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Research Note

GA Model to Solve Regular
lock Flow-Shop Problems

. Ghazanfari* and Z. Yaghoobi'

In this paper, a Hybrid (Genetic Algorithm (HGA) model is presented to solve two kinds of
flow-shop problem and minimize makespan. These problems are: Regular and block flow-
shop problems. The flaw-shop problem studied here is shown as n/m/F/Cpax. Genetic
Algorithm (GA) technique is one of the efficient and robust techniques for solving combinatorial
programming problems, which can be used either alone (Simple GA) or along with other
techniques (Hybrid GA). The latter can benefit from other heuristics to reach the best solution
more efficiently. The HGA model presented in this paper uses two heuristics developed already to
solve the n/m/F/Crnax problems. The Palmer and CDS heuristics are embedded in the model
to generate the initial population. The model works based on elitism. The elitist strategy takes
special care to preserve the best solutions and inserts them in the next generation. By analyzing
the conducted experiments, it is found that the HGA is a powerful technique for solving flow-
shop problems. The proposed GA model outperforms the well-known heuristics, both in terms

of minimizing makespan and satisfying the closeness limitation in the block problems.

INTRODUCTION

Since Johnson published the first paper on flow-shop
sequencing problems in 1954, this|problem has held
the attention of many researchers [1]. This problem is
generally described as follows: There are m machines
and n jobs, each job consists of operations and
each operation requires a different machine. These
jobs have to be processed in the same sequence on
m machines. The objective is to find the sequence of
jobs minimizing the maximum flow [time that is called
makespan.

The main assumptions are usupally made as fol-
lows:

¢ Every job has to be processed on all machines in the
order 1,2,3,--- ,m;

e Every machine processes only one job at a time;
e Every job is processed on one machine at a time;

e The operations are not preemptable;
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e The set-up times for the operations are sequence-
independent and are included in the processing
times;

o The operating sequences of the jobs are the same on
every machine and the common sequence has to be
determined.

There are n! sequences for n jobs where just one,
or a few of them, are the best solutions. However,
investigating n! cases is very difficult and time con-
suming. Hence, many heuristics have been developed
that investigate only a few of these cases, though they
do not provide necessarily optimum solutions.

HEURISTICS FOR GENERAL M-MACHINE
PROBLEMS

Over the past three decades, extensive research has
been done on the pure flow-shop problem. There
is no easy algorithm which can provide an optimal
solution. Integer programming and branch-and-bound
technique can be used to find an optimal solution [2].
However, they are not very effective on large, or even
medium-sized, problems. Hence, many heuristics have
been developed, some more well-known of which are
discussed below.
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Palmer Heuristic Algorithm

Palmer [3] proposed a slope order index to sequence the
jobs on the machines, based on the processing time [3].
The idea is to give priority to jobs so that jobs with
processing times that tend to increase from machine
to machine will receive higher priority, while jobs with
processing times that tend to decrease from machine to
machine will receive lower priority. The slope index S;
for job i is calculated as:

siZZ(zj-m—l)tij, i=1,2,...,n. (1)
=1

Then, a permutation schedule is constructed by se-
quencing the jobs in nonincreasing order of S; such as:

Si1 28> .... 2> Sin. (2)

Gupta Heuristic Algorithm

Gupta [4] suggested another heuristic which is similar
to Palmer heuristic except that he defined his index in
a different manner. The index S; for job 1 is calculated
as follows:

€4

S; = (3)

min{tx + t; k41}’

where:

if tjl < tim } (4)

1
“TV-1 ity > tm

Thereafter, the jobs are sequenced according to In-
dex 3.

CDS Heuristic Algorithm

The Campbell, Dedek and Smith (CDS) heuristic [5]
is basically an extension of Johnson algorithm. Its
efficiency relies on two properties:

e Using Johnson rule in a heuristic fashion,

¢ Generally creating several schedules from which the
best can be chosen.

This algorithm first generates a set of m — 1 two-
machine problems by aggregating the m machines into
two groups systematically. Then it applies Johnson
two-machine algorithm to find the m — 1 schedules and
finally, selects the best one among the schedules. At
stage 1, consider the two-machine problem formed with
machines 1 and m. At stage 2, consider the artificial
two-machine problem. Artificial machine 1 is formed
with machine group {1,2} and artificial machine 2 is
formed with machine group {m,m — 1}. At stage k,
consider the artificial two-machine problem: Artificial
machine 1 with machine group {1,2,...,k} and artifi-
cial machine 2 with machine group {m,...,m—k+1}.
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Aggregated processing times for the stage k are defined
as follows:

k k
th = Z ti; and ti, = Zti,m——j+1~ (5)
Jj=1 2

1

The CDS heuristic has been found to be a very good
and robust heuristic and it has been used in many
studies as a standard of comparison.

NEH Heuristic Algorithm

The Nawaz, Enscore and Ham (NEH) heuristic al-
gorithm [6] is based on the assumption that a job
with a high total processing time on all the machines
should be given higher priority than a job with a low
total processing time. The NEH algorithm does not
transform the original m-machine problem into one
artificial two-machine problem. It builds the final
sequence in a constructive way, adding a new job at
each step and finding the best partial solution. The
algorithm is as follows:

Step 1: Order the n jobs by decreasing the sums of
processing time on the machines;

Step 2: Take the first two jobs and schedule them in
order to minimize the partial makespan, as if
there were only these two jobs;

Step 3: For £k = 3 to n do: Insert the k— job at
the place, among the k possible ones, which
minimizes the partial makespan.

GENETIC ALGORITHMS

Genetic algorithms have been successfully applied to
solve flow-shop problems [7,8]. Gen, Tsujimura and
Kulbota [9] developed a simple genetic algorithm
(SGA) approach for flow-shop problems. They used
the permutation of jobs as the representation scheme
of chromosomes, which is a natural representation for
a sequencing problem. Their fitness function for each
chromosome is the inverse of makespan. They also
used the well-known crossover operations available for
permutation representation, such as PMX (partially
mapped crossover), OX (order crossover) and CX (cycle
crossover). Mutation is also designed to perform
random exchange.

Some examples of the applications of genetic
algorithms to job shop scheduling are [10-13]. Lee et al.
[14], combine the strengths of genetic algorithms and
induced trees, a machine learning technique, to develop
a job shop scheduling system.

Reeves proposed a Hybrid Genetic Algorithm
(HGA) method for solving flow-shop sequencing prob-
lems [8]. He hybridized the conventional heuristic in
the initial generation to produce a good seed gener-
ation. One chromosome is generated with the NEH
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heuristic algorithm, while the remaining chromosomes

are generated randomly. Gen and

Chang [1] com-

pared the results of solutions between|some well-known

heuristic algorithms. They conside

red a simple ex-

ample of five-job four-machine problem and concluded
that the GA model outperforms other heuristics for

small-sized problems. There are als

o further studied

applications of GAs in flow-shop problems [15-18].

THE PROPOSED GA MODEL

In this paper, the Reeves idea for developing HGA is
inspired to propose a new HGA model. The proposed
model embeds the CDS and Palmer heuristics and
benefits from their advantages to solve two kinds of
problems. It is a sequel work for the model recently
developed by Ghazanfari and Yaghoobi [19]. The

problems, considered in this paper, ar

e called as regular

n/m[F[Cmnax and block n/m/F/Cyax problems and

described as follows:

1. Problem 1 (Regular):
makespan when there is no limita
ness of jobs;

Minimizing the total

tion on the close-

2. Problem 2 (Block): Minimizing the total makespan

when there is a limitation on the

closeness of jobs,

i.e., some jobs must be close together. In this case,
there is no limitation on the sequence of jobs, but

some of them need to close as a
the regular multi-job, multi-machi

block. Although
ne problems have

been solved by different heuristics, less attention is

paid to the block problem.

The proposed HGA uses the CDS and Palmer

heuristics to generate the initial p
initial population consists of the best
these heuristics and, also, some indi
randomly.  Applying the elitist st
individual from each population is {
next population.

The Structure of the Model

There are a number of characteristic
structure of a GA model. These chax
proposed GA model are as follows:

1. String: The permutation of jobs

opulation. The
individuals from
viduals generated
rategy, the best
ransferred to the

s which form the
acteristics for the

s used as the rep-

resentation scheme of chromosomes. For example,
let the kth chromosome be Vi = [3 2 4 1]. This
means that the job sequence is j3, 52, j4, J1;

2. Evaluation function: This fun

tion denotes the

Offspring

. Crossover operation:

makespan for a chromosome. A chromosome is
better if its evaluation function is less than others;

In these problems usu-
ally crossover operators, such as PMX (partially

Oﬂsprintlll2l4l5l6]7|8
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mapped crossover), OX (order crossover), CX
(cycle crossover) multi-cut-point and one-cut-point
crossover are considered. Here, the one-cut-point
crossover is used. In the one-cut-point crossover,
it picks a cross point randomly, takes the pre-cut
section of the first parent and fills up the offspring
by taking, in order, each legitimate gene from the
second parent, as shown in Figure 1;

. Mutation operator: A shift mutation is used, which

is a shift of one gene (chosen randomly) to the right
or left for a random number of places, as shown in
Figure 2;

. Selection: To select and copy chromosomes into

the mating pool, they are sorted ascendingly with
respect to their makespans. Then F) number of
them is copied to the mating pool. Fj is calculated
as follows:

F, =int (i ci/nck> , (6)

=1

where ¢; is the makespan of ith chromosome and
n is the size of the population. Using Equation 6,
the best chromosome (with less makespan), sends
the most copies into the mating pool.

. Initial population: Two chromosomes are gener-

ated with Palmer and CDS heuristic algorithms
and the remaining chromosomes are generated
randomly. Note that generated chromosomes for
Problem 2 (block problem) must satisfy the limita-

Cut-point

Parent 1

Parent 2

Figure 1. One-point crossover.

Selected gene

oo [ [ o o] ]

Figure 2. Shift mutation.
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tion of closeness of pre-determined genes, otherwise
the chromosomes are eliminated;

7. Criterion of stop: The criterion is a predefined
number of generations;

8. Mating pool: It consists of the best individual
or chromosomes as mentioned before. Better
chromosomes have the greater number of copies in
the mating pool. For each chromosome, the smaller
makespan, the more copies in the mating pool;

9. Selection for crossover and mutation operations:
Chromosomes are selected randomly for these op-
erations;

10. Selection for the next population: The individuals
(parents) in the mating pool are used to gener-
ate new chromosomes (offspring). Both of them
(parents and offspring) are sorted ascendingly.
From the top of this list, a predefined number of
individuals are selected as the new generations.
It should be noted that generated chromosomes
for Problem 2 (block problem) must satisfy the
limitation of closeness of some genes, otherwise the
chromosomes are eliminated;

11. GA Parameters: These parameters are the initial
population size, population size of other genera-
tions, the rate of crossover and mutation and the
number of generations in a run. The user can define
these parameters.

Pseudo-Code of the Proposed Model
This model has six steps. They are described as follows:

Step 0: In this step the system parameters are set;

Step 1: The solution of flow-shop problem is calculated
by Palmer and CDS algorithms and consid-
ered as two elements of the initial popula-
tion. Other elements are generated randomly.
Makespans for all of the elements are then
calculated;

Step 2: In this step, crossover operation is done Neross
times. For each crossover, three random num-
bers are generated. Two of them are used for
selection of two members (as parents) and the
last one is used to select the cross-point;

Step 3: In this step, a mutation operation is done.
It operates N,,,: times. First, three random
numbers are generated. Then, using the first
random number, an element is selected and,
with two others, two places on this member are
selected for shifting. Note that the generated
chromosomes for Problem 2 (block problem)
must satisfy the limitation of closeness of pre-
determined genes; otherwise the chromosomes
generated in each of the above steps are elimi-
nated;
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Step 4: First, all offspring and all members of the last
generation are put together. Then, they are
listed ascendingly, based on their makespans.
To form the new generation, a predefined
number of members are selected from the top
of this list. The iteration number is added by
one, the number of copies of each member (for
the mating pool) is calculated and the mating
pool is formed again;

Step 5: If the iteration number is equal to the prede-
fined number, the run is stopped; otherwise it
goes to step 2.

The pseudo code of the proposed model is shown
in Figure 3.

Program Code for the Model

A program code was written for this model in a FoxPro
environment. The data can be provided in the program
either from a prepared data file or input from a com-
puter keyboard. The output of the program consists
of the detailed data for the problem, generations and
solutions from the Palmer and CDS heuristics and the
proposed model.

NUMERAL EXPERIMENTS

To compare the performance of the proposed model
with the well-known heuristic algorithms, eight dif-
ferent problems were solved. The results of these
experiments are represented in Tables 1 and 2. Problem
number 1 is a classic problem, taken from the literature.
The structure of Table 1 is as follows: Columns 1
and 2 indicate the number and the size of experiments
respectively. Columns 3 to 8 show the results of
solutions for Problem 1 (Regular) which is to minimize
the total makespan when there is no limitation on
the closeness of jobs. As seen, the proposed hybrid
algorithm outperforms other heuristics in terms of
makespan figures. Compared with an optimal solution,
the hybrid solution gets very close to the optimal one.
Table 2 indicates the results for Problem 2
(Block), which aims to minimize the total makespan
when there is a limitation on the closeness of jobs. It
uses the same data test but assumes that jobs 1 and
2 must be close together. It this case, the proposed
algorithm based on GA also provides near optimal
solutions satisfying the above mentioned limitation.

DISCUSSION

During the conducting of a number of experiments, the
following results were observed.

1. The initial population in HGA has an important role
in finding the final solution. Hence, generating its
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Table 1. Comparison of solution among the proposed algorithm, Palmer and CDS heuristics.

No | Problem Size CDS Palmer SGA: Without HGA: Using
Palmer & CDS Palmer & CDS Optimal
Job/Machine | Solution | Solution | Solution | Found in | Solution | Found in | Solution
Pop. No. Pop. No.
1 5/4 246 245 226 1 213 10 213
2 5/4 56 57 52 4 52 7 52
3 8/6 121 131 121 9 121 1 121
4 9/5 102 111 100 6 99 10 98
5 12/6 200 198 191 4 192 6 *
6 16/6 278 273 290 2 267 9 *
7 16/9 467 490 439 8 426 7 *
8 22/12 585 629 554 6 553 9 *

*Need more then 20 hours to calculate the optimal solution.

Table 2. The situation of solutions in regard to satisfying the limitation of closeness (Block Problem).

No | Problem Size CDS Palmer The Proposed Hybrid GA Model

Satisfying Satisfying Satisfying Solution Found in

Job/Machine | Limitation? | Limitation? | Limitation? | Makespan | Pop. No.
1 5/4 No No Yes 235 1
2 5/4 No No Yes 52 1
3 8/6 Yes No Yes 125 6
4 9/5 No No Yes 100 8
5 12/6 No Yes Yes 194 8
6 16/6 Yes Yes Yes 269 5
7 16/9 No No Yes 440 5
8 22/12 Yes No Yes 557 9

members by the Palmer and CDS§
with the random method, is useful;

heuristics, along

. Due to the elitist strategy applied in the model,
there is no need to use a very big|/population size;

. As the model embeds the Palmer and CDS heuris-
tics, it always gives a better solution than these
heuristics; '

. The advantages of the proposed model become
clearer when it is used for problems of a large size;

. Due to embedded heuristics and the status of initial
population, the model reaches the best solution
through less generation and less running;

. The GA model produces alternative solutions with
the same makespan. Therefore, when there is a
difficulty in implementing a solution, other solutions
can be applied;

7. While the well-known heuristics, such as CDS and
Palmer, mostly fail to produce solutions for the
block problem (Problem 2), the proposed GA model
provides near-optimal solutions for this problem,
satisfying the closeness condition.

CONCLUSION

The flow-shop sequencing problem is usually labeled
as n/m/F/Cmax, which means n-job/m-machine/flow-
shop/ maximum flow time. In this case, n jobs have to
be processed in the same sequence on m machines. The
objective is to find the sequence of jobs minimizing the
maximum flow time, which is called makespan. Integer
programming and branch-and-bound techniques can be
used to find the optimal solution [2]. However, they
have some disadvantages, e.g. they are not very effec-
tive on large or even medium- sized problems. It is also
very time consuming, even impossible, to investigate
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Step 0. System parameters
Migie = 20 M = 20 Neross = int(2/3Mmp + 1)
Nmut = int(0.3Mmp + 1) Iteration = 10
Step 1. Initial population
generate (CDS-sequence)
generate (Palmer-sequence)
evaluate (CDS-sequence)
evaluate (Palmer-sequence)
pop - no « 2 ;
repeat
pop - no — pop - no +1
generate (random - sequence)
evaluate (random - sequence)
until pop - no = Mjpit
sort (population);
calculate (population - copy - no)
form (matting - pool)
iter «— 1
Step 2. Crossover
cross - no =1
repeat
generate (random 1, random 2, random 3)
select (parent 1, random 1)
select (parent 2, random 2)
crossover {parent 1, parent 2, cross-point)
cross - no « cross - no + 1
until cross - no= Nc¢ross
Step 3. Mutation
mut - no = 1
repeat
generate (random 1, random 2, random 3)
select (parent, random 1)
select (mut-point 1, random 3)
mutation (parent, mut - point 1, mut - point 2)
mut - no «— mut - no +1
until mut - no = Nput
Step 4. Evaluation and selection
evaluation (offspring - sequence)
put (last - population) in temporary space
insert (offspring - sequence) into temporary space
sort (population) in temporary space
select (M first) of temporary space for next population
iter « iter + 1
calculate (population - copy - no)
form (matting - pool)
Step 5. Stop checking
if iter < iteration
go step 2
else
stop
end

Figure 3. Pseudo code of the proposed model.

all combinations to find the optimum solution. Hence,
many heuristics, such as Palmer and CDS algorithms,
have been developed to provide good, quick solutions,
but cannot provide very good solutions for large size
problems.

In this paper, a genetic algorithm model based
on the hybrid approach is proposed. This model
is designed to solve two kinds of problems, namely
Problem 1 (Regular), which is for minimizing the total
makespan when there is no limitation on the closeness
of jobs and Problem 2 (Block), which is for minimizing
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the total makespan when there is a limitation on the
closeness of jobs, i.e., some jobs must be close together.
In this case, there is no limitation on the sequence of
jobs, but some of them need to be adjacent jobs as a
block.

The proposed model has better performance in
terms of makespan value and in satisfying the close-
ness limitation in comparison with Palmer and CDS
heuristics.
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