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ARTICLEINFO  ABSTRACT 
 

Article type: 
Original article 
 

 Objective(s): There are many reports about the role of rostral ventromedial medulla (RVM) in 
modulating stress-induced analgesia (SIA). In the previous study we demonstrated that temporal 
inactivation of RVM by lidocaine potentiated stress-induced analgesia. In this study, we 
investigated the effect of permanent lesion of the RVM on SIA by using formalin test as a model of 
acute inflammatory pain. 
Materials and Methods: Three sets of experiments were conducted: (1) Application of stress 
protocol (2) Formalin injection after exposing the animals to the swim stress (3) Either the 
relevant vehicle or dopamine receptor 1 (D1) agonist R-SKF38393 was injected into the RVM to 
cause a lesion. For permanent lesion of RVM, R-SKF38393 was injected into the RVM. Forced 
swim stress in water was employed in adult male rats. Nociceptive responses were measured by 
formalin test (50µl injection of formalin 2% subcutaneously into hind paw) and pain related 
behaviors were monitored for 90 min. 
Results: In the unstressed rats, permanent lesion of the RVM by R-SKF38393 decreased formalin-
induced nociceptive behaviors in phase 1, while in stressed rats, injection of R-SKF38393 into the 
RVM potentiated swim stress-induced antinociception in phase 1 and interphase, phase 2A of 
formalin test. Furthermore, R-SKF38393 had pronociceptive effects in phase2B whereas 
injections of R-SKF38393 resulted in significant difference in nociceptive bahaviours in all phases 
of formalin test (P<0.05). 
Conclusion: The result of the present study demonstrated that permanent inactivation of RVM 
can potentiate stress-induced analgesia in formalin test. 
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Introduction 
Although stress-induced analgesia (SIA) is a 

fundamental pain inhibition response that happens 
after exposure to a stressful situation, stress can as 
well enhance sensitivity to pain, referred to as 
“stress-induced hyperalgesia”. Pain facilitation and 
inhibition is mediated by brainstem pain-   
modulaing system. The current experiment 
investigated the importance of inhibitory control 
from the rostral ventromedial medulla (RVM) 
system. Experimental animal models of this 
phenomena help clarify the basic mechanisms of 
nociception as well as find novel therapeutic agents 
for disorders related to pain and stress (1).  

Stress has been shown to cause stress-induced 
analgesia that is activated by endogenous pain 
inhibitory systems (2-6). In some stressful situations, 
the blockade of the endogenous opioid system did 
not reverse SIA and this supports the idea that non-
opioid mechanisms may be involved in SIA (7, 8). 

 
Depending on the features of a stressor (such as 
duration, intensity, and temporal aspects of the same 
stressor), the nature of the analgesic response might 
be different (9, 10). 

The anatomical regions involved in pain 
modulation comprise cortex, hypothalamus, and brain 
stem including periaqueductal gray (PAG) matter, RVM 
and dorsal horn of the spinal cord (11, 12). Several 
studies have shown that the PAG-RVM modulates 
opioid analgesia (11). It has been revealed that the RVM 
is involved in top-down pain-modulation (13-15). Thus, 
RVM might be directly or/and indirectly (projection 
from PAG) an important site of action for SIA as 
supraspinalantinociception (1). 

Electrophysiological experiments have 
discovered three types of neurons in the RVM: on-
cell, off-cell and neutral cell. Electrical excitation of 
the on-cells elicits facilitatory influence on pain 
processing. Conversely, electrical excitation of off- 

 

*Corresponding author: Hassan Azhdari-Zarmehri. Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, 
Iran. Tel/fax: +98-531-22226011; email: hasan.azhdari@gmail.com 

mailto:hasan.azhdari@gmail.com
mailto:hasan.azhdari@gmail.com
www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

RVM inactivation potentiates stress-induced analgesia  Shamsizadeh et al 
  

  Iran J Basic Med Sci, Vol. 17, No. 3, Mar 2014 

 

 

210 

cells results in pain-inhibitory effect. The neutral 
cells do not appear to contribute to nociception. 
Thus, the RVM has a facilitatory and inhibitory role 
in pain control (16).  

The formalin test can show biphasic nociceptive 
responses; phase 1 is caused by peripheral 
stimulation (17, 18), and phase 2 evokes an 
inflammatory pain that is produced by hyper 
excitability of the spinal cord neurons (19). 

The present study investigates the role of RVM 
in stress-induced analgesia through nociceptive 
behavior due to injection of formalin. There are few 
studies examining the role of PAG in stress-induced 
analgesia (20). Projections of the PAG to the RVM, 
which in turn innervate the dorsal horn of the spinal 
cord might mediate the antinociceptive capabilities 
of the PAG and underlie PAG-mediation of SIA (21). 
In the previous study we demonstrated that 
temporal inactivation of RVM by lidocaine 
potentiated stress-induced analgesia (22, 
23).Accordingly, we decided to destroy RVM to 
understand more about the function of RVM in swim 
stress-induced analgesia. 
 

Materials and Methods 
Subjects 

Wistar rats (220–300 g) were purchased from 
Razi Institute (Karaj, Iran). Animals were housed in 
groups of three rats per cage at temperature-
controlled room, under a 12 hr light-dark cycle with 
lights on from 7:00 to 19:00. Food and water were 
provided. All experiments were done in accordance 
with the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals (NIH Publication 
No. 80-23, revised 1996) and were approved by the 
Research and Ethics Committee of Rafsanjan 
University of Medical Sciences, Rafsanjan, Iran.Three 
sets of experiments were conducted: (1) Application 
of stress protocol (swim stress test, 6 min at 20±1˚C). 
In this set of experiments, after exposing the animals 
to the swim stress, rats were received formalin 
subcutaneously (2). Formalin injection after 
exposing the animals to the swim stress (3). Either 
the relevant vehicle or R-SKF38393alone was 
microinjected into RVM followed by formalin 
injection after exposing the animals to the swim 
stress (Chart 1). 

 
Drugs 

Two percent formalin (formaldehyde, Temad, 
Iran) was prepared in sterile physiological saline 
solution (Soha, Iran), and R-SKF38393 was dissolved 
in saline as well.  

 
General procedure 

Rats were initially anaesthetized with ketamine 
(100 mg/kg) and xylazine (10 mg/kg) and afterward 
a 23-gauge, 3 mm-long stainless steel guide cannula 
was stereotaxically(24) lowered 2 mm above the 

RVM by applying coordinates from the atlas of 
Paxinos and Watson(25): incisor bar -3.3 mm, 10.5-
11 mm posterior to the bregma, midline to the 
sagittal suture and 10.6 mm down from top of the 
skull. Direct intra-RVM administration of drugs or 
the respective vehicle was performed by implanting 
the guide cannula 7 days before the experiments. The 
cannula was anchored with dental cement to 
stainless steel screws in the skull. Immediately after 
waking up from the surgery, rats were returned to 
their home cages. On the day of the experiment, rats 
were transferred to individual experimental room 
and allowed to acclimatize for 60 min before drug 
injection. Direct intra-RVM administration of drug, or 
respective vehicle was conducted with a stainless 
steel cannulae (30-gauge; 0.3 mm outer diameter) 
connected through a polyethylene tube to a Hamilton 
syringe, inserted through the guide cannula and 
extended 2 mm beyond the tip of the guide cannula 
to reach the RVM. A volume of 0.5 μl of drug or 
vehicle was injected into the RVM over a period of 
60 sec and the injecting cannula was gently removed 
1 min later. After performing stress procedures (6 
min in swim stress) and drying the animals just in 
the swim stress model, formalin was injected into the 
plantar surface of right hind paw using a disposable 
insulin syringe with a fixed 30-gauge needle (26). 
 
Swim stress test procedure 

Rats were initially transferred to the test room 
and let to acclimatize for 60 min before the 
commencement of the experiment. After reduction in 
environmental stress, swim stress tests were 
performed immediately after injections of either 
drug or vehicle. Two rats were placed in a plastic 
pool (50 cm high) filled with water maintained at 
20±1˚C for 6 min. Animals were thoroughly dried 
and then formalin was injected into the plantar 
surface of right hind paw. All experiments were 
carried out daily between 8 am and 4 pm (27-29).  
 
Formalin test 

Rats were moved to the test room at least 1 hr 
before starting the experiment. Formalin tests were 
performed in clear plastic boxes (30×30×30 cm) with 
a mirror being placed underneath at a 45° angle to 
allow an unimpeded view of the animals’ paws. In 
the present study, rats were first acclimatized for 30 
min in an acrylic observation chamber and then 
formalin (50 µl; 2%) was injected subcutaneously 
into the plantar surface of the right hind paw using a 
30-gauge needle. To ensure stable scores from 
formalin, it was necessary to certify that the needle 
was inserted 5 mm under the skin. Each rat was then 
immediately returned to the observation box, and 
behavioural recording was performed. Pain 
behaviours were scored as follows: 0, the injected 
paw was not favoured; 1, the injected paw had little 
or no weight placed on it; 2, the injected paw was 

www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

Shamsizadeh et al   RVM inactivation potentiates stress-induced analgesia 

 

Iran J Basic Med Sci, Vol. 17, No. 3, Mar 2014 

 

 

211 

 
Chart 1. Timeline of the experimental procedures 
 

elevated and not in contact with any surface; and 3, 
the injected paw was licking or biting. Recording of 
the nociceptive behaviors was performed 
immediately after formalin injection (time 0) and 
continued for 60 min. The score obtained from 
nociceptive behaviours for each 3-min intervals was 
calculated as weighted average of the number of 
seconds spent ineach behaviour, from the start of the 
experiment. The scores were recorded in normal rats 
as well as in those exposed to swim stress test. In 
each group, the behavioural responses of each rat 
during the first phase (1-7 min) inter-phase (8-14 
min) and the second phase (15-90 min) was 
separately evaluated. In order to induce the RVM 
lesion in this study, dopamine receptor 1 (D1) 
agonist R-SKF38393 (SKF) was injected on the day of 
surgery (26). 
 
Histology 

By the end of the experiments, rats were deeply 
anaesthetized with an overdose of ketamine followed 
by injecting a volume of 0.5 μl of pontamine sky blue 
(0.2%) into the cannula site. Afterward, rats were 
transcardially perfused with 100 ml of 4% formalin 
solution and the brain was removed and sectioned. 

Rats with microinjection and diffusion sites being 
located within the RVM were exclusively included in 
the results.  
 
Statistics 

Data are presented as mean ± SEM. The formalin 
pain score in all groups were subjected to one-way 
ANOVA followed by protected Dunnett/Newman-
Keuls tests for multiple comparisons as needed. The 
first phase (1–7 min), interphase (8–14 min), and 
second phase (15-90 min) of the formalin test were 
analyzed separately while using one time point for 
each phase: a time course of 7 min for phase 1 and 
interphase, and 75-min duration for phase 2. The 
defined level for statistical significance was                  
P-value<0.05. 

 

Results 
Effects of intra-RVM microinjection of R-SKF38393 
alone on formalin-induced nociceptive behaviours 

In the control group, that received no swim 
stress, formalin injection into the hind paw induced 
typical biphasic pain response. The first and second 
phases were separated by a quiescent interphase, 
which is a characteristic of formalin test (Figure 1). 

 
 

 

 
 

 
Figure 1. Time scores of nociceptive behaviours induced by formalin (mean ±SEM of 9-10 rats per group) measured every 3 min for 90 
min (A) and bar chart for formalin test in control, saline and R-SKF38393 groups (B). The columns represent the mean of nociceptive score 
in each phase: phase 1 (min 1–7), interphase (min 8–14) and phase 2A (min 15–60) and phase 2B (min 61–90), (B). * P<0.05 in comparison 
with control group 
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Figure 2. Time scores of nociceptive behaviours induced by formalin (mean ±SEM of 9-10 rats per group) following swim stress measured 
every 3 min for 90 min (A) and bar chart for formalin test after swim stress in 50-cm high water and control group (B). The columns 
represent the mean of nociceptive score in each phase: phase 1 (min 1–7), interphase (min 8–14) and phase 2A (min 15–60) and phase 2B 
(min 61–90), (B). * P<0.05; ** P<0.01 and *** P<0.001 in comparison with control group 
† P<0.01 compared to stress-respective-control group 
 

The intra-RVM injection of R-SKF38393  reduced 
pain in the first phase of formalin test [F (2, 
23)=2.360; P=0.031; (Figure 1B)],but it had no effect 
on the interphase or second Phase: for interphase [F 
(2, 23)=0.680; P=0.517; (Figure 1B)], and phase 2A 
[F (2, 23)=0.778; P=0.471; (Figure 1B)], and had 
pronociceptive effect on phase 2B [F (2, 23)=2.859; 
P=0.078; (Figure 1B)]. 
 
Effects Swim stress on nociceptive behaviors of 
formalin test 

Swim stress potentiated the antinociceptive 
response in phase 1 [T(1, 14)=2.90; P=0.011; (Figure 
2B)], interphase [T (1, 14)=3.214; P=0.001; (Figure 
2B)], and phase 2A [T (1, 14)=3.074; P=0.008; 
(Figure 2B)], and had pronociceptive effect on phase 
2B [T (1, 14)=2.751; P=0.021; (Figure 2B)]. 

 
Effects of RVM lesion induced by SKF on 
antinociceptive behaviors of swim stress in 
formalin test 

Following RVM lesion induced by SKF, swim 
stress potentiated the antinociceptive response in 
phase 1 [F (2, 26)=18.735; P=0.000; (Figure 3B)], 

 interphase [F (2, 26)=6.687; P=0.005; (Figure 3B)], 
and phase 2A [F (2, 26)=42.397; P=0.000; (Figure 
3B)], and had pronociceptive effect on phase 2B [F 
(2, 26)=18.727; P=0.000; (Figure 3B)]. 
 

Discussion 
It has been argued that blocking the RVM could 

illustrate the role of RVM in pain modulation. In the 
previous study we demonstrated that temporal 
inactivation of RVM by lidocaine potentiated stress-
induced analgesia (22, 23). Total lesion induced by 
SKF38393 microinjection was consistent with 
temporary inactivation.Lidocaine blocks a particular 
neuronal area through limiting Na currents and 
elimination of lidocaine takes upwards of 2 hr, (30) 
therefore we were used it during 90 min of formalin 
test (31). 

The dopamine receptor antagonist (D1) 
SKF38393 induces neurotoxic effects as observed in 
histological studies (32-34). Explaining the 
differences between temporary and total inactivation 
manipulation, Manning utilized NADM-induced 
lesion as an excitotoxin-induced lesion to completely 
and unilaterally inactivate the central amygdale to 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Time scores of nociceptive behaviours induced by formalin (mean ±SEM of 9-10 rats per group) following swim stress or 
SKF/swim stress measured every 3 min for 90 min (A) and bar chart for formalin test after swim stress and control group (B). The columns 
represent the mean of nociceptive score in each phase: phase 1 (min1–7), interphase (min 8–14) and phase 2A (min 15–60) and phase 2B 
(min 61–90), (B). * P<0.05; ** P<0.01 and *** P<0.001 in comparison with control group 
† P<0.01 compared to stress-respective-control group 
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address dissociation of locomotor and 
antinociceptive effects of morphine. Excitotoxin-
induced lesion was chosen over temporary 
inactivation to generalize different doses of 
morphine. Furthermore, it makes valid comparisons 
between data (35). In another study, temporary 
inactivation of RVM by lidocaine and previous 
permanent inactivation by ibotenic acid supported 
that neorotensin and NADM receptor in RVM 
contribute to descending facilitator influences in 
secondary hyperalgesia (36). 

In the current study, permanent inactivation of 
RVM enhanced analgesia responses as a result of 
stress. The RVM-PAG pain modulating system 
involved a supraspinal center in processing pain. Due 
to a large number of opioid receptors, PAG 
participates in antinociceptive responses (16). In 
fact, PAG responses manipulate the RVM and then 
project through dorsal longitudinal fasciculus (DLF) 
to dorsal horn of spinal cord (37). The RVM, 
including the nucleus raphe magnus and adjacent 
reticular nuclei, plays pivotal role in top-down pain 
modulation system (37, 38). Physiological 
characterization of neurons in the RVM suggests 
calling them on-cells, off-cells and neutral cells (16). 
Electrical excitation of on-cells elicits facilitatory 
influence on pain processing and it is reported that 
the firing rate of on-cells decreases or inhibits by               
µ-opioid agonists (39, 40). On the other hand, 
electrical excitation of the off-cells causes pain-
inhibitory influence while the pause of firing activity 
in off-cells increases with morphine (13, 41, 42). 
Based on several reports, the neutral-cells show no 
change in firing rate before nociceptive reflex and fail 
to response to opioids (13, 41, 42). Some research 
state that the RVM contributes to stress-induced 
analgesia or hyperalgesia as a phenomenon in pain 
modulation (43-48). Watkins et al in 1983 
demonstrated that it is the origin of the analgesia via 
descending pathways lying solely within the 
dorsolateral funiculus of the spinal cord which 
mediates front paw analgesia by foot shock and 
classically-conditioned analgesia (49). Evidences for 
bidirectional role of RVM in pain control develop an 
idea that potentiated analgesia due to stress is the 
result of facilitatory role of RVM. In a previous study, 
Coderre et al reported that RVM akin to positive 
feedback loop is activated in exposure to noxious 
stimulations (50). Moreover, in male rats receiving 
electrocupuncure to the tail, immediate early gene, 
C-fos, in the RVM was expressed more than control; 
thus indicating that RVM is activated during noxious 
conditions (21). Being consistent with our study, 
injection of methysergide (as a serotonergic 
antagonist) into the RVM markedly potentiated 
continuous cold-water swims, but not intermittent 
cold-water swims analgesia (51). Similar to the 
current study, diazepam potentiated cold swim 

stress analgesia (52) as well as an antagonist of nitric 
oxide synthase selectively augmented swim stress 
analgesia in rats (53).  

On the contrary, in some related studies, a pain-
inhibiting role was identified for RVM. For instance, 
activation of RVM was required for opioid analgesia 
(54). There is evidence indicating that male rats 
were restraint while the RVM had been inactivated 
with lidocaine, as well as having a decreased tail-flick 
latency (55). This conclusion is in contrast with our 
finding. Therefore, differences in pain and stress 
models must be considered.  

As being known, the RVM is required to facilitate 
pain associated with inflammation or prolonged 
noxious stimulus (56-59). Moreover, it has been 
reported that subcutaneous injection of formalin can 
increase the ongoing activity of on-cells in RVM (60). 
Different studies suggest that inflammation due to 
mustard oil leads to strongly activating the on-cells 
and nearly suppressing the off-cells in RVM (57). Our 
results appear to confirm the previous studies; 
hence, inactivation of the RVM during formalin test, 
as in persistent pain, leads to potentiate the stress-
induced analgesia as a result of on-cells inactivation 
in RVM. Electrophysiology studies into on-cells 
during formalin injection would complete this 
evidence. It is thus reasonable to considering 
neurotransmitters such as GABA and Glutamate due 
to evidences suggesting GABAergic and 
Glutamatergic signaling contribution to SIA (1) and 
modulated interphase of formalin test (61). GABA 
receptor mediated inhibition of the off-cells in RVM 
and Glutamate receptor is tied to facilitating pain in 
the on-cells in RVM (16, 62, 63). Recently, some 
neurotransmitter and neuropeptide such as orexin 
have been recognized that are involved in SIA being 
likely to clarify the function of RVM in pain 
modulation like SIA (29, 64). 

 

Conclusion 
The present experiment demonstrated the role of 

RVM in pain suppression upon exposure to stressful 
situation. Hence, inactivation of the RVM, permanently 
by SKF38393, could exaggerate stress-induced 
analgesia. 
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