistic models can provide 
us with more accurate results (if developed well), the dif-
ficulties involved in this approach lead many research-
ers to use simple empirical models.

Linear, exponential, logistic, and two-phase models are 
the most important empirical growth rate models in SSF 
processes.

2.1.1. Logistic Growth Kinetics Model
The logistic model was first used by Okazaki et al. in SSF 

(10). This empirical model is used more frequently than 
other empirical models for studying the growth kinet-
ics of SSF. The logistic model represents the growth lim-
its and does not require transport phenomena relations 
(27). The logistic model is based on the fact that available 
surface area is limited in the SSF process and the rate of 
biomass growth depends on maximal biomass, Xm (8). The 
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other assumption of this model is that specific growth 
rate during the initial logarithmic growth phase, µm, is 
not dependent on substrate concentration. The differenti-
ated and integrated forms of logistic model are as follows:

1 −  [1]

 [2]

where X0 is the initial microbial biomass.
Growth kinetic models can be used to develop a bioreac-

tor model in order to describe the environmental condi-
tion (like temperature, moisture, etc.) in the bioreactor 
as a function of time, and predict the changes in the be-
havior of microorganism in these conditions. Obviously, 
the two most important environmental variables in SSF 
bioreactor models are temperature and moisture con-
tent of the solid medium. Due to the heat generated from 
respiration of microorganisms, the temperature in the 
bioreactor bed increases. On the other hand, due to the 
lack of free water in the bioreactor bed and low heat con-
ductivity of solid particles, this generated metabolic heat 
could not be removed from the bioreactor bed, and con-
sequently, temperature gradients appear in the process. 
Mixing is rarely used in SSF for removing the gradients, 
because most of the fungi and solid particles cannot re-

sist against the shear forces that result from mixing. Con-
sequently, microorganisms' growth are a non-isothermal 
process in SSF bioreactors (28).

In addition to temperature, moisture gradients should 
also be considered in modeling SSF bioreactors. For re-
moving the generated heat from the bed, forced aeration 
is usually used. However, low amounts of heat is removed 
from the bed by heat convection, and instead, evapora-
tion has the main role in this regard (29). This phenom-
enon leads to large moisture losses, and thus, moisture 
gradients appear in the moist bed of SSF bioreactors. 
Therefore, the effect of moisture content and tempera-
ture on microbial growth should be considered in the 
models.

2.1.1.1. Effect of Environmental Conditions on Mi-
crobial Growth

The three parameters of the logistic model, x0, xm and 
µm may have dependency on temperature. The amount 
of inoculum at the beginning of the fermentation, x0, is 
not temperature-dependent, but the lag phase period is 
temperature-dependent. Many researchers have inves-
tigated these dependencies (30). Many equations were 
developed for describing the effect of temperature on 
µm, like Esener (31), Rotkowsky model (32) and Arrhenius 
equation (30, 33) (Table 1). For the effect of temperature 
on the maximum amount of biomass xm, polynomial 
equation (34) and an extended Ratkowsky model can be 
used (Table 1). 

Table 1. Some Equations that Describe the Effect of Temperature on x m and µ m in the Logistic Model 

Model Equation Parameters Definition Ref.

Esener
=  

µm: maximum growth rate, A, k: 
constants,ΔH1 = activation enthalpy of limit-
ing reaction,ΔH2 = enthalpy change of the in-
activation reaction, R: universal gas constant

(6, 31, 35)

Arrhenius . exp  
kg0: constant, Eg: growth activation energy, Ed: 
thermal deactivation energy

(30, 33)

Polynomials
 

s0, …, s5: constants, b0, b1, b2: constants (6, 36)

Ratkowsky  Tmin: minimum growth temperature, Tmax: 
maximum growth temperature, b, c: constants

(32, 37)

Polynomial c0, …, c4: constants (6)

Saucedo-Castaneda 2.964 × 10
 

= −127.08 + 7.95 − 0.016
 

4.03 × 10 + 4.73 × 10  

(6)

Another model for the kinetics of microbial growth that contains the influence of temperature variations in SSF 

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Mazaheri D et al.

159Iran J Biotech. 2013;11(3)

was developed by Dalsenter et al. (38). In this model, they 
used the level of an essential component within the bio-
mass, F, in the logistic equation. It was assumed that the 
level of this component controls microbial growth. This 
component is dimensionless and varies between zero 
and one. When F = 1, there are normal levels of the compo-
nent in healthy cells. It is assumed that this component 
is an auto-synthesized parameter and the rate of its auto-
synthesis is a power-law version of the logistic equation. 
On the other hand, its thermal denaturation is assumed 
to be a first-order process (38). Consequently, the equa-
tion for the level of the component in the cell (F) is:

 [3]

Where n is the exponent in the power-law version of the 
logistic equation; t time, kS and kD

 are the rate coefficients 
of the synthesis and denaturation reactions, respectively. 
The temperature-dependency of rate coefficients of the 
synthesis and denaturation reactions of this component 
(kS and kD) are stated in the Arrhenius equation (38).

Consequently, by adding this component to the equa-
tion, the logistic model for the growth of the microorgan-
ism becomes:

1 −  [4]

According to Eq. 3, by changing the temperature, the 
specific growth rate constant, µ, for a fully healthy cell 
does not change, instead, the level of essential compo-
nent, F, can change. Therefore, temperature changes can 
affect the growth rate by affecting the level of essential 
component, F (8, 38). To prove the model by experimental 
results, Dalsenter et al. (38) compared their model results 
to the literature data for the growth of Rhizopus oligospo-
rus. They observed that the model predictions have rea-
sonable agreement with all the experimental results. This 
model by considering the effect of temperature, made 
the logistic model more accurate, but more attempts 
should be done for better understanding of the effect of 
temperature and moisture on the parameters.

In all of the models mentioned above, only the present 
values of environmental conditions were considered to 
affect growth. Subsequently, some researchers suggest-
ed that the growth conditions experienced in the past 
should also be considered in the models (8). For instance, 
Bovill et al. developed one such model, in which, the pa-
rameter Q, was added to the logistic model for modifying 
the equation (8, 39).

1 −  [5]

This parameter (Q) represents the physiological state of 
the cell. The past environmental conditions could affect 
parameter Q, in result; the past conditions could affect 
the current microbial rate through this parameter. The 
effect of environmental condition on the physiological 
parameter can be expressed by a differential equation. 
Although it is possible to assume that Q might be the 
intracellular enzymes, much more studies are required 
to accurately define the nature of this parameter. Predic-
tions of this model reasonably agreed with experimental 
results obtained from the growth of L. monocytogenes in 
pasteurized milk and chicken liver pate and Salmonella in 
pasteurized milk and minced chicken. The deviations of 
predictions from measurements were mainly due to less 
accurate lag predictions than growth rate predictions, 
and inhibition by the natural flora (39).

In another study, Fanaei and Vaziri developed these two 
previously-mentioned ideas for the growth kinetics of A. 
niger on wheat bran (40). They took into account both the 
impact of past temperature and current temperature on 
growth rate. Their kinetic model equation is as follows:

1 −  [6]

where X, Xm and ϕ are the biomass concentration, the 
maximum biomass concentration and level of physiologi-
cal factor, respectively. In fact, the level of physiological 
factor (ϕ) is a dimensionless value and is responsible for 
its own synthesis similar to the variable F in Dalsenter's 
model. Thermal denaturation and rate of auto-synthesis 
of this factor can be expressed in the same way as variable 
F:

 [7]
where α is the exponent in the power-law version of the 

logistic equation, and γS and γD are the rate coefficients of 
the synthesis and denaturation reactions, respectively. 
These rate coefficients were stated as functions of tem-
perature with the Arrhenius equation.

This empirical equation was used to express the effect of 
temperature on the specific growth rate:

 [8]

Where s is the sensitivity of the specific growth rate to 
increases in temperature. Tmax and opt are the maximum 
and optimum temperatures for growth, respectively, and 
µopt is the optimum specific growth rate constant. When 
ϕ =1, it means that there are normal levels of the physi-
ological factor within a fully healthy cell. Surprisingly, 
even when there is no growth in the system, the physi-
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ological factor can increase. The physiological factor is 
denatured when temperature rises, but it takes time for 
this phenomenon to happen. On the other hand, it also 
takes time for the physiological factor to be re-estab-
lished when the temperature falls from harmful values to 
optimum values. Therefore, the role of the factor ϕ is to 
postpone the effects of temperature changes (40). Since 
the physiological factor has an important role on deter-
mination of growth rate, and high temperatures can de-
nature this factor, physiological factor could be possibly 
intracellular enzymes or ribosomes (8, 40). The predicted 
results of this model were compared with data from the 
literature for the growth of Aspergillus niger on wheat 
bran and agreed reasonably with experimental results 
(40). Although analyses have been done for a particular 
microorganism and substrate, this modeling approach 
can be used for other microorganisms and substrates if 
the appropriate parameters are available.

In addition to temperature, another important envi-

ronmental condition which has not been extensively 
studied in SSF modeling is moisture content (28). In the 
literatures, the effects of temperature and moisture on 
microbial growth were reported separately (30-37, 41-43). 
Recently, Hamidi-Esfahani et al. (28) studied the simul-
taneous influence of temperature and moisture on the 
growth of A. niger on wheat bran . To achieve this aim, 
they used the logistic model for calculating the growth 
parameters at different temperatures and moistures. Xm 
and µm were calculated by fitting the logistic equation to 
the experimental data at different initial moisture con-
tents and temperatures. According to their results, µm 
depends on both temperature and moisture. Meanwhile, 
Xm is not temperature-dependent and only depends on 
moisture content. They used the Ratkowsky equation for 
temperature dependency and polynomial equation for 
moisture content dependency. They proposed the follow-
ing equation for the effect of temperature and moisture 
content on µm (28):

= ×  [9]

Where Y is the moisture content, a1 and a2 are constants 
of correlation of specific growth rate and temperature 
and b0, b1

 and b2 are constants of correlation of specific 
growth rate and water content, respectively. Further-
more, for Xm, which only depends on moisture content, 
the following quadratic polynomial can express the influ-
ence of moisture content on Xm:

 [10]

Their results had a good agreement with experimental 
results of A. niger growth on wheat bran (28). Since this 
model is one of the rare models, which considers both 
the temperature and moisture in the model, it could be 
a promising and useful model in practical studies and 
can be used in heat and mass transfer studies of SSF pro-
cesses. However, this model is a modification of the logis-
tic model and still suffers from the disadvantages of the 
logistic model.

2.1.2. Two-Phase Kinetic Models
Actually, the real growth profile in SSF consists of two 

periods: a short period of rapid acceleration followed 
by a long period of slow growth deceleration. However, 
the logistic model does not predict such behavior and it 
is symmetric around the inflection point (8, 28, 44). This 
means that in the logistic model the acceleration and de-
celeration rates are the same. Consequently, the logistic 
model cannot describe the entire growth profile accu-
rately, especially during early stages of growth.

We can explain the sudden growth deceleration at the 
end of the exponential phase by considering the micro-
scopic phenomena. When hyphae from different expand-

ing colonies meet each other, their extending tips may 
not remain active. This sudden decrease in the number 
of active hyphae tips can lead to sudden growth decelera-
tion at the end of the exponential phase. Mitchell et al. 
proposed that the accumulation of inhibitory metabo-
lites, draining of utilizable nutrients and the beginning 
of oxygen limitation might be the reasons for the decel-
eration of fungal growth in SSF.

These disadvantages led to the development of models 
with greater accuracy. One such model was the two-phase 
model developed by Ikasari and Mitchell (45). In this 
model, the growth curve has two phases: (1) an exponen-
tial phase, (2) a deceleration phase, and each phase has 
its own kinetic equation. In the first phase, an exponen-
tial equation, Eq. 11, was used and for the deceleration 
phase, Equitation 12 was developed, assuming first-order 
decay in the number of tips. In Equitation 12, the specific 
growth rate during the deceleration phase appears in 
square brackets and decreases as a result of two factors. 
One of these two factors is parameter L, which represents 
the ratio of the specific growth rate at the start of the de-
celeration phase to the specific growth rate during the 
previous exponential phase. The other factor is param-
eter k, a first-order rate constant of the exponential term 
in Equitation 12. This exponential term describes an ex-
ponential decay in specific growth rate throughout the 
deceleration phase (45):

 [11]
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 [12]

ta is the transition time between the two phases, when 
the exponential phase finishes and the deceleration 
phase begins (45).

 [13]

 
However, this model still suffers from some weak points, 

where the exponential phase is short and biomass con-
centration is low in this period. Consequently, a few data 
points could be gathered during this phase, therefore, it 
makes the determination of the parameters of the expo-
nential phase difficult to determine and generates large 
error. Additionally, due to the use of specific growth rate 
of the exponential phase (µ) in the analysis of decelera-
tion phase, errors could also be found in the deceleration 
phase (8, 44). The model was used to describe the growth 
profile of Rhizopus oligosporus in membrane cultures and 
had a reasonably good agreement (45).

The two-phase growth model is very simple to use. How-
ever, the simplicity of the model does limit its applicabil-
ity. To have a useful model describing bioreactor perfor-
mance, the model parameters need to be expressed as 
functions of the key environmental variables, especially 
temperature.

To improve the two-phase model, Hamidi-Esfahani et al. 
(44) developed a new two-phase kinetic model. In this new 
two-phase kinetic model, like the Ikasari-Mitchell model, 
the first phase is the exponential phase, but in contrast, 
the second phase is a logistic model. Their model param-
eters were temperature-dependent and were determined 
from the oxygen consumption rate (OUR) of A. niger dur-
ing cultivation on wheat bran. Measuring the OUR has two 
advantages: first, it has a fast response time and, second, 
it is directly linked to metabolism of the microorganism 
(44, 46). The equations for the first phase of this new two-
phase model (exponential phase) is as follows:

 [14]

 [15]
where rx1, µ1 , x1 and x01 are the growth rate, specific 

growth rate, biomass concentration and initial biomass 
concentration in the exponential phase, respectively.

The oxygen consumption rate was expressed with a lin-
ear-growth model, which depends on maintenance activ-
ity of the fungal biomass: 

 [16]

Where rO1 is the OUR in the exponential model, YOX is the 
yield coefficient and m is the maintenance coefficient. 

At the second phase, the logistic model is used for de-
scribing the growth of the microorganism:

1 −  [17]

Where rx2, µm2, x2 and xm are the growth rate, maximum 
specific growth rate, biomass concentration and maxi-
mum biomass concentration in the logistic model, re-
spectively.

By assuming the same maintenance coefficient for both 
phases, OUR for the logistic phase can be written as:

 [18]
For transition from exponential to logistic phase, the 

following assumption was used instead of ta:

 [19]
 

The parameters x01, m, Yox and xmax are assumed to be 
temperature-independent and the parameters µ1, µm2 
and x02 are temperature-dependent. The unknown pa-
rameters of the model were calculated from O2 consump-
tion rates at various temperatures. A good correlation 
between the experimental results and model predictions 
for the new two-phase kinetic model was reported by 
Hamidi-Esfahani et al. in their original paper (44).

Comparing the results of the new two-phase model 
with the logistic model, Hamidi-Esfahani et al. observed 
that the logistic model does not fit the experimental re-
sults (the growth of A. niger on wheat bran) very well (44). 
The results predicted by the logistic model have a sharper 
peak than the experimental results. In addition, at the 
early stages of the growth curve, the results predicted by 
the logistic model for oxygen uptake are different from 
the experimental data. Meanwhile, the new two-phase 
model has better predictions in comparison to the lo-
gistic model predictions. Hamidi-Esfahani et al. (44) de-
clared that by using x2 as the value of biomass during the 
second phase of the growth, they can overcome the limi-
tations of the logistic model.

Hamidi-Esfahani et al. (44) also compared their new 
two-phase model with Ikasari-Mitchel two-phase model. 
They observed that the Ikasari-Mitchell predictions are 
as accurate as the new two-phase model predictions at 
the early stages of growth. However, after the first phase 
finishes, differences between the predictions of the two 
models can be observed at the second phase of growth. 
The Ikasari-Mitchell predictions had a positive deviation 
at the deceleration phase, especially at low temperatures. 
One of the reasons for the better predictions of the new 
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two-phase model is the assumption made for the tran-
sition from the first phase to the second phase. In the 
new two-phase model, the fungal growth rate is used as 
a condition for transition from the exponential phase to 
the deceleration phase, instead of ta, and it seems to be 
a better and more accurate assumption. Furthermore, 
Hamidi-Esfahani et al. (44) considered the temperature 
dependencies of the parameters in their model and this 
makes their model more accurate than the Ikasari-Mitch-
ell model. They believed that the new two-phase kinetic 
model combined with the mass and energy balances of 
the packed bed bioreactors model can predict microor-
ganisms' growth and other parameters such as tempera-
ture and moisture content adequately. Furthermore, the 
new two-phase model also precisely describes the growth 
rate of Aspergillus oryzae on wheat.

2.2. Models Based on the Metabolic Pathways
As previously mentioned in the introduction, model-

ing microbial processes based on the metabolic path-
ways is one of the most advanced approaches. Such 
models focus on metabolic pathways and metabolic 

regulations. In this type of modeling, intracellular in-
teractions and extracellular phenomena are considered 
(47). This robust approach has been used for studying 
phenomena that occur in submerged fermentations 
(48, 49), but there are rare reports about the applica-
tion of this method for modeling SSF processes (25). 
This may be due to the heterogeneity of the SSF medium 
that makes it difficult to measure the required data for 
modeling.

Recently, Mazutti et al. (25) investigated the growth 
of Kluyveromyces marxianus in SSF within a packed-bed 
bioreactor. Their study is one of the first reports, which 
uses metabolic pathway models in SSF processes. They 
developed a mathematical model based on an artificial 
neural network (ANN) to predict the microbial rates as 
a function of fermentation time, initial total reducing 
sugar concentration, and inlet and outlet temperatures. 
The models responses were the cell mass, metabolic heat, 
CO2, metabolic water and ethanol production, and the to-
tal reducing sugar and oxygen consumptions.

They considered this general stoichiometry for aerobic 
microbial growth of Kluyveromyces marxianus with etha-
nol formation (25):

 [20]

where α, β, λ, δ and σ are stoichiometric coefficients 
on the basis of the C-mol of biomass. The C, H, O, and N 
balances and the experimental measurements of CO2 
and total reducing sugars could compute these coeffi-
cients. In this stoichiometry, the metabolism of yeast 
was considered aerobic and it was assumed that oxy-
gen is not limited inside the bioreactor. Subsequently, 
by measuring the CO2 in the outlet air stream of the 

bioreactor, the oxygen concentration in the outlet air 
stream, the global metabolic water and ethanol pro-
duction in the moist solid bed of the bioreactor could 
be calculated according to the above stoichiometry 
(25). Mazutti et al. used the following equation (pre-
viously developed by Brand et al. (50)) for calculating 
microbial growth expressed in terms of mass of cells 
considering oxygen uptake rate:

=
+

1 +
 [21]

where

 [22]

The model, which was developed in this way, was report-
ed to show good performance during both training and 
validation steps of the ANN procedure. Mazutti et al. (25) 
expressed that this approach was capable of correlating 
complex metabolic rates involved in the fermentation 
of microorganisms in SSF processes. The results of the 
model can properly predict the growth of Kluyveromyces 
marxianus.

Mazutti et al. used artificial neural network (ANN) to 
develop their model. The artificial neural network can 
be used to model complex phenomena like microbial 
growth in SSF processes. The ANN method is capable of 

describing multivariable systems, especially highly non-
linear dynamic systems like SSF processes. ANN shows 
the real capabilities of a real system: parallel process-
ing, classification, learning and pattern recognition (51). 
Using these capabilities, ANNs can detect complicated 
relations between inputs and outputs, understand the 
patterns and re-create the behavior of the system after 
a training step with gathered data. This technique only 
uses knowledge obtained from experimental inputs 
and outputs of the system to predict performance with-
out any background information about the details of 
phenomena happening during the process and solves 
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complex equations ruling the system. In fact, one of the 
advantages of the ANN method is that no great deal of 
knowledge about the process under investigation is re-
quired. Consequently, the ANN methods are accepted as 
a modeling method for scientific and industrial applica-
tions (25). The capability of learning from experimental 
data and simplicity of performance are the other advan-
tages of ANNs over other mathematical modeling meth-
ods.  Additionally, developments in computer sciences 
and advanced computer programs with high ability to 
calculate mathematical procedures encourage research-
ers to use ANN for modeling systems. On the other hand, 
to obtain good results, neural network requires a large 
amount of data for training, and of course, it is difficult 
to obtain such a large quantity of data in some processes, 
like SSF processes. In ANN steps, the researcher has to 
choose the proper network parameters, and the selection 
of network parameters needs experience and knowledge 
about the process (52). These kinds of modeling, especial-
ly in SSF systems, are still at the beginning of their way to 
become a useful model, but according to their accurate 
basis and robust computer programs, a brilliant future 
can be predicted for them. However, using such models is 
much more difficult than empirical models.

2. 3. Product Formation Models
Growth of a microorganism is accompanied by the con-

sumption of oxygen and nutrients and the production of 
metabolic heat, water, CO2, and various products. By us-
ing a low cost substrate, SSF has gained attention for the 
production of different products. It has been mentioned 
that SSF is a very good process for enzyme production (53, 
54). Nowadays, many researchers use SSF for producing 
other valuable products like bioethanol due to its cheap 
and available substrate. Agricultural products like sweet 
sorghum (55), sugar beet pomaces (56, 57), mahula flow-
ers (58), carob pods (3, 59), arrowroots (60), and many 
other low cost materials have been used for bioethanol 
production in SSF. For optimization and scale-up of such 
processes, mathematical models for product formation 
are essential. Because of the difficulties involved in sepa-
rating the product from the fermentation medium, there 
are a few product formation models for SSF processes.

One of the common approaches for modeling the for-
mation of products in biological processes is to assume 
growth-associated and non-growth associated compo-
nents (8). The general equation for a product (P) is there-
fore:

 [23]

Where YPX is the stoichiometric coefficient and mP is 
the maintenance coefficient. If the product is a second-
ary metabolite, the changes in both active biomass and 

limiting substrates should be described (61). In the case 
of modeling the production of secondary metabolites, 
the logistic model cannot be used, because as mentioned 
before, it cannot completely predict the microorganism’s 
behavior during the death phase. In this section, we dis-
cuss some of the product formation models.

One of these few product formation models is the sim-
ple differential equation model developed by Gelmi et al. 
used to express the growth and production of a second-
ary metabolite in SSF under conditions of limited nitro-
gen (61). Applying mass balances in SSF, they developed a 
lumped parameter differential equation model, leading 
to eight differential equations (Eqs. 24-31). As an experi-
mental case, they studied the growth of filamentous fun-
gus Gibberella fujikuroi and the production of gibberellic 
acid (GA3). In this model, it was assumed that oxygen 
transfer resistance is negligible; the nitrogen source is 
the limiting substrate; the carbon source is not limiting 
and temperature, moisture and model parameters re-
main constant during cultivation (61).

The balance for total biomass (without lysis) leading to:

 [24]

Where X is the active biomass. The change in active bio-
mass was described by:

 [25]

Where kd is the death rate coefficient. The consumption 
rate of the urea (the nitrogen source) is:

 [26]

Where U is the concentration of urea, and k is the con-
version rate from urea to available nitrogen for the mi-
croorganism (NI). NI can be directly converted into active 
biomass. The change in available nitrogen during fer-
mentation is given by:

 

 

 

[27]

Where 0.47 represents the nitrogen content of the urea.
The consumption rate of the carbon source (soluble 

starch) can be written as:

= −  [28]
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The production rate of GA3 is proportional to the con-
centration of active biomass, because it is a secondary 
metabolite. To represent GA3 degradation, an additional 
term is required:

 [29]

These two equations also represent CO2 production and 
O2 consumption: 

 [30]

  [31]

After guessing the initial amounts of key parameters, a 
non-linear optimization routine was used to obtain the 
least square fit for the model. It was observed that this 
mathematical model could reproduce measured vari-
ables like biomass, urea, starch, CO2, O2 and GA3 (61).

Mass balances have also been used to develop the prod-
uct formation models. In a recent study, Hashemi et al. 
used this approach to model different phases of bacte-
rial growth curve and the production of α-amylase by 
Bacillus sp. in the SSF process (62). They assumed that 
the changes in total dry fermenting medium weight (W) 
corresponds to substrate consumption rate (dS/dt), bio-
mass growth rate (dB/dt) and product formation rate 
(dP/dt). 

= + +  [32]

On the other hand, substrate consumption rate can be 
explained by three equations: the equation for biomass 
growth ((dS/dt) g) and the yield coefficient for biomass 
(Yg), the equation for product formation ((dS/dt) p) and 
its yield coefficient (Yp) and equation for maintenance 
((dS/dt) m):

= + +  [33]

where

= −
1

 [34]

= −
1

 

 

[35]

 [36]

For the kinetics of α-amylase production, Hashemi et 
al. used the Luedeking-Piret equation (63), in which the 
product formation rate depends on both biomass con-
centration (B) and growth rate (dB/dt):

 [37]

Where α and β are empirical constants that may vary 
with fermentation conditions. Since each growth kinetic 
curve of microorganisms may be divided into three phas-
es (exponential growth, stationary and death), Hashemi 
et al. presented the dry weight variation into three terms 
that indicate those three phases:

= + +  

[38]

The final equations for each phase are provided in Table 
2. Readers wishing to understand the details of the equa-
tions derivation should refer to the original paper (62). 
According to their results, it can be observed that bacteri-
al growth and the production of α-amylase on wheat bran 
substrate could successfully be modeled based on varia-
tions in solid substrate weight. This model was validated 
by experimental data collected from a series of batch fer-
mentations. The authors suggested their model for the 
development of growth, and α-amylase production in SSF 
processes (62). 

Similar to growth kinetic models, stoichiometric mod-
els can also be used for product formation models. Ma-
zutti et al. used the same procedure they had used before 
for modeling the growth kinetics to model inulinase pro-
duction in SSF packed-bed bioreactor (64).

In general, product formation models in SSF process are 
not advanced enough to be used on practical and indus-
trial scales, and to be able to use this cost-effective tech-
nology for producing different valuable products, more 
attempts should be done in this field.

3. Results
Simple empirical models are widely used in SSF, and 

although some improvements (like two-phase models) 
were made in these models, there is still much to do in 
this field. Since there are many experimental difficulties 
in SSF processes, modeling of this process is improving 
slowly. Nevertheless, many researchers have attempted 
to develop advanced models for SSF bioreactors. One of 
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the most important issues that should be studied more 
in the field of  SSF processes modeling is the effect of envi-
ronmental conditions, especially temperature and mois-
ture, on key variables of the model.

It seems that stoichiometric models, focusing on mi-
crobial pathways, can predict the behavior of microor-

ganisms well and can be a good substitution for simple 
empirical models in SSF processes. These models can be 
better coupled with heat and mass transfer models com-
pared to empirical models. However, more studies must 
be done on these kinds of models in SSF.

Table 2. Final Equations for α-amylase Production for Each Phase of the Growth Curve in Hashemi et al. Model (62) 

Phase Product Equation

Growth phase  and  − 1  

+  

Stationary phase  and   

=  

Death phase  and  

−  

 

where

1
 

 
  

1 1
 

 

Using very cheap substrates like agricultural wastes, 
SSF could be an economical process for producing many 
valuable metabolites such as industrial enzymes and bio-
ethanol. For this purpose, more robust product forma-
tion models are required. So far, difficulties in separating 
the product from the solid medium prevent the devel-
opment of product formation models. As a result, more 
studies should be done on the modeling of products to 
make the SSF process, an industrial and economical pro-
cess for producing valuable compounds in the future.

To use SSF for producing valuable metabolites in large 
scales, more attention is required for modeling the SSF 
processes, especially for product formation models. Ro-
bust modeling methods like stoichiometric models and 
coupling the kinetic models with heat and mass trans-
fer models should be considered more in SSF bioreactor 
models.

Developing more accurate models and combining 
them with mass and energy balance models for better 
controlling bioreactors, using modern methods like 
stoichiometric models, focusing on product formation 
models, and performing more studies on measuring the 
important parameters of SSF system during the process 
are the future challenges of SSF modeling.
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شواهد: از آنجا که روش تخمیر حالت جامد  فرآیندی ارزان برای تولید بسیاری از محصولات تخمیری مانند آنزیم ها است، برای استفاده از این 
فرآیند در مقیاس صنعتی و بزرگنمایی و طراحی بیوراکتورهای آن به مدل های ریاضی دقیق نیاز است. در این مقاله مروری، پژوهش های مرتبط 
با این موضوع جمع آوری و تحلیل شده و مزایا و کاستی های هر مدل، و میزان تطابق آن با داده های آزمایشگاهی مورد بحث قرار گرفته است. 
در این راستا مدل های ساده تجربی سینتکی رشد و اثر عوامل محیطی مانند دما و رطوبت بر ضرایب این مدل ها مورد بحث قرار گرفته و سپس 
مدل های نوین رشد به روش استویکومتری در فرآیند تخمیر حالت جامد معرفی و تحلیل شده است. در پایان مدل های بر پایه تولید محصول  و 

افق آینده و مشکلات پیش رو در زمینه مدل سازی فرآیند تخمیر حالت جامد ارائه شده است.
یافته ها: مدل های تجربی علیرغم سادگی برای مدل سازی فرایند تخمیر حالت جامد بسیار مورد استفاده قرار می گیرند. برای بهبود این مدل 
ها باید تلاش بیشتری به خصوص در مورد بررسی اثر عوامل مختلف بر روی ضرایب معادلات صورت گیرد. مدل های پیشرفته تر مانند مدل های 
استویکومتری در فرایند تخمیر حالت جامد هنوز در ابتدای راه خود قرار دارند و بایستی مطالعات بیشتری برای توسعه آنها انجام شود. برای استفاده 
از مدل های رشد مکیروبی در طراحی بیوراکتورهای صنعتی، بایستی این معادلات با معادلات انتقال حرارت و جرم تجمیع شوند، که در این زمینه 
نیاز به تلاش فراوانی وجود دارد. مدل های تولید محصول نیز کیی از جنبه هایی هستند که بسیار کم در فرایند تخمیر حالت جامد مورد توجه قرار 

گرفته اند و برای به کارگیری فرایند تخمیر حالت جامد برای تولید محصولات ارزشمند به این نوع مدل ها نیاز است.
نتیجه گیری: به کارگیری فرآیند تخمیر حالت جامد در مقیاس صنعتی و برای تولید محصولات با ارزش نیاز به توسعه بیشتر مدل های ریاضی 

بخصوص مدل های تولید محصول و استفاده از مدل های نوین دارد.
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