
1. Background

RNA plays key role in many aspects of biolog-
ical processes. The function of RNA is related to
its tertiary structure. Since dealing with tertiary
structure of RNA is very complicated, RNA sec-
ondary structure has been studied in the literature
(1-3). A secondary structure of an RNA sequence
is basically a set of pairing connections among
bases in the sequence, where each base can be
paired with at most one another base. RNA sec-
ondary structure establishes various significant
portions of RNA tertiary structure. Since the bio-
logical function of RNA is concluded indirectly

from its primary structure, therefore it would be
important to analyze the relationship between the
RNA sequences and their structures. In this
regard, the neutral network would be of great
interest (4). Neutral network is a collection of
RNA sequences, all coding the same secondary
structure and each RNA sequence is distinct from
other sequences by no more than a single base
mutation (4). Neutral networks consequent to
common structures saturate the space of RNA
sequences (5, 6) and thus simplify the examina-
tion of a huge amount of alternative structures.
This is achievable since diverse neutral networks
are greatly meshed, i.e. all familiar structures can

Iran J Biotech. 2014 Novembert;12(3): e1010. DOI:10.15171/ijb.1010

Published online 2014 November 25. Research Article

Relation Between RNA Sequences, Structures, and Shapes via Variation
Networks

Javad Mohammadzadeh 2, Mohammad Ganjtabesh 1,*, Abbas Nowzari-Dalini 1

1School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, I.R. IRAN
2Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, I.R. IRAN

*Corresponding author: Mohammad Ganjtabesh, School of Mathematics, Statistics and Computer Science, College of
Science, University of Tehran, Tehran, I.R. IRAN. Tel: +98-2166412178, E-Mail: mgtabesh@ut.ac.ir

Received: November 16, 2013; Revised: May 19, 2014

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biolog-

ical function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biolog-

ical function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations

between the RNA sequences and their structures. One important tool to perform this kind of analysis is the neutral network

which is a collection of RNA sequences, all coding the same secondary structure, where each RNA sequence is distin-

guished from the others by no more than a single base mutation. Another high level and useful representation of an RNA

secondary structure is the RNA shape, where it is holding the vicinity and nesting of structural components and reducing

their lengths to one unit. This allows us to analyze the huge structural space corresponding to the larger RNA sequences.

Objectives: In this study, a new concept, entitled Variation Network, over the set of all RNA shapes is introduced. Based

on this concept, the potential relations between random and natural RNA sequences, as well as their corresponding struc-

tures are analyzed. 

Materials and Methods: To explore the relations between random and natural RNA sequences and their corresponding

structures, different properties including frequency, normalized frequency, shape energy average, variation rate, normalized

variation rate, neighborhood energy average, and stability were obtained and analyzed. 

Results: The correlations among these properties of random and natural Variation Networks are presented.  Base on the

obtained correlations, all the employed datasets are highly correlated to each other from the frequency point of view, where-

as they are not well correlated from the thermodynamic energy point of view. 

Conclusions: Since the thermodynamic energy value of an RNA sequence over its secondary structure plays a key role in

its function, this research conclude that the natural RNA sequences are not generated randomly.
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be achieved within a few (mutational) walks start-
ing from any arbitrary sequence (6). 

Several structural properties of the RNA neu-
tral networks have been studied previously (4-
10), and the remarkably complex structures
underlying it have been discovered. An upper
bound Sl=1.4848×l-3/2×(1.8488)l for the amount
of distinct secondary structures for sequences of
length l was obtained in (4). This indicates that
the expected size of a neutral network develops as
4l / Sl = 0.673× l 3/2 × (2.1636) l is an enormous
quantity even for modest values of l. This expect-
ed amount is not illustrative for the real spreading
of neutral network sizes, which is a very broad
function (4, 11). The space of RNA sequences of
length l, which is surrounded in a usual l dimen-
sion lattice, is directed by a reasonably small
number of common structures which are tremen-
dously plentiful and occur to be located as struc-
tural motifs in natural and functional RNA mole-
cules (8, 12). 

Among the considerable parts of the works that
have been studied, Aguirre et al., (13) presented
results of specific significance. They concentrated
on the topology of RNA neutral networks and
studied local and global parameters describing
their structures. They have plotted neutral net-
works over all RNA sequences of length 12, using
the RNAfold as a folding method (14). Then they
have obtained the topological properties of these
neutral networks. Unfortunately, the information
obtained in (13) cannot be generalized to the larg-
er space (natural space) of RNA sequences and
structures. 

An additional useful representation of an RNA
secondary structure is the RNA shape. RNA shape
notion plots structure in a compact form, holding

vicinity and nesting of structural components and
reducing their lengths to one unit. It is motivated
by the dot-bracket representation identified from
the Vienna RNA package (14). Respect to the
behind sequence and secondary structure from
folding area in dot-bracket demonstration, the
shape attitude proposes five deduction levels pre-
pared in their level of abstraction. Also they short-
en the loop and stack sizes, where unpaired areas
are symbolized by an underline and stacking areas
by a couple of formed brackets (15). Figure 1
represents the relationship between a small RNA
sequence, its structure, and its shape. RNA shape
can be well participated with dynamic program-
ming algorithms, and consequently it can be
employed through structure prediction rather than
afterwards. This prevents exponential explosion
and can still provide a non-heuristic and complete
report of properties of the given RNA folding
space (15). 

The rest of this paper is organized as follows.
In section 2, the short-term objectives to do this
research are provided. In Section 3, the basic def-
initions as well as the Variation Network are pre-
sented. In section 4, the details of datasets con-
struction and different measures are discussed.
The obtained results and conclusions are present-
ed in sections 5 and 6, respectively.

2. Objectives

In this paper, a new concept entitled Variation
Network, which is based on the RNA shapes is
introduced. Although the RNA shapes are obsolete
in previous studies, here we have a special attitude.
Based on the proposed Variation Network, different
measures from frequency point of view, including
frequency and variation rate, and thermodynamic
energy point of view, including shape energy,
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Figure 1. An example of RNA sequence, its corresponding secondary structure, and its
shape (17)
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neighborhood energy, as well as the stability are
obtained in this paper. Also, the correlations among
these measures are calculated for random and natu-
ral sequences and their corresponding shapes.
Based on our analysis, we conclude that from the
thermodynamic energy point of view, the natural
RNA sequences are different from those generated
randomly.

3. Basic Definitions 

An RNA molecule is composed of a chain of
nucleotides, namely Adenine (A), Cytosine (C),
Guanine (G), and Uracil (U). An RNA sequence δ
of length l can be considered as a string over Σl ,
where Σ is the set of alphabet  (Σ = {A,C,G,U}).
Let Δ denotes the set of all RNA sequences. An
RNA sequence tends to fold to itself and forms
pairs of bases by the creation of hydrogen bonds
between Watson-Crick bases (A-U or C-G) and
Wobble base (G-U). This set of base pairs is called
the RNA secondary structure and it is defined as
follows. 

Definition 1. An RNA secondary structure  corre-
sponding to an RNA sequence d of length l is a set
of pairs (i, j), where i, j ∈{1,...,l}) and i < j , and
for any two base pairs i1 ,j1 and i2 ,j2 form λ,, i1+i2
⇔ j1=j2, and either i1< j1 <i2< j2 (disjoined) or
i1< j1 <i2< j2 (nested) holds. 

Let Λ denotes the set of all RNA secondary
structure. Suppose that ϕ :Δ →Λ maps any RNA
sequence δ into its corresponding minimum free
energy secondary structure λ = ϕ (δ) Considering
φ as a relation, two sequences δ1 and δ2 are equiv-
alence under φ if and only if ϕ (δ1) = ϕ (δ2).
Based on this equivalence relation, the induced
equivalence class of any structure could be
defined as follows. 

Definition 2. The equivalence class of a structure λ
under the mapping φ, denoted by [λ]φ, is the set of
RNA sequences having the same structure as λ,
i.e. [λ]φ = {δ |δ ∈Δ and φ(δ) = λ}.

Suppose that Γ represents the set of all shapes
and ψ :Δ→Γ maps any RNA secondary structure,
say λ, to its corresponding shape γ, where γ =ψ (λ)
. As a result,  maps any RNA sequence to its cor-
responding shape. Similar to the equivalence class
of structures, we can define the equivalence class

of shapes under the mapping χ as follows. 

Definition 3. The equivalence class of a shape γ
under the mapping χ, denoted by [γ]χ, is the set of
RNA sequences having the same shape as γ, i.e.
[γ]χ ={δ |δ ∈Δ and χ(δ) = λ}.

Each equivalence class may contain different
amount of RNA sequences. In order to measure
this cardinality, the following two definitions are
presented.

Definition 4. For any structure λ ∈ Λ, fφ (λ) is the
cardinality of the equivalence class [λ]φ.  

Definition 5. For any shape γ ∈ Γ, fx (γ) is the car-
dinality of the equivalence class [γ]x.

Now, based on our terminology, the classical
neutral network is defined as follows. 

Definition 6. For any structure λ, a graph NNλ =
(V,E) is called a neutral network under the map-
ping φ where,

•    V = {δ |δ ∈Σl,ϕ (δ)=λ},

•   E = {(δ1,δ2) | δ1,δ2 ∈V,dist (δ1,δ2) =1}

Figure 2 shows an example of the neutral net-
work. The neutral network does not take into
account the number of sequences that are trans-
formed from [λ1]ϕ to [λ2]ϕ by performing a single
mutation. Considering the equivalence classes of
RNA shapes, we could measure how many
sequences from [γ1]χ are transformed to [γ2]χ by
performing a single mutation. To do this, the vari-
ation rate is defined as follows. 

Definition 7. The variation rate between two
shapes γ1 and γ2 , denoted by ω(γ1 ,γ2) is defined
as follows (1):

ω(γ1 ,γ2) = Σ | N(δ) ∩ [γ2]χ | =  Σ | N(δ) ∩ [γ1]χ |
δ∈[γ1]χ                                          δ ∈[γ2]χ

where N(γ) indicates all the sequences that are
obtained from γ by performing a single mutation
in different positions. 

Figure 3 is a schematic representation of the
previous definitions. Here, the solid lines between
RNA sequences indicate the single base mutation-
al neighborhoods, the dashed arcs represent the
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mappings and the dashed eclipses show the equiv-
alent classes for both structures and shapes. The
variation rate between the shapes γ1 and γ2 is cal-
culated as 3.

Based on the above definitions, the Variation
Network can be defined over the set of all shapes
as follows. 

Definition 8. The Variation Network for the set of
all shapes Γ is a weighted graph VN = (V,E,W),
where 

•   V = {γ | γ ∈Γ},

•   Ε = {(γ1 , γ2) | ω(γ1 , γ2) > 0},

•   ∀(γ1 , γ2) ∈ E,W(γ1 , γ2) = ω(γ1 , γ2)

The Variation Network represents the imposed
relations among the set of all shapes under the
mapping χ as it is presented in Figure 4. With
respect to the above definitions, we perform many
experiments to explore the relations between RNA
sequences, their structures and their shapes, both
for frequency and thermodynamic energy points of
view. The Variation Networks are created for ran-
dom and natural RNA sequences and different
measures, including frequency, shape energy, vari-
ation rate, neighborhood energy, and stability as
well as the correlations coefficient between these
measures are obtained. The details of our experi-
ments as well as the results are presented in the fol-
lowing sections. 
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Figure 3. Equivalence class of structures and shapes (17)

Figure 2. An example of neutral network (17)
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4. Materials and Methods 

Since the number of RNA sequences grow expo-
nentially with respect to their lengths, therefore
analyzing the huge number of these sequences
becomes difficult, especially for long sequences.
The idea to tackle this difficulty is to use a small
fraction of such sequences. On the other hand,
using a small fraction of sequences may corrupt
the accuracy of our analysis. But, our experiments
show that the accuracy is not affected if sufficient
number of sequences is employed. To justify this
idea, two datasets of RNA sequences were con-
structed. The first one (RDS12A) contains all 412

sequences of length 12 and the second one
(RDS12R) contains only 111000 of such
sequences (generated randomly with uniform dis-
tribution over the nucleotides). Our analysis over
these two datasets indicates the high correlation
rates among different properties of the correspon-
ding Variation Networks. Therefore, employing
small fraction of RNA sequences gives us the rea-
sonable accuracy in our analysis. 

After justifying the idea for sequences of length
12, we then employed sequences of length 50. To
do this, seven different datasets of RNA
sequences, each of length 50, were constructed.
The first one (RDS50R) contains 20,000,101
sequences, which were generated randomly with
uniform distribution over the nucleotides. Since
the length of each RNA sequence is 50 and 150
sequences were generated by performing a single
mutation in different positions, the smallest num-
ber greater than 20,000,000 which is a multiple of

151 is 20,000,101. The other six datasets were
constructed by selecting all subsequences of
length 50 from the natural RNA sequences (name-
ly, Synthetic RNA, 5S Ribosomal RNA,
Hammerhead Ribozyme, other Ribosomal RNA,
other Ribozyme, Cis-regulatory element) taken
from RNA STRAND server (16). After construc-
tion of the datasets, the RNAShape software (15)
was employed to fold each RNA sequence in
order to obtain its structure, its minimum free
energy, and also its shape. Table 1 summarizes the
construction details of the above mentioned
datasets, as well as the number of distinct
sequences, structures, and shapes in each one.

Since the neighborhood sequences of each RNA
sequence play an important role in our analysis,
therefore in construction process of random
datasets (RDS12R and RDS50R), the small num-
ber of RNA sequences of desired length (l) were
first generated and then all nucleotides appeared
in each sequence weremutated (to three other
nucleotides) to generate 3l more sequences (each
of length l). 

In order to perform the analysis and explore the
potential relations between random and natural
RNA sequences, as well as their corresponding
structures, different measures have been
employed in our analysis for each dataset. These
measures are related to both frequency and ther-
modynamic energy as follow: 

•  frequency: For each shape γ, the cardinality
of the equivalence shape class [γ]x is referred to as
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Iran J Biotech. 2014;12(3):e1010
61

Figure 4. An example of Variation Network (17)
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frequency (fx (γ)).

normalized frequency (nf): This is the normalized

value of frequency for each shape γ and it can be

calculated as follows: 

(2)

where fx
min and  fx

max denote the minimum and
maximum frequency among the equivalence
shape classes, respectively. 

• shape energy average (sea): For each shape
γ, consider the sequences in [γ]x. For all these
sequences, the minimum free energies over the
corresponding structures were calculated and
averaged, i.e. 

(3)

•  variation rate (vr): Although the variation
rate is defined for any two shapes, here the varia-
tion rate for a shape γ is taken over all other
shapes as follows: 

(4)

The variation rate vr(γ) indicates that by per-
forming a single mutation in different positions,
how many sequences from [γ]x were transformed
to the other equivalence shape classes. 

normalized variation rate (nvr): This is the nor-
malized value of variation rate and it can be calcu-
lated as follows: 

(5)

where vr
min

and vr
max

denote the minimum and
maximum variation rates, respectively. 

•  neighborhood energy average (nea): For any
shape γ, consider its neighborhood shapes in the
Variation Network. The neighborhood energy
average indicates the average minimum free ener-
gies over the sequences appeared in neighbor-
hoods’ equivalence shape classes as follows: 

(6)

•  stability: This measure indicates the stabil-
ity of a shape γ and it is calculated as follows: 

(7)
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Table 1. Summary of the constructed datasets and the number of sequences, structures, and shapes in each one.

Name Length # Sequences Generation Method Background Family # Structure # Shapes

RDS12A

RDS12R 

RDS50R 

RDS50N1

RDS50N2

RDS50N3

RDS50N4

RDS50N5

RDS50N6

12

12

50

50

50

50

50

50

50

16, 777, 216

111, 000 

20, 000, 101 

252, 623 

1, 248, 770 

214, 420 

292, 940 

219, 403 

185, 428

All possible 

sequences

Random sequences 

Random sequences 

All Subsequence 

All Subsequence 

All Subsequence 

All Subsequence 

All Subsequence 

All Subsequence 

- 

- 

- 

Synthetic RNA

5S Ribosomal RNA

Hammerhead Ribozyme

Other Ribosomal RNA

Other Ribozyme 

Cis-regulatory element 

30

29

4,704,322

74,411

331,611

34,537

89,316

60,366

44,656

6

6

7, 828 

2, 059 

3, 908 

879

2, 317 

1, 444 

1, 626 

,
)(
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min

χχ

χχγ
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where ε is considered as 0.0001 to avoid the
divide by zero exception.

All the above measures could be applied on a sin-
gle shape. In order to compare the above men-
tioned measures obtained from different datasets,
we employ a dimensionless metric as follows: 

•• Population Pearson correlation coefficient metric

This metric is used to explore the linear depend-
ency among two random variables. It is achieved
by dividing the covariance of two random vari-
ables by the product of their standard deviations.
Regarding the expected values (μx and μy) and the
standard deviations (σx and σy) of two random
variables (X and Y), the population Pearson corre-
lation px,y is calculated as: 

(8)  

where E and cov denote the expected value and
covariance, respectively. Also the corresponding
p-value, which is the probability of obtaining a
test statistic at least as extreme as the one that was
actually observed, is calculated. All the above
mentioned measures were evaluated on different
datasets and the obtained results are presented in
the next section.

5. Results

As it is mentioned, the RNAshape software (15) is
employed to fold each RNA sequence in order to
obtain its structure, its minimum free energy, and
also its shape. 

For datasets RDS12A and RDS12R, six differ-
ent shapes were obtained. Among them, two
shapes have very low frequency and therefore
they were not considered in our further analysis
(they do not have much information). For each
shape in these datasets, the corresponding meas-
ures were evaluated and presented in Table 2.
Also, the correlation and p-value among different
measures for these two datasets are presented in
the last rows of Table 2. As it is understood from
this table, all measures are correlated and there-
fore the Variation Network corresponding to the
small fraction of sequences gives us a reasonable
result about the properties of the Variation
Network corresponding to the whole sequences. 

The same evaluations have been done for other
seven datasets of length 50 constructed from ran-
dom and natural RNA sequences. The five most
frequent shapes of each dataset, as well as their
corresponding measures are presented in Table 3.
To analyze the relationship between the Variation
Networks of random and natural RNA sequences,
the correlation and p-value of each measure is cal-
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Table 2. Evaluation of the measures for datasets RDS12A and RDS12R

Datasets Shapes Frequencies

(fγγ(γγ)) 

Normalized

frequencies

(nf) 

Shape ener-

gy average

(sea)

Variation

rate (vr)

Normalized

variation

rate (nvr) 

Neighborhood

energy aver-

age (nea) 

Stability

RDS12A

[_]_ 

_[_]_ 

_[_] 

[_] 

855167

830439

435209

198277

0.3687

0.358

0.1876

0.0855

-1.2542

-1.1362

-1.0575

-1.5787

2333959

3390606

1794678

1177246

0.2682

0.3896

0.2062

0.1353

-1.2424

-1.857

-1.238

-1.3585

1.3878

0.5623

0.7772

0.7344

RDS12R 

[_]_ 

_[_]_ 

_[_] 

[_] 

5580

5543

2849

1556

0.3593

0.3569

0.1834

0.1002

-1.2792

-1.1599

-1.0916

-1.5972

1951

2711

1389

1003

0.2763

0.384

0.1967

0.1421

-1.3938

-1.8919

-1.3045

-1.448

1.1931

0.5698

0.7802

0.7778

Correlation

p-value

- 

- 

- 

- 

0.9988

0.0012

0.9999

0.0001

- 

- 

0.9969

0.0031

0.991

0.009

0.9905

0.0095

,
)()(

)()(
)(

εγγ
γγ

γ
+×

×
=

neanvr
seanfstability
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Table 3. Evaluation of the measures for the first five most frequent shapes of all dataset.

Datasets Shapes Frequencies

(fγγ(γγ)) 

Normalized

frequencies

(nf) 

shape ener-

gy average

(sea)

Variation

rate (vr)

normalized

variation

rate (nvr)

Neighborhood

energy aver-

age (nea) 

Stability

RDS50R 

_[_[_]_]_ 

_[_[_[_]_]_]_ 

_[_]_[_]_ 

_[_]_[_[_]_]_ 

_[_[_]_]_[_]_ 

1713382

1713251

883463

572828

571526

1

1

0.52

0.33

0.33

-7.78

-8.86

-8.41

-9.09

-9.01

832555

897861

452814

330260

321296

0.93

1

0.5

0.37

0.36

-8

-8.86

-8.48

-9.21

-9.12

1.05

1

1.01

0.9

0.92

RDS50N1

_[_[_[_]_]_]_ 

_[_[_]_]_ 

_[_]_[_]_ 

_[_[_]_]_[_]_ 

_[_]_[_[_]_]_ 

15078

12886

11724

8416

7218

1

0.85

0.78

0.56

0.48

-15.83

-14.9

-15.49

-14.69

-14.25

6375

5988

3746

3187

3743

1

0.94

0.59

0.5

0.59

-14.92

-12.9

-14.76

-13.54

-12.64

1.06

1.05

1.39

1.21

0.92

RDS50N2

_[_[_[_]_]_]_ 

_[_[_]_]_ 

_[_]_[_[_]_]_ 

_[_[_[_[_]_]_]_]_

_[_[_]_[_]_]_ 

74469

56031

41308

37712

35600

1

0.75

0.55

0.51

0.48

-11.23

-10.21

-11.19

-11.89

-11.35

39696

25875

16706

17816

14890

1

0.65

0.42

0.45

0.38

-10.31

-10.15

-10.83

-11.84

-12.07

1.09

1.16

1.36

1.13

1.2

RDS50N3

_[_[_]_]_ 

_[_]_ 

_[[_]_]_[_]_ 

_[_[_[_]_]_]_ 

_[_[_]]_ 

27054

26449

15346

15012

8757

1

0.98

0.57

0.55

0.32

-5.47

-3.6

-14.34

-5.92

-6.13

10737

5250

1519

8134

2394

1

0.49

0.14

0.76

0.22

-5.77

-4.23

-13.06

-5.22

-5.67

0.95

1.7

4.4

0.83

1.57

RDS50N4

_[_[_[_]_]_]_ 

_[_[_]_]_ 

_[_]_[_]_ 

_[_[_]_]_[_]_ 

_[_]_[_[_]_]_ 

19639

14842

10348

9523

9402

1

0.76

0.53

0.48

0.48

-14.34

-13.46

-13.99

-13.59

-13.16

7585

6572

4630

3982

4436

1

0.87

0.61

0.52

0.58

-13.64

-11.72

-14.04

-12.87

-13.06

1.05

1

0.86

0.98

0.83

RDS50N5

_[_[_]_]_ 

_[_[_[_]_]_]_ 

_[_]_[_]_ 

_[_]_[_[_]_]_ 

_[_[_]_]_[_]_ 

17757

15425

13061

7972

7906

1

0.87

0.74

0.45

0.45

-12.32

-13.13

-11.66

-12.78

-13.9

5416

7629

3915

3235

4527

0.71

1

0.51

0.42

0.59

-11.51

-12.34

-10.92

-11.72

-13.57

1.51

0.92

1.53

1.15

0.77

RDS50N6

_[_[_[_]_]_]_ 

_[_[_]_]_ 

_[_]_[_[_]_]_ 

_[_]_[_]_ 

_[_[_[[_]_]]]_ 

9401

6556

6397

6015

5553

1

0.7

0.68

0.64

0.59

-9.31

-7.56

-9.69

-10.78

-18.02

5122

4280

2803

3294

885

1

0.84

0.55

0.64

0.17

-8.84

-7.02

-9.71

-10.98

-16.99

1.05

0.9

1.24

0.98

3.63
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culated separately. To do this, five different per-
centages of the most frequent shapes of each
dataset, namely 100%, 20%, 10%, 5%, and 1%,
were employed. 

Then, for each measure, the correlation and p-

value between any pairs of datasets with respect to
the selected percentages of the most frequent
shapes were calculated. For the normalized fre-
quency measure, the correlations between differ-
ent datasets, as well as the corresponding p-value,
are presented in Table 4. The results for the other
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Table 4. The correlations and p-values among random and natural datasets for normalized frequency measure.

Datasets

RDS50N1 RDS50N2 RDS50N3 RDS50N4             RDS50N5          RDS50N6

Corre-

lation

p-

value

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

value

Corre-

lation

p-

value

RDS50R 

0.9347

0.9454

0.9437

0.9417

0.9292

0

0

0

0

0

0.9148

0.9225

0.9198

0.9154

0.9185

0

0

0

0

0

0.7769

0.7548

0.732

0.6817

0.4243

0

0

0

0

0.2948

0.9393

0.9532

0.9516

0.9485

0.9246

0

0

0

0

0

0.9395

0.939

0.9336

0.9239

0.9252

0

0

0

0

0

0.8421

0.8349

0.8251

0.8095

0.8237

0

0

0

0

0.0002

RDS50N1

0.9137

0.9027

0.8924

0.8824

0.8649

0

0

0

0

0

0.7043

0.6778

0.6375

0.5509

0.1875

0

0

0

0.0004

0.6873

0.9626

0.9594

0.9564

0.956

0.9422

0

0

0

0

0

0.9433

0.9396

0.9346

0.9278

0.9245

0

0

0

0

0

0.8554

0.835

0.8137

0.8231

0.9009

0

0

0

0

0.0009

RDS50N2

0.5992

0.5582

0.5145

0.4388

0.6779

0

0

0

0.0084

0.2085

0.938

0.9314

0.9248

0.9177

0.8944

0

0

0

0

0

0.8702

0.8551

0.8414

0.8171

0.7373

0

0

0

0

0.0096

0.8334

0.8081

0.7983

0.8323

0.8702

0

0

0

0

0.0001

RDS50N3

0.6859

0.6496

0.6196

0.5212

0.2309

0

0

0

0.0019

0.6184

0.6984

0.6621

0.6338

0.5278

0.0383

0

0

0

0.0023

0.9512

0.5836

0.604

0.5583

0.4612

0.4781

0

0

0

0.0079

0.4154

RDS50N4

0.9435

0.9386

0.9345

0.9237

0.8836

0

0

0

0

0

0.8592

0.8457

0.8793

0.871

0.9473

0

0

0

0

0

RDS50N5

0.8241

0.8586

0.8474

0.8651

0.8525

0

0

0

0

0.0035
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measures, namely shape energy average, normal-
ized variation rate, neighborhood energy average,
and stability are presented in Tables 5, 6, 7, and 8,
respectively. 

As it is understood from these tables, the fre-
quency and variation rate measures in these
datasets are highly correlated to each other. This
indicates that the most frequent shapes and their
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Table 5. The correlations and p-values among random and natural datasets for shape energy average measure

Datasets

RDS50N1 RDS50N2 RDS50N3 RDS50N4             RDS50N5          RDS50N6

Corre-

lation

p-

value

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

value

Corre-

lation

p-

value

RDS50R 

0.0757

0.1557

0.0731

-0.1415

-0.2052

0.0008

0.0019

0.3013

0.1581

0.3856

0.0864

0.3225

0.4133

0.4369

0.5374

0

0

0

0

0.0007

0.2096

0.5019

0.5912

0.6437

0.6753

0

0

0

0

0.0661

0.1122

0.0951

-0.0526

-0.0868

-0.5452

0

0.0438

0.4323

0.3562

0.0071

0.0874

0.3832

0.4927

0.4924

0.7918

0.001

0

0

0

0.0007

0.1773

0.4475

0.6015

0.7132

0.7281

0

0

0

0

0.0021

RDS50N1

0.099

0.0976

0.0717

0.1162

0.3918

0

0.0647

0.3402

0.2784

0.1334

0.0319

-0.1725

-0.381

-0.4994

-0.6355

0.3858

0.0325

0.0007

0.0017

0.1251

0.2225

0.3491

0.3574

0.4013

0.58

0

0

0

0.0004

0.0092

0.322

0.4073

0.2001

0.1726

-0.4423

0

0

0.0247

0.1872

0.15

-0.0437

0.1079

0.1509

0.1462

0.1767

0.1392

0.0926

0.1075

0.2779

0.6493

RDS50N2

0.0627

0.044

0.0765

0.1243

-0.0608

0.0693

0.5732

0.4972

0.4768

0.9226

0.0823

0.001

-0.047

0.0325

-0.0815

0.0004

0.984

0.5081

0.7433

0.7478

0.0914

0.2475

0.2664

0.2867

0.2196

0.0009

0

0.0015

0.0196

0.5164

-0.0176

0.0603

0.1033

0.2601

0.2724

0.5176

0.3233

0.2403

0.0396

0.3461

RDS50N3

0.0175

-0.0534

-0.1007

-0.161

-0.6803

0.6278

0.5138

0.3805

0.3708

0.0926

0.1388

0.2875

0.3506

0.1602

0.6839

0.0003

0.0006

0.0034

0.3893

0.2029

0.1829

0.3169

0.3691

0.3159

0.9247

0

0.0002

0.004

0.0781

0.0245

RDS50N4

-0.0235

-0.0319

-0.1259

-0.0133

-0.4459

0.4232

0.6157

0.1569

0.9158

0.11

-0.055

-0.0369

-0.0193

-0.2318

0.3896

0.0642

0.5735

0.8372

0.0827

0.2362

RDS50N5

-0.0032

0.095

0.2487

0.3389

0.1041

0.9225

0.1863

0.0188

0.0161

0.7899
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variation rates are almost identical in random and
natural datasets. On the other hand, the shape
energy average, neighborhood energy average,
and stability measures are not well correlated.

This indicates that, the natural RNA sequences are
specialized to do a specific function inside the
cell, where the random RNA sequences do not
have such a special function (17). 
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Table 6. The correlations and p-values among random and natural datasets for normalized variation rate measure

Datasets

RDS50N1 RDS50N2          RDS50N3 RDS50N4          RDS50N5          RDS50N6

Corre-

lation

p-

value

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

value

Corre-

lation

p-

value

RDS50R 

0.9589

0.9679

0.9668

0.9653

0.9582

0

0

0

0

0

0.9457

0.9563

0.9543

0.9514

0.9512

0

0

0

0

0

0.9205

0.9184

0.9163

0.9081

0.9105

0

0

0

0

0.0017

0.9486

0.966

0.9636

0.9595

0.9334

0

0

0

0

0

0.9491

0.9542

0.9493

0.9408

0.9215

0

0

0

0

0

0.9181

0.9179

0.9139

0.9032

0.8849

0

0

0

0

0

RDS50N1

0.958

0.9521

0.9469

0.9409

0.943

0

0

0

0

0

0.8749

0.8704

0.8676

0.8472

0.8397

0

0

0

0

0.0181

0.975

0.9719

0.9692

0.967

0.963

0

0

0

0

0

0.9591

0.9556

0.9532

0.9471

0.9432

0

0

0

0

0

0.9292

0.92

0.912

0.9302

0.9693

0

0

0

0

0

RDS50N2

0.8143

0.8

0.7912

0.7598

0.7239

0

0

0

0

0.1667

0.9679

0.9641

0.9604

0.9565

0.9336

0

0

0

0

0

0.9511

0.945

0.9413

0.9356

0.9338

0

0

0

0

0

0.9162

0.9043

0.8999

0.8923

0.9204

0

0

0

0

0

RDS50N3

0.8663

0.8568

0.8475

0.8077

0.8072

0

0

0

0

0.0282

0.8738

0.861

0.851

0.8108

0.5591

0

0

0

0

0.3272

0.8303

0.8539

0.8615

0.8434

0.8908

0

0

0

0

0.0426

RDS50N4

0.9759

0.9747

0.9728

0.9696

0.9587

0

0

0

0

0

0.9216

0.9117

0.9084

0.8925

0.9412

0

0

0

0

0

RDS50N5

0.9093

0.9075

0.9037

0.9162

0.9378

0

0

0

0

00.0002
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Table 7. The correlations and p-values among random and natural datasets for neighborhood energy average measure

Datasets

RDS50N1 RDS50N2 RDS50N3 RDS50N4           RDS50N5          RDS50N6

Corre-

lation

p-

value

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

value

Corre-

lation

p-

value

RDS50R 

0.1496

-0.1049

-0.1055

-0.2868

-0.287

0

0.0375

0.1352

0.0036

0.2198

0.2845

-0.0869

0.0485

0.2058

0.3249

0

0.0179

0.3507

0.0041

0.0532

0.033

-0.0337

0.2318

0.499

0.6127

0.3303

0.6583

0.0318

0.0008

0.1063

0.1896

-0.1573

-0.2092

-0.258

-0.3477

0

0.0008

0.0016

0.0054

0.1041

0.1114

-0.0517

0.175

0.1893

0.7413

0

0.3849

0.0366

0.1113

0.0024

0.099

0.0834

0.2011

0.4011

0.6552

0.0001

0.1497

0.0136

0.0004

0.008

RDS50N1

0.2941

-0.0208

-0.1001

-0.0979

0.1209

0

0.694

0.1826

0.3613

0.6557

0.2996

0.1033

0.0509

-0.4002

-0.525

0

0.2024

0.6647

0.0141

0.2263

0.4253

0.3136

0.1631

0.1578

0.5026

0

0

0.0358

0.1764

0.0283

0.4886

0.3645

0.1948

0.1521

-0.5491

0

0

0.0288

0.2461

0.0644

0.2673

0.0446

0.0651

-0.1734

0.3628

0

0.488

0.4896

0.197

0.3372

RDS50N2

0.1525

0.0315

0.0709

0.2519

0.3848

0

0.6874

0.5295

0.1443

0.5224

0.3197

0.0347

0.03

0.0107

-0.0929

0

0.4848

0.6721

0.9143

0.7139

0.2913

0.0708

0.0869

-0.1026

-0.1227

0

0.2436

0.3092

0.4121

0.7193

0.2049

-0.0056

0.129

0.0297

0.2264

0

0.9271

0.1418

0.8172

0.4363

RDS50N3

0.2402

0.0832

0.1353

-0.205

-0.5885

0

0.3081

0.2377

0.2525

0.1645

0.2451

-0.1179

-0.1528

-0.1972

0.6167

0

0.1683

0.2134

0.2876

0.2679

0.1832

0.0694

0.0582

-0.1503

0.7367

0

0.4275

0.6613

0.4117

0.1556

RDS50N4

0.3525

0.1866

0.1293

0.212

-0.306

0

0.0031

0.1459

0.0875

0.2874

0.2492

0.0352

0.0111

-0.1138

0.1996

0

0.5913

0.9057

0.3994

0.5563

RDS50N5

0.2079

0.0237

0.0278

0.2072

-0.3654

0

0.7423

0.7957

0.1488

0.3335
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Table 8. The correlations and p-values among random and natural datasets for stability measure

Datasets

RDS50N1 RDS50N2 RDS50N3 RDS50N4             RDS50N5          RDS50N6

Corre-

lation

p-

value

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

valu

Corre-

lation

p-

value

Corre-

lation

p-

value

RDS50R 

-0.0164

-0.0417

-0.0407

-0.0889

-0.1576

0.4679

0.4096

0.5653

0.3765

0.5071

-0.0108

-0.0170

-0.0186

0.0806

0.4320

0.5206

0.6440

0.7203

0.2652

0.0085

-0.0031

-0.0579

-0.0829

0.4337

-0.0489

0.9269

0.4462

0.4481

0.0041

0.9085

-0.0128

0.0115

-0.0004

0.1583

-0.0479

0.5491

0.8085

0.9955

0.0911

0.8283

-0.0860

-0.1126

-0.0273

-0.0423

0.3011

0.0012

0.0577

0.7458

0.7240

0.2954

-0.0953

-0.0217

0.0533

-0.0191

-0.1072

0.0002

0.7078

0.5174

0.8707

0.7036

RDS50N1

0.0350

0.0242

-0.0113

-0.0223

-0.1223

0.1448

0.6477

0.8803

0.8359

0.6518

0.0958

0.1321

-0.0214

-0.0465

-0.1662

0.0092

0.1024

0.8554

0.7845

0.7217

0.1378

-0.0070

-0.0455

-0.0246

-0.0556

0

0.9012

0.5603

0.8340

0.8211

0.2034

0.0785

-0.0371

-0.0335

-0.0917

0

0.2249

0.6799

0.7996

0.7769

0.1584

0.0594

-0.0134

-0.0366

0.2466

0

0.3555

0.8873

0.7869

0.5224

RDS50N2

-0.0145

0.0073

-0.0264

0.4470

0.8028

0.6755

0.9252

0.8148

0.0071

0.1020

0.0741

0.0255

-0.0058

-0.0112

-0.5036

0.0013

0.6078

0.9354

0.9105

0.0331

0.0294

0.0408

-0.0067

0.1130

0.0313

0.2867

0.5018

0.9377

0.3663

0.9271

0.0421

0.0582

0.0137

0.1317

1

0.1208

0.3409

0.8766

0.3035

0

RDS50N3

0.1042

0.0867

-0.0066

-0.0400

-0.1673

0.0037

0.2884

0.9540

0.8249

0.7199

0.0581

0.0023

-0.0523

0.2487

-0.6759

0.1297

0.9787

0.6716

0.1773

0.2104

0.0377

-0.0495

-0.0471

-0.0425

0.8841

0.3283

0.5714

0.7231

0.8173

0.0465

RDS50N4

0.3141

0.2993

0.3541

0.1581

-0.0773

0

0

0

0.2048

0.7927

0.1390

0.0602

-0.0095

-0.0314

0.4152

0

0.3585

0.9194

0.8165

0.2041

RDS50N5

0.2234

0.2040

0.3222

0.5781

-0.1250

0

0.0042

0.0021

0

0.7486
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Also, the correlation between the random
dataset (RDS50R) and six other natural datasets
are higher than the correlation between natural
datasets. This indicates that, the natural RNA
sequences do not follow the uniform distribution
because of their special functionality inside the
cell. On the other hand, the big amount of
employed random RNA sequences gives us a
large number of shapes which covers almost many
natural produced shapes (from natural sequences). 

The correlations among natural datasets become
higher if the small percentages of most frequent
shapes were employed in our analysis. This indi-
cates that the most frequent shapes appeared in
different families of natural RNA sequences.

6. Conclusions

In this paper, the Variation Network concept has
been introduced to analyze the relationship
between RNA sequences, structures, and shapes.
Although the function of an RNA sequence is
related to its structure, the RNA shape indicates
the higher level of representation of its functional-
ity inside the cell. Bases on the Variation
Networks corresponding to the random and natu-
ral RNA sequences, different measures were cal-
culated and the correlation among them are pre-
sented in this study. The obtained results indicate
that from the frequency point of view, all the
employed datasets are highly correlated to each
other, but from the thermodynamic energy point
of view they are not well correlated. These con-
clude that the natural RNA sequences are not gen-
erated randomly.
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