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Research Note

Enzymatic Saccharification of Poplar Wood

F. Vahabzadeh*, B. Bonakdarpor! and M. Ehsanipor’

In this paper, enzymatic saccharification of poplar wood has been studied. Poplar wood
samples were subjected to chemical processing (acidic delignification and swelling by ammonium
hydroxide) under selected operational conditions. By removal of lignin along with recovery of
cellulose both at the level of 80%, solid residues were obtained that were, then, used as the
substrate for enzymatic hydrolysis using a mixture of the following two enzymes, cellulose and
cellobiase. Increase in the swelling capacity of the cellulose substrate along with decrease of the
polymerization degree of lignocellulosic materials facilitate the action of cellulases enzymes.
Considering selected operational conditions in the enzymatic saccharification of the wood
residues, glucose was produced at the level of 30 g/l. The experimental results were fitted
to the hyperbolic empirical model. There was a close relationship between the experimental and

the calculated results in some of the enzymatic treatments.

INTRODUCTION

There have been great interests in recent years for
finding efficient ways to utilize lignocellulosic materials
(LCM) as the raw material for production of fuels,
chemicals and foods [1-3]. Renewable nature, high
availability and low price are main reasons for using
LCM as the starting material for the bioconversion to
sugar [4]. Among the lignocellulosic materials, wood is
considered to be the largest resources. On the basis of
chemical constituents of the cell wall, the wood system
can be classified into soft- and hard- wood [2,3]. The
cell wall composition of these woods are significantly
different:

e The lignin content of softwoods is generally higher
than that of hardwoods,

o The cellulose content of hardwoods is generally
higher than that of softwoods,

e The hemicellulose content of hardwoods is rather
similar to that of softwoods [2].

Moreover, poplar as the main genus of trees of the wil-
low family has some favorable characters such as rapid
growth and ability to grow in semi-dry regions. Poplar
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is among popular trees in Iran and widely used in the
manufacturing of variety items in the related industries
[5-7]. Therefore, its production and existence in Iran
could be evaluated as following a good trend. However,
the present crops and trees in the world have not
been optimized for production of digestible cellulose
and alternative crops, trees etc. for this purpose may
be developed in the future [8]. Meanwhile, there is a
great need for provision of data for local lignocellulosic
materials to be compared and evaluated as the possible
raw material for the enzymatic hydrolysis (action of
cellulases) and production of sugars.

Presence of a lignin-hemicellulose shield around
the cellulose fraction in plant cell wall has made the
LCM highly resistant to the enzymatic depolymer-
ization [1,3]. The complex structure of these plant
constituents is thought to confer a wide range of
biophysical and biomechanical properties on the plant
tissues, as well as on product(s) made from these
tissues [1,9]. Performing a proper treatment prior
to the enzymatic hydrolysis is, therefore, needed to
facilitate the accessibility of cellulose and enhance the
action of the hydrolytic enzyme(s) on this substrate
[4,10]. Enzymes or biocatalysts are biodegradable com-
pounds and, therefore, harmless to the environment [4].
Variety of physicochemical, mechanical and biological
processes have been used as pretreatment step for
efficient utilization of LCM [11,12]. In order to have
a successful pretreatment, one should consider several
factors in detail, such as maximizing the removal of
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MATERIALS AND METHODS
Wood as the Raw Material
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spectively [5]. The composition of the poplar wood (on
a dry basis) used in the experiments was estimated to
be about 51.9% cellulose, 25% hemicellulose and 23.1%

lignin.

Delignification

Milled, screened and homogenized wodd samples were
delignified with acetic acid-HCl-water media according

Table 1. Operational
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to the predetermined conditions [5,10]. Operational
variables used in the delignification were as below:
temperature of heating, 110° and 130°C; time of
heating, 3, 1 and 1% hour(s); ratio of liquid to solid, 8
and 10; and catalytic level of HCl was 0.2 and 0.45%
(Table 1). The reaction was performed in a batch
system [5]. The delignification reaction was conducted
in an autoclave and at the end of heating time, the
solid residue was separated by filteration, washed with
water and air-dried. Aliquots from the solid residue
were analyzed for cellulose, hemicellulose and lignin
using the same procedure described above for untreated
wood samples.

Swelling Pretreatments

Delignified samples were treated with NH4;OH solution
at 60°C for 3 hours using a liquid/solid ratio of 10 ml/g.
At the end of swelling treatments, using appropriate
filter units, the solid residues were separated, washed
with water and air-dried. Aliquots of the samples
obtained in this way were subjected to the chemical
analysis outlined above and the composition of the solid
residue from the wood samples was determined [5].

Enzymatic Hydrolysis

Saccharification of the pretreated samples was per-
formed using Trichoderma reesi cellulases (CE) (Cel-
luclast, Novo, Denmark) and Aspergillus niger -
glucosidase (cellobiase, CB) (Novozyme, Novo, Den-
mark). The extracellular cellulose is deficient in j3-
glucosidase, therefore, a mixture of these two enzymes
were used. Activities of these commercial enzyme so-
lutions were determined using usual standard methods
[5,16]. The operational conditions used for the enzy-
matic hydrolysis are listed in Table 2. Sodium azide
(NaN3) was also added to the reaction mixture, as an
antimicrobial agent. At appropriate time intervals, the
hydrolyzed samples were withdrawn from the reaction
mixture and boiled for 15 minutes in caped test tubes
to deactivate the enzyme and terminate the reaction.
After centrifugation at 3000 rpm for 5 minutes, the
supernatant was filtered using 0.45 gm membranes and
the resulting samples were analyzed for reducing sugars

conditions used for the delignification process of poplar wood.

Operational Condition
Catalytic level of HCI used (CA, %) 0.2; 0.45
Heating in Duration (h), 1
autoclave Temperature (T°C) 110; 130
Liquid:solid (wood) ratio (ml/g) 8; 10
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Table 2. Operational conditions used for the enzymatic hydrolysis of the chemically processed poplar wood.

Operational Condition

pH

Cellulase level (CE) (FPU/g)

Cellobiase level (CB) (IU/g)

Temperature (°C)

Liquid; solid (wood) (L/S) ratio (ml/g)

Duration of the enzymatic
hydrolysis (h)

(glucose) by the glucose oxidase-peroxidase method
[5,16].

The sugar concentration-time series of the data
obtained in the saccharification reactions were deter-
mined and the results were fitted to the hyperbolic
(empirical) model of cellulose hydrolysis:

SC = ! 1
=0 P t1/2 ) ( )
where SC is the sugar concentration obtained at time
t, y1 is the sugar concentration that should be reached
at infinite reaction time and t12 is the time to reach
50% of y1 [10,12,17]. A commercial software (Excel 97)
was used for the evaluation of the data.

RESULTS AND DISCUSSION
Chemical Treatment of the Wood Samples

The chemical processing of several wood samples for
improving their potential as substrate for the enzy-
matic hydrolysis has been studied rather extensively.
One of the popular treatments is conducting the
processes in two steps: delignification in an acidic
medium followed by swelling by alkali [2,3]. On the
basis of the results of several studies reported in the
literature, the operational conditions, listed in Table 1,
are selected for the delignification of the poplar wood
[5]. Effects of heating temperature (110° and 130°C
for one hour) and the catalytic level of HCI (0.2 and
0.45%) in the delignification medium (acetic acid-HCI-
H>O) were studied at two levels of liquid/solid (wood)
ratios (8:1 and 10:1). Although raising the temperature
of heating process from 110° to 130°C at the catalytic
level (HCl) of 0.2% had little effect on recovery of
cellulose, the level of lignin removal increased from
34 to 48% (Figure la, operational conditions used to
obtain data for this figure were the same as those
described in Table 1, from which also the definition
of symbol used can be found). Increasing the level
of HCI catalyst from 0.2 to 0.45% while keeping the
heating temperature at 110°C had no considerable
effect on cellulose recovery as well as on the level of
lignin removal (Figure la). However, increasing the
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Figure 1. Chemical composition of solid (wood) residues
obtained from the delignification treatments on poplar
wood samples along with lignin removal- the values are
calculated as the percent of original amount of each
component in the sample before treatment.

catalytic level of HCI (from 0.2 to 0.45%) along with
raising the heating temperature from 110° to 130°C
improved both levels of cellulose recovery and lignin
removal significantly (see Figure la). Therefore, one
may conclude that when the poplar wood samples at
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role(s) of hemicellulose on the enzymatic susceptibility

of LCM are rather controversial [1,9].

For example, ap-

proximately 60% of xylose componen

t (mainly pentose

in hemicellulose fraction) in typical hardwood species
have O-acetyl groups [1,3]. During acidic hydrolysis,
the cleavage of the acetyl side chains occurs and the
resulting acetic acid appears to promote the observed
hydrolytic action [3]. On the other hand, results
presented in some reports indicate thiat the presence of
hemicellulose does not play an impartant role in sus-
ceptibility of cellulose toward the enzymatic attack [3].
Considering these facts, there will be many researches
into finding an effective way for LCM conversion to
useful chemicals, and hemicellulose | has been said to
have a key role in solving the problem [1]. Approaches
taken toward the importance of relationship between
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lignin removal and the enzymatic hydrolysis of the
cellulosic fraction of LCM is rather straight-forward
[2,11,18]. In the present study, hemicellulose content
of the poplar wood samples obtained from different
delignification treatments did not show to change
significantly (Figure 1). Although, increasing the level
of lignin removal is accompanied with higher levels of
cellulose recovery (Figure 1; d-4 and d-8). In the study
conducted on Eucalyptus wood, when 90% of lignin
along with 87% of hemicellulose were removed, great
improvement on cellulose recovery was achieved (87 to
92% of the cellulosic fraction was recovered) [17]. The
amount of total reducing sugars which were obtained
upon the saccharification of the treated Eucalyptus
wood was about 45 g/1 [17]. It appears that removal of
hemicellulose along with lignin separation each at the
level of 80% or higher could contribute to a noticeable
change in the amount of reducing sugars obtained upon
the enzymatic hydrolysis of the cellulose recovered
(e.g., the level of glucose obtained in the present work
(Figure 2) can be compared with the total reducing
sugars produced from the Eucalyptus wood [17}). In
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* the levels of the enzymes in the reaction mixtures were:

s-a; CE 13 FPU/g and CB 80 IU/g, and liquid:solid ratio, 8:1

s-b; CE 13 FPU/g and CB 169 IU/g, and liquid:solid ratio, 20:1

s-c; CE 13 FPU/g and CB 169 IU/g, and liquid:solid ratio, 12:1
Figure 2. Dependence of the concentration of glucose
formed on the reaction time during the enzymatic
saccharification-selected treatments (for definition of the
symbols used in this figure see Table 2).

Table 3. Chemical composition of the solid (wood) residues obtained from the chemical processing.

Content (Weight Percent, on a Dry Basis)
Wood Sample Lignin Hemicellulose Cellulose
Untreated wood 23.1 25 51.9
Delignified wood 4.16 14.21 81.2
Delignified + swaollen wood* 4.05 12.97 82.97

* Operational conditions in the delignification process: temperature of heating 130°C;
time of heating 1 hour; liquid/solid (wood) ratio 10:1;

level of HCI catalyst 0.45%.
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continuation process for use of LCM for fermentation
reactions (for example ethanol production), it would
be better to separate pentose sugars from the cellulosic
fraction; possible conversion of hemicellulose fraction
to pentose sugars during acidic-alkali pretreatments of
LCM has been addressed in [1,9,15]. Most of the yeast
strains are unable to use pentose sugars [9); therefore,
it is suggested that appropriate technology should be
developed to separate hemicellulose sugars [1]. In the
present study, no attampts have been made to separate
hemicellulose from the delignified residues.

Enzymatic Hydrolysis of Chemically Treated
Wood

The solid residues obtained from the chemical process-
ing on the wood samples were used as the substrate
for the hydrolytic reaction which was conducted in
the media containing cellulose and cellobiase mix-
tures. The results from the enzymatic saccharification
for liquid:solid (wood) ratio of 12:1 are presented
in Figure 3. At the constant level of CE enzyme,
increasing the level of CB enzyme from 80 to 169 IU/g
had rather little improving effect on the amount of
glucose produced while at the constant level of CB
enzyme, increasing the level of CE enzyme from 3
to 13 FPU/g resulted in a significant increase in the
glucose concentration (saccharification treatments (s-
1, s-5; Figure 3). Similar trends for glucose production
was observed when liquid:solid (wood) ratio was set
at two different levels of 8:1 and 20:1; details and
related figures could be found in [5]. Delignification
and swelling of Eucalyptus wood were performed under
similar operational conditions and at the end of the
processing time, removal of lignin and recovery of
the cellulosic fraction were at a 90% level [17]. The
enzymatic susceptibility of the solid residues obtained

Glucose concentration (g/1)

s-1 s-2 3 s4 s-5 56

Saccharification treatment (s-)

Figure 3. Enzymatic saccharification of the chemically
delignified-swelled poplar wood samples. Liquid:solid
(wood) ratio was set at 12:1, other operational conditions
were same as those given in Table 1 (for definition of
symbols used in this figure see Table 2.)
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was high and using the mixtures of the enzymes
(CE and CB) resulted in the production of total
reducing sugars at the concentration of about 45 g/l
[10,17).

In the present study, data from three selected
enzyme treatments, corresponding to one of the three
different ratios of liquid:solid in the reaction mixture
of the saccharification process, were used to prepare
Figure 2 as the representative plot. The representative
sugar concentration-time plot also corresponds to the
highest level of glucose formed at each of three ratios
of L/S used to set the saccharification treatments
(Figure 2). The related plots from 18 different sac-
charification treatments could be found in [5]. Raising
the liquid:solid (wood) ratio from 8:1 to 12:1 caused the
concentration of glucose to increase from 16 to 31.5 g/I;
however, the glucose concentration decreased to 21 g/l
as the level of the liquid to solid ratio increased to 20:1
(see Figure 2). At lower levels of liquid:solid ratio, the
enzyme(s) might not have enough access to the wood as
the substrate of the reaction; however, at higher levels
of the L/S ratio, there might not be enough substrate
(cellulose surfaces) available for the enzymatic reaction
to proceed. The kinetics of the enzymatic hydrolysis
of cellulose is a complex process and among various
approaches regarding this matter, more emphasize has
been placed on the adsorption of cellulase on the
cellulose surface, a prerequisite for the hydrolysis [19-
22].  After passing some initial stages and super-
saturation of cellulose with cellulase molecules, little
uptake of the enzymes occurs and the concentration of
cellulase in the reaction mixture first remains constant
and enventually increases, indicating that digestion of
cellulose results in release of the adsorbed cellulase
to the bulk solution (desorption of the enzyme) [19].
The released enzymes are, then, ready to approach the
surface of the cellulose particles and start the catalytic
action [19]. With this approach, one may interpret the
results which are shown in Figure 2 (i.e., increase in
the concentration of glucose in the reaction mixture
after 40-45 hours could be due to the action of the
released cellulase molecules from the cellulose surface
to the bulk solution). In continuation of the matter, it
would be better to also consider the model developed
on the basis of shrinking particle theory and Langmuir
isotherm concept, in which the activity of the cellulases
adsorbed at the cellulose surface decreases with time
and this is mainly due to the formation of complexes
formed between substrate and inactive enzymes [23].
The shrinking particle theory has not been used in the
present study. The hyperbolic empirical model used in
this study (Equation 1) has been developed during the
course of the organosolvent (alcohol/water/catalyst)
pretreatment of poplar wood followed by the enzymatic
hydrolysis {12]. In that study, the concentration of
cellulose used was the same for all experiments and
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