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Automatic Adjustment of Learning Rates
of the Self-Organizing Feature Map

H. Shah-Hosseini* and R. Safabakhsh!

Time-decreasing learning rate and neighborhood functions of the conventional SOFM (Self-
Organizing Feature Map) algorithm are two factors that reduce the capability of this map to
adapt weights for different environments. Consequently, parameters for each environment have
to be selected empirically, which is a very time-consuming process. In this paper, for dealing
with non-stationary input distributions and varied environments, a SOFM algorithm is proposed
that automatically adjusts the learning rate of each neuron independently. The learning rate is
adjusted by the function of distance between an input vector and the weight vectors. The learning
rate modification rule for each output neuron maximizes the correlation between a normalized
error of the output neuron and its learning rate parameter. It is also demonstrated that learning
rates are able to adjust themselves to vary between zero and one according to their surrounding
conditions. With these modifications, the proposed SOFM algorithm virtually has no initial
condition requirements crucial to its success when it is used as a Vector Quantizer (VQ) network.
Moreover, the proposed network has some degree of incremental learning capability and converges
to a topographic feature map representing the distribution of input vectors. Experimental results
illustrate the superiority of the proposed SOFM algorithm in learning samples of non-stationary
distributions. They also indicate that the proposed algorithm speeds up the SOFM convergence
and stabilizes with lower distortion values. Moreover, it is shown that with a time-decreasing
exponential neighborhood function, the proposed SOFM converges to the topographic map of

the input samples.

INTRODUCTION

Self Organizing Feature Map (SOFM), originally de-
veloped by Kohonen [1], transforms incoming samples
(signals) of arbitrary dimensions to a one- or two-
dimensional discrete map in an adaptive fashion. This
network has been used in applications such as vector
quantization [2], texture segmentation [3], brain mod-
eling [4], phonetic typewriter [5] and image compres-
sion [6].

SOFM uses a Hebb-like learning rule with time-
decreasing learning parameters. The learning rate
should begin with a value close to unity that decreases
gradually, but stays above 0.1. It is during this initial
phase of the algorithm that the topological ordering
of the weight vectors w;(n) takes place. This phase
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is called the ordering phase. The remaining iterations
of the algorithm are needed for the fine-tuning of the
computational map, called the convergence phase.

In order to observe the topological ordering of
the weight vectors, the neighborhood function usually
begins with all the neurons in the network and, then,
gradually shrinks with time. A popular choice for
the dependence of the learning rate (and the width
o(n) of the neighborhood function) on time n is the
exponential decay [4] described as:

n(n) = no exp (—g) (1)

where 7 is the time-constant and 7o is the initial value
of the learning rate parameter [4,7].

In fact, these parameters are at their highest val-
ues at the beginning of learning. Then, they decrease
with time so that the feature map stabilizes and learns
the topographic map of the incoming samples. At the
final step, the learning rate parameter usually has a
very small value and so does the neighborhood func-
tion. Therefore, the SOFM algorithm cannot learn the



new incoming samples that might be different in statis-
tical characteristics from the previously learnt samples

with adequate speed.

In other words, the learning

process is incapable of responding appropriately to a
different environment that embodies incoming samples.

On the other hand, specific methods for deter-
mining the exact form of the neighborhood function
and adjusting the learning rate parameter for the
SOFM are not known; therefore, this task is usually

performed through experiments. How
have been made to tackle this prob|
model of Kalman filters is used to aut
the learning parameters, which of co
within the system model.
tionally expensive and cannot adap

ever, some efforts
lem. In (8], the
pmatically adjust
urse is valid only

Moreover, it is computa-

itself to varied

environments. In [9], an individual neighborhood size,
which is a function of distance between the input vector

and the relevant weight vector is assumed with no
suggestion for the learning rate parameter adjustment.
In a different work, a vector quantization method is
introduced for image coding, which updates the weight
vectors of the SOFM with a variance-based adaptive
learning rate to preserve edges [10].

A suggestion for resolving the aforementioned
problem is to choose time-independent learning pa-
rameters that change their values according to the
conditions of incoming samples, not| to the elapse of
time. These parameters should increase the capability
of the SOFM in dealing with varied environments, but
they should not decrease the speed of convergence of
the SOFM algorithm. In this paper, new rules for
adjusting the learning rate parameters in the SOFM
algorithm are proposed that include the above features.
The performance of the algorithm is compared with
that of the conventional SOFM and the experimental
results are presented.

The proposed SOFM algorithm is described in
the next section. Then, the proposed learning rate
modification rule is analyzed and it is shown that the
learning rate modification rule attempts to minimize
an error function. Consequently, experimental results
are presented and concluding remarks are given in the
final section of the paper.

THE PROPOSED SELF-ORGANIZING
FEATURE MAP ALGORITH

The learning rate parameter of the standard SOFM is
only a function of time, n, and gradually decreases.
The parameter is chosen this way to |assure the stabi-
lization of synaptic weights, with the assumption that
the input sample vectors are from a specific stationary
distribution.” There is no mechanism for understanding
whether the input distribution is changing or not. Any
fundamental change in the input distribution causes
severe problems for the SOFM and the learning rule
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cannot change the synaptic weights of the network
with adequate speed. On the other hand, since the
neighborhood function does not follow changes of the
environment, the neurons of the network are unable
to modify the topographic map based on the changed
input vectors and thus the feature map cannot take the
appropriate form.

Here, a modified SOFM algorithm is proposed
that automatically adjusts the learning rate parameters
and incorporates possible changes of the input distri-
bution in updating the synaptic weights [11]. For this
purpose, the learning rate of each neuron is considered
to follow the values of a function of distance between
the input vector and its synaptic weight vector. In
this way, the parameter will be changed independently
for each neuron and the number of parameters will be
equal to the number of output neurons. The learning
rate parameter, 7;:;)(n), of each neuron i(x) for the
input vector x is updated by the following formula:

(2)(n + 1) = m5y(n) + a
(fllx(n) = wiey()I]) = M2y (n)),

(2)
where o is a positive constant such that 0 < a <1
and |].|} stands for Euclidean norm. The function f(.)
should have the following properties:

. f(0) =0.
¢ 0< f(z)<1 Vz2>0.
df(z)>o Vz > 0. (3)
An example of such a function is fi(z) = 2= - L
For faster responses of the network to the changes of
the environment, the function fo(z) =1 - i?‘ can be
used.

The proposed SOFM may be summarlzed as
follows:

1. Initialization. First, random values for the ini-
tial weight vectors w;(0) are chosen where j =
1,2,..,N; N is the number of neurons in the
lattice. These random values should be small and
different. The learning rate parameters, 7;(n},
should be initialized with values close to unity. The
parameter o can have any value between zero and
one. If fast responses to environmental changes are
required, a should be chosen close to one; otherwise,
small positive values guarantee slow and accurate
responses to possible environmental changes. Then,
the neighborhood function parameters are initial-
ized.

2. Sampling. A sample-input vector x is drawn from
the input distribution with a certain probability.



Sell-Orgailizing Feeture Map

3. Similarity matching. The best-matching or winning
neuron i(x) is found at time n, using the minimum
distance Euclidean norm as the matching measure:

i(x) = arg; min ||x(n) — w;|| j=1,2,.. N.

(4)

4. Updating the learning rate parameters. The learn-
ing rate parameters 7;(n) are adjusted in the neigh-
borhood A;(x)(n) of the winning neuron i(x) by the
following formula:

ni(n+1) = n;(n) + a(f(|x(n)
—w;(n)|])=n,(n))

for j € Ayzy(n) .
(5)

The learning rate parameters of the other neurons
do not change.

5. Updating the synaptic weights. The synaptic weight
vectors of all output neurons are adjusted in the
neighborhood Aj;x)(n), using the following update
rule:

wi(n+1) =

wj(n)+n;(n+ D[x(n)=w;(n)]  j € Ayx(n),
w;(n) otherwise (6)

where 7;(n + 1) is the learning rate parameter and
Aj(xy(n) is a neighborhood function centered on the

winning neuron i(x). A popular choice for the form
2

of the neighborhood function is exp(—%"—‘(’f)) with

the width o(n) = o9 exp (—2) which decreases with

time.

6. Continuation. Step 2 is continued until the synaptic
weights stabilize and no noticeable change in the
feature map is observed.

The above algorithm resembles the conventional
SOFM, except for Step 4 which is a new step added to
update the learning rates.

ANALYSIS OF THE PROPOSED SOFM’S
LEARNING RATE RULE

In this section, the proposed learning rate modification
rule is further investigated and its behavior is analyzed.
By moving 7,(x)(n) of Equation 5 to the left hand side
and dividing by n + 1 — n, it is obtained that:

Nixy (1 + 1) = M) (1) _
n+1-—n

= 0Mix) () + af ([[x(n) = wigxy (n)]]). (7)
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In continuous form, this equation converts to:
Nix)(t + At) =m0 (1)
(t+ At) — ¢
= i) () + af(J[x(t) — wi (1)]]), (8)
or equivalently,
Any(x)(t)
— At = e (t) +af (lIx(t) - Wi o))
(9)

With the assumption that At is a very small positive
value,

d”i x X - W

and assuming that the changes of x(t) and Wix)(t)
with time are much smaller than that of the learning
rate 7;x), the above non-homogeneous first order
differential equation can be solved:

() =mi(0)e ™ +ae =" / e f(l|x(s) —w.(s)|])ds.
0 (11)

The first term on the right hand side decreases
exponentially to zero as time reaches infinity. There-
fore, without the second term, the learning rate always
decreases with time, as in the standard SOFM. The
second term on the right hand side of the equation
requires a more careful examination. In fact, function
FUIx(t) = wix) (t)]]) provides some normalized error of
the neuron ¢ for the input vector x and its value always
lies between zero and one. Therefore, it is possible to
write:

0 < the second_term

= ae~e / e f(IIx(s) — wi(s)[])ds

t
< ae“o‘t/ e**ds, (12)
0
or equivalently,
1 12
0 < the second_ term < ae™* [ae‘“J , (13)
0
or,
0 < the second. term < (1 —e™°%). (14)

Considering Equations 11 and 14, the following conclu-
sions can be drawn. When time reaches infinity and the
normalized error f([|x(t)—w;c)(t)]|) is high (near one),
the second term on the left hand side of Equation 11
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approches one, its upper limit and the first term goes
to zero. Therefore, when the error is high, the learning

rate approaches one, its highest value
Now consider the case where the

error function of

neuron 4 is low (near zero). The second term in this case

will be near zero and as time reaches

infinity, the first

term also approches zero. Therefore, the conclusion
can be drawn that the learning rate reaches zero when

the error is low.

Based on the above discussion, it might be stated
that the first term of Equation 11 plays the role
that a standard SOFM algorithm demands: gradual
exponential decay with time. On the other hand, the

second term of the equation assume
environment and thus, it is always

$ a time varying
ready to adjust

learning rates according to the present conditions of

the environment. At the same time,

the second term

causes no problem for a stable environment. Therefore,
the learning rates are automatically adjusted between

zero and one and the value of paramet
to these adjustments.

er < is not crucial

MINIMIZATION OF A COST FUNCTION

Consider the continuous form of t
modification rule of Equation 5 as:

el _ o (i) ~ wipo O1)

It is possible to assume that the ab

minimize a cost (error) function, say
rule is, then, equal to the negative of

respect to the learning rate 7;(x) of t

Specifically,

dei(x)
dm;

= —a(f(||x(t) — wWix)(E)|]) 7

For simplicity, ¢ is used instead of (3
of 7yx)(t). By integrating both si
constant terms:

v = e [ () = wi(o) D+

he learning rate

™~ Mi(x) (t))
(15)

ove rule tries to
ei(x)- The above
the gradient with
he cost function.

T i(x) (t))

(16)

x) and 7; instead
des and ignoring

l/mdm,
(17)

calculating the second term on the right hand side of

the equation gives:

& =—a / F(lIx(t) = wi(®)[ s + o

U

. (18)

With the assumption that the changes of the normal-

ized error f(||x(t) — w;(t)||) with resp

ect to n; are very

small, the error is taken out of the integral to obtain:

v = —af(Ix(t) ~wiolD) [dn+p%  (9)
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and finally:

2
n.
e; = —af(|[x(t) — wi(t)|[)m: + 0—2’—- (20)
This is the cost function for neuron 7. The cost function
e(t) at time ¢ for all of the neurons is the summation

of individual cost functions e;:

e(t)y=> e (21)

Replacing e; with their equivalents in Equation 20, it
is obtained that:

N N
e(t) = —a' Y f(lIx(t) = wi®)lm: + 5 Dt
i=1 i=1 (22)

the total error eyo1a Of the network is the expectation
of e(t) over time. Thus,

T

o = fim_ =3 e(t) = E(e(t)). (23)

T—o0
t=0

or,

etotar = —a 3 E(f(llx = willm) + 5 > E(nd).
: 25 (24)

According to this equation, the total error eytal is
minimized when each E{f(||x — w||)n:) and each
E(n?) are minimized. The former is a cross-correlation
between the normalized error and the learning, rate of
the same neuron. Therefore, the total error is reduced
when the cross-correlation increases. In other words,
the learning rate modification rule tries to maximize
the correlation between the normalized error and the
learning rate and, thus, the learning rate should follow
the normalized error. On the other hand, E(n?)
in Equation 24 is the time-average of the square of
learning rate that the learning rate modification rule
tends to minimize.

EXPERIMENTAL RESULTS

To compare the performance of the proposed and the
conventional SOFMs, a network of two layers is consid-
ered: an input layer of two nodes and a one-dimensional
lattice of output neurons. In the first experiment, the
neighborhood function has the smallest size; i.e., it
includes only the winning neuron. Consequently, it
has no effect on the learning process and, thus, the
two SOFMs behave as VQ networks [12]. In addition,
the value of 7 in Equation 1 for the conventional SOFM
is considered equal to 5000 and the value of « in the
proposed SOFM equals to unity.
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For uniformly distributed random two-dimen-
sional input vectors, the synaptic weights, which are
initially set equal to positive values around (0.5, 0.5),
converge to their final values after 15000 iterations
of the conventional and proposed SOFMs, as shown
in Figures 1 and 2, respectively. The distortion
values are also depicted in Figure 3. It is seen that
the synaptic weights of both algorithms are scattered
evenly in the weight space, but the proposed SOFM
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Figure 1. The feature map of the conventional SOFM
algorithm after 15000 iterations for uniformly distributed

input samples in the region [0, 1] x [0, 1] and the smallest
neighborhood size.
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Figure 2. The feature map of the proposed SOFM
algorithm after 15000 iterations for uniformly distributed

input samples in the region [0, 1] x [0, 1] and the smallest
neighborhood size.
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converges faster than the conventional algorithm. If
the input distribution changes to two different uniform
distributions, one in the [0,1] x [0, 1] region and the
other in the [1,2] x [1,2] region, the new converged
weights of the two algorithms would be as shown in
Figures 4 and 5, respectively. According to the changes
of distortion values illustrated in Figure 6, the proposed
SOFM converges much faster to its final state than the
conventional one. Moreover, it stabilizes with lower
distortion values than the conventional SOFM. Thus, it

Distortion
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« SOFM
Q‘ ¢ The proposed SOFM A

0.1 4
0.095 -
0.09 -
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The number of iterations/1000
Figure 3. The distortion values of the learning processes
of the conventional SOFM and the proposed SOFM for

uniformly distributed random two-dimensional vectors as
input samples.
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Figure 4. The feature map of the conventional SOFM
algorithm after 15000 iterations with initial parameters
and weights of the converged network of Figure 1 and the
smallest neighborhood size.
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Figure 5. The feature map of the proppsed SOFM
algorithm after 15000 iterations with initial parameters
and weights of the converged network of Figure 1 and the
smallest neighborhood size.
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Figure 6. The distortion values of the learning processes
of the conventional SOFM and the proposed SOFM for an
input distribution composed of two different uniform

distributions, one in the region [0,1] x [0, 1] and the other
in the region {1, 2] x [1, 2].

might be concluded that the proposed SOFM algorithm
shows some degree of incremental learning in its process
and is more suitable than the conventional one for non-
stationary input distributions and varied environments.
In these two experiments, the distortion measure Q =
ﬁ Z]Ail d(x;,Wi(x,)) has been used to evaluate the
clustering performance of the algorithms [7]. Here, M
is the number of the training input vectors, d(.,.) is a
distance function and x; is an input vector while wy,
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is the synaptic weight vector of the winning neuron #(x)
for the input vector x;.

Assume again that the two-dimensional uniform
distribution is in the region [0, 1] x [0, 1] for the input
vectors and the initial weight vectors of the proposed
SOFM are around point (0.5, 0.5). The proposed
SOFM, with 100 output neurons, a = 1, function fa(.)
and exponential time-decreasing neighborhood func-

2

tion exp(—%ﬁ’(’T)) with the width (n) = o9 exp (—2),
where o9 = 50 and 7 = 1000, converges to the one-
dimensional feature map shown in Figure 7 after 6000
iterations. It has been assumed that there is no neuron
before neuron 1 or after neuron N. The converged
synaptic weights occupy the input vector space almost
evenly, and the feature map preserves topological
ordering with no unfolding in the map. If 100 neurons
with the same conditions are organized into a two-
dimensional lattice, the algorithm converges to the
two-dimensional feature map shown in Figure 8 after
5000 iterations. It is seen that it preserves topological
ordering and neurons are distributed uniformly in the
map.

The two-dimensional map coordinates for the
Kodiak Island shoreline [13], shown in Figure 9, are
used to train the two SOFM algorithms. In this
experiment, each SOFM network has a one-dimensional
lattice of 25 neurons and an input layer of two neurons.
For both networks, the exponential time-decreasing
neighborhood function with parameters oo = 25 and
7 = 1000 is used. The learning rate for the SOFM
is decreased according to Equation 1 with parameters

0.8}

0.6 J

Figure 7. The topographic map of the proposed SOFM
with a time-decreasing exponential neighborhood function
and the proposed learning rate adjustment after 6000
iterations for the uniform distribution of region

[0,1} x [0, 1].
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Figure 8. The two-dimensional lattice of neurons after
5000 iterations for the uniform distribution of region
[0,1] x [0, 1].
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Figure 9. The 500 map coordinates of Kodiak Island
shoreline.

1o = 0.9 and 7 = 1000. These parameters are selected
for best performance in terms of lower quantization
(distortion) errors. The two networks are trained with
500 samples of the Kodiak data set. The weight
vectors of the standard and proposed SOFMs after
weight convergence are depicted in Figures 10 and 11,
respectively. The quantization error for the SOFM
is 0.0464 while this error is 0.0439 for the proposed
SOFM. Consequently, the proposed SOFM shows bet-
ter clustering performance than the standard SOFM.
Both networks preserve topological ordering in this
experiment.

Quadrature Amplitude Modulation (QAM) is
used for transmission of quantized signals. In QAM,
the transmission channel is divided into two subchan-
nels I (in-phase) and Q (quadrature). In 16QAM, each
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Figure 10. The weight vectors of the standard SOFM
with 25 neurons after clustering the Kodiak data with
quantization error 0.0464.
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Figure 11. The weight vectors of the proposed SOFM
with 25 neurons after clustering the Kodiak data with
quantization error 0.0439.

sample of quantized signal is transmitted with four bits:
two bits in the I part and the other two bits in the Q
part. Consequently, there are 16 different symbols for
level transmission of signals. A square lattice of 4 x 4
neurons of an SOFM network with two-dimensional
input vectors has been used at the receiving end as
an adaptive detector for the QAM system [14]. Each
neuron of the SOFM is supposed to follow its own
cluster under various deformations such as corner and
lattice collapse situations. Moreover, noise can be
superimposed on the transmitted symbols. Because
this environment is time-varying and non-stationary, it
is suggested that the SOFM should keep its learning
rate at a constant value after finishing the training
phase [14].
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Here, such a changing environment is simulated
and the two SOFMs are used for the QAM as an adap-
tive detector. Random number generation is employed

to produce quantized signals. These

quantized signals

are added with noise, and then delivered to an SOFM

network at the receiving end. The wi
the present input signal identifies the
At the same time, this input vector is

nning neuron for
received symbol.
used for learning

of the SOFM network in order to follgw changes in the

environment.

Again, the exponential time-decreasing neighbor-
hood function is used as the neighborhood function
for both networks with parameters g = 4 and 7 =
500. The lowest value of the neighborhood function
is kept at 3.8 for both networks. The learning rate
for the SOFM is decreased according to Equation 1

with parameters 7o = 0.9, 7 = 50(

learning rate of 0.1. As before, the

and the lowest
learning rate for

the proposed SOFM changes according to Equation 5
with function f2(.) and & = 1. Both networks have
two-dimensional input vectors, an output layer of 4 x 4
neurons and are trained with the noisy symbols. The

weight vectors, after 1000 iterations

along with the

input vectors are shown in Figures 12 and 13. In this
case, both networks perform equally well. Now, the

corner deformation is simulated with
degrees about the origin. The results

a rotation of 10
for the standard

and the proposed SOFMs are shown in Figures 14

and 15, respectively. It is seen that

the conventional

SOFM is not able to follow this deformation, while
the proposed SOFM accurately follows the simulated
deformation. This result is repeated when the collapse

deformation is simulated with a shea

r transformation.

The weights of the algorithms along with the input

vectors for this case are depicted in F

D

igures 16 and 17.

4

-1

-1 0 1 2
Figure 12. The weight vectors of the st
along with the noisy symbols in the QA

3 4
andard SOFM
M.
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-1 0 1 2 3 4
Figure 13. The weight vectors of the proposed SOFM
along with the noisy symbols in the QAM.

-1 0 1 2 3
Figure 14. The weight vectors of the standard SOFM

along with the noisy symbols containing the corner
deformation in the QAM.

The superiority of the proposed SOFM appears here
again as it thoroughly follows this deformation.

The behavior of the two algorithms is better
compared when the decoding errors for every 100 re-
ceiving symbols are computed and shown in Figures 18
and 19 for the standard and the proposed SOFMs,
respectively. For the noisy symbols, the two algorithms
perform similar to each other. When the noisy symbols
also contain the collapse deformation, the decoding
error of the proposed SOFM after a few iterations
becomes zero. The standard SOFM is not able to
move its weights to the desired position and, thus, its
decoding error remains non-zero. A similar situation is
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1

1 0 1 2 3 4
Figure 15. The weight vectors of the proposed SOFM
along with the noisy symbols containing the corner

deformation in the QAM.

-1 0 1 2 3 4
Figure 16. The weight vectors of the standard SOFM

along with the noisy symbols containing the collapse
deformation in the QAM.

also observed in cases where the noisy symbols contain
corner deformation.

The proposed algorithm can effectively be used in
other real-world applications. An example is presented
in [15], where the algorithm is used for bilevel image
thresholding and has proved itself a powerful tool for
image segmentation.

It can be concluded that the proposed SOFM
often converges faster than the conventional one as
a VQ network, behaves more adaptively than the
conventional SOFM in changing environments, needs
almost no manual learning rate adjustment crucial
to its learning success or failure and, finally, can
preserve topological ordering using a time-decreasing
exponential neighborhood function.
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-1

-1 0 1 2 3 4
Figure 17. The weight vectors of the proposed SOFM
along with the noisy symbols containing the collapse

deformation in the QAM.
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Figure 18. The decoding error of the standard SOFM
with the noisy symbols. After a while, the collapse
deformation is also superimposed on the noisy symbols.

CONCLUDING REMARKS

The decreasing time-dependent learning parameters
of the SOFM lower the adaptation and incremental
learning capability of the algorithm in response to
varied environments. In this paper, a new SOFM
algorithm was proposed which automatically adjusts
the learning rate parameter of the output neurons.
Each output neuron is assumed to have its own learning
rate and this rate is updated repeatedly in the proposed
SOFM algorithm in response to new input samples.
Experimental results demonstrate that, as VQ
networks, the proposed SOFM converges faster and
with lower distortion values than the conventional
SOFM. It also appears so in response to rapid changes
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Figure 19. The decoding error of the proposed SOFM
with the noisy symbols. After a while, the collapse

deformation is also superimposed on the
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learning rates are automatically adjusg
and one and the value of parameter o
these adjustments.

With a time-decreasing exponent

noisy symbols.

e, the proposed
nments for non-

of each output
relation between
on and its learn-
maonstrated that
ted between zero
is not crucial to

ial neighborhood

function, the proposed SOFM converges to the topo-

graphic map of the input distribution
input space better than the standar

and clusters the
d SOFM. It can

be used as an adaptive detector in tha QAM system at

the receiving end for symbol decoding
environments. In this application, the
performs much better than the stand
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