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Optimization of Reliability Determined
Hydro-Thermal Power Systems

M. Modarres* and D. Farrokhzad!

In this paper, the optimization of long term operation and determination of the reliability level
of a hydro-thermal power system are integrated into a unified model. Inflow to reservoirs is
modeled as a random variable. Furthermore, the demand for energy is also assumed to be a
random variable with normal distribution. In order to minimize the total cost, the reliability
level of the system is determined, rather than considering it as a priori input data. Since the
resulting model is a large-scale stochastic nonlinear programming, it is necessary to develop
a special method to solve it. This method, which provides an optimal solution within three
stages, consists of a decomposition technique, Lagrangian relaxation and nonlinear and dynamic
programming methods. To test the method, it has been implemented in Khuzestan power system
and the results are compared with the existing operation procedures.

INTRODUCTION

Due to the importance of long-term optimization of
power system operations, many researchers have de-
voted intensive efforts to this area of study for more
than four decades. However, the resulted mathematical
models are usually developed on the basis of assump-
tions that are sometimes far from realistic. This is
mainly because the system is quite complicated to be
analyzed mathematically. In recent years, the trend is
toward improving the assumptions and making them
more realistic, as well as modeling the total generation
of the power system rather than just one part of it, for
example, thermal power plants, separately.

Although, in short-term operation, demand for
energy can be assumed to be deterministic, in long-
term operation uncertainties are so high that this
assumption is not realistic any more. In previous
research regarding hydro-thermal power systems, de-
mand for energy is usually assumed to be deterministic.
Although stochastic demands are considered in some
papers, when it comes to the calculation of energy
shortage, the supply is compared with the expected
value of demand, or its expected value, as a “load
duration curve”. Practically, deterministic demands
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are being dealt with. On the other hand, in a hydro-
thermal power system, usually inflows are treated as
stochastic parameters for long-term studies.

In this research, a hydro-thermal power system is
investigated which has stochastic demand with variable
variance. The objective is to optimize long-term
operation and determine the reliability level of this
system simultaneously. In previous research, optimiza-
tion of power system operation and determination of
an optimal level of system reliability are considered
separately, while both are incorporated in one model
in this study. Therefore, what makes this research
distinguishable from previous studies are the following
two major points:

a) Both inflow to reservoirs and demand for energy are
assumed to be stochastic;

b) Reliability is incorporated in the model and its level
is not given in advance as an input data, but is
determined such that total cost is minimized.

Since the model turns out to be a very large non-
linear stochastic programming, the classical methods
are not capable of solving it. Therefore, a new method
is specially developed for this model, in which a decom-
position technique, Lagrangian relaxation, dynamic
programming and nonlinear algorithms are applied. To
test the method, it has been implemented in Khuzestan
power system, which has the largest hydro-thermal
system in Iran. The results are compared with existing
operation procedures.
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Literature Survey

As mentioned before, many researchers have worked
either on long-term optimization lof hydro-thermal
power system operation or on reliability evaluation.
Therefore, only some studies similar to the research
undertaken here are mentioned, although neither the
model nor the method described here are the same.
To review the literature in the area of reservoir
management and operations, one can see [1]. Among
the recent works regarding the development of math-
ematical models, assumptions made|by Chao-an Li et
al. [2], Sherkat et al. [3] and Ardekaniaan [4] are close
to the ones described in this paper, However, these
models are developed on the basis of deterministic
energy demand, while in [5,6], the demand uncertainty
is treated as load duration curve.| Also, in [7] a
Stochastic Dual Dynamic Programming (SDDP) is
introduced, in which the expected cost-to-go-function
is approximated by piecewise linear functions. Al-
though, in their model, inflows are treated as stochastic
parameters, the demand is assumed to be determin-
istic. Jacobs et al. [8] present an| in depth analy-
sis of stochastic hydro scheduling for multi-reservoir
systems by using Benders decomposition technique.
They improved the traditional Benders decomposi-
tion, but adopted linear approximations to production
functions. In addition, they didn’t|consider demand
uncertainty in their proposed method for scenario
generation.
While reliability is explicitly considered as a con-
straint in some models, the objective|/function does not
include interruption costs explicitly, e.g. [9]. Xiao Ying
et al. {10] introduce a new concept |of comprehensive
satisfaction degree by using multi-objective fuzzy dy-
namic programming, with different weights of economy
and reliability. Nahman and Bulatovic {11] minimize
the sum of operation and interruption costs and, also,
the criterion for committed reserve ¢apacity aimed at
minimizing total cost. However, reliability level is not
a decision variable in their model.
Due to the complexity of analytical methods,
many researchers analyze the hydro-thermal power
systems by applying simulation techniques. Ubeda
and Allan [12] applied stochastic sequential simula-
tion to assess hydro-thermal system reliability without
considering optimization in their proposed algorithm.
There are also some optimization models for short-
term operation that consider system| reliability. Wang
et al. [13] consider a multi-area power system for
which the desired reliability of each area, measured by
LOLP, is included in the model as|a constraint. In
their model the target value for LOLP (¢) is an input
parameter.
This paper is organized in the following way.
The statement of the problem and its assumptions as
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well as the mathematical model are presented. Next,
an approach to determine the system reliability is
discussed, along with the presentation of the main
theorem, regarding integration of long-term operation
and reliability in a unified model. Then, the idea
behind the method, as well as the details of the
algorithm, are presented. Finally, the proposed method
is tested for a real case, i.e., Khuzestan power system
and the results are described.

THE PROBLEM

Consider a power system which consists of M thermal
and N hydro power plants. The inflow of water is a
random variable and demand for energy is assumed to
be stochastic. Each hydro power plant has a multi-
purpose reservoir which performs other functions such
as water supply and flood control. The objective is to
determine the turbine discharges of hydro power plants,
as well as the energy output of thermal power plants,
in order to minimize the total expected cost of the
system during a horizon of T periods. In this study,
each period is taken as a month.

The Objective Function

The total expected cost of the system (the objective
function) is comprised of three parts as follows.

Cost of Energy Generation by Thermal Power
Plants

The generation cost of a thermal power plant is ap-
proximated by a quadratic function with respect to its
energy output x and is modeled as follows:

GC(z) = az® + bz + ¢,

where a,b and ¢ are constant parameters. Therefore,
the total thermal generation cost of M thermal power
plants in the system, over T periods under considera-
tion, is given as:

M
Total thermal generation costzz Z GCori(Timt),

m=1 t=1

where GC,,.(-) is the generation cost function of ther-
mal power plant m and x,,; is its energy generation in
period ¢t in MWH. No cost is associated with energy
generation of hydro power plants in the objective
function, since it is expense free (except the fixed cost
which is independent of the output level).

Terminal Cost of Reservoirs

The excessive usage of a reservoir water at a certain
period results in less hydro energy generation capability
during the next period. In this case part of the
demand in the next period must be satisfied by more
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Figure 1. Typical terminal cost function of a reservoir.

expensive thermal generation. Thus, the optimization
model determines the optimal values for turbine dis-
charges, such that the total expected cost is minimized.
However, during the last period, in order to preserve
the water content of each reservoir at some desired
level, a cost function called “terminal cost” is defined.
The objective of this cost function is to penalize the
deviations from the desired volume and is mainly used
to prevent excessive usage of water during the last
period. The general structure of this cost function is
shown in Figure 1, in which (Vo 741 )mins (Va, 741 )desired
and (V, 74+1)max are minimum, desired and maximum
allowable values for the volume of water in reservoir
n in the beginning of period T + 1, respectively. The
penalty cost for values below Viesireq is determined by
estimating the marginal cost of energy generation in
period T+ 1. It is assumed that the volumes above
Vdesired Mmay not be acceptable for management, due
to some operational reasons and, therefore, a penalty
cost is associated with them, although it can also be
set equal to zero. Consequently, if TC,(v) denotes the
terminal cost of reservoir n as a function of its volume
v, the total terminal cost is given by summing over all
N reservoirs in the system, i.e.,

N
Total terminal cost = Z TCn(Un,T41),
n=1
where v, 741 is the storage volume of reservoir n in the
beginning of period T + 1.

Ezpected Cost of Energy Interruption

In order to penalize the damage caused by energy
shortage, the expected cost of energy interruption
(EIC) is also considered in the objective function. If
vt denotes the probability that the total generation is
greater than or equal to demand in period ¢, then the
Expected Energy Not Supplied (EENS) in period t is
calculated as follows:

EENS; = (EENS¢|Demand > total generation)

x Probability {Demand > total generation},
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or:
M n
EENSt = (1—-’)’t)/ [Dt_ (met +Zunt) dFD(dt)
ES,>0 m=1 n=1
=(1-mn) (ES:)dFp(dy), (1)
ES;>0

where D; is the random variable representing energy
demanded in period ¢, wu,¢ is the energy generation
of hydro power plant » in period t, ES, is the energy
shortage in period ¢ and is defined as ES; = D, —

M N
(Z Tmt + 3, unt) and Fp(d;) is the distribution
m=1 n=1

function of demand in period ¢.

To express the damages caused by energy shortage
in terms of costs, it is necessary to estimate the
Interrupted Energy Assessment Rate (IEAR). As
Billinton and Li show [14], IEAR is an important
factor in generating system reliability assessment and
is quite stable for a given system, i.e., it generally
does not vary significantly when the system demand
level and other factors change. Consequently, for
different demand levels, EIC can be obtained by
multiplication of IEAR, by EEN S; and summing over
all periods. Therefore, the third component of the
objective function is given by,

Total expected cost of energy interruption =

T
EIC =) IEAR, x EENS,. (2)

t=1

Constraints

As mentioned before, the reservoirs are multi-purpose
and, thus, other requirements such as flood control
and supply of water for irrigation and domestic con-
sumption must be satisfied. A lower and an upper
bound on the turbine discharge are considered in each
period to ensure the supply of water and satisfaction
of the maximum allowable release from each of the
turbines. Concerning flood control, it should be noted
that determining maximum and minimum allowable
values of reservoir volume in each period is usually
performed, based on a given risk level for flood control
and the results are provided as a set of values which
are known as “reservoir rule curves”. Therefore, lower
and upper bounds on the volume of reservoirs in each
period are determined, based on the values of their rule
curves. There are also bounds on the maximum and
minimum allowable generation for thermal and hydro
power plants. Furthermore, there should be a balance
between water inflow and outflow of a reservoir, which
is represented by water balance constraint.
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In most of the conventional

studies regarding

hydro-thermal power systems optimization, the de-
mand for energy is treated as a deterministic quantity,
directly or indirectly. Therefore, a deterministic energy
balance equation relates demand and supply. Since

in this model, demand for energy
stochastic and normally distributed
the following chance constraint:

M N
PT(Z Tmt + Zunt > Dt) 2 th
m=1 n=1

t=1,---,T.

is assumed to be
it is satisfied by

In other words, the demand in period ¢ is satisfied

only with a probability of ~,.
constraints are equivalent to the follo
inequalities:

M N
met + Zunt Z FB}(%)»
m=1 n=1

t=1,-,T,

where, Fp;
demand in period ¢.

Hydro Energy Generation and
Model

The energy output of a hydro powe
as follows:
Unt (y) Bn- ht Ynt,

where, 3, is the efficiency of the

The above chance

wing deterministic

(3)

tl(fyt) is the inverse distribution function of

Water Inflow

r plant is modeled

plant n,h; is the

average head in period t and y,. is the turbine discharge
volume of hydro power plant n in period ¢t in Million
Cubic Meters (MCM). It is assumed that the water
inflow to a reservoir in period t is independent of inflow
to others, but this depends on its inflow in period ¢ —1.

More specifically, water inflow to a
Markov Chain pattern and is model

Znt = Prjp—1 X Zng—1+ (1 — pi,t—

where,

Znt - Ln(wm) - U_)nt

Qn,t ’
and w,;, which represents actual i
is a lognormal random variable w
parameter 2, ;. Furthermore, £, is
generated from normal distribution
the noise in inflow and p is the cor
between periods t and ¢ — 1.

reservoir follows a
ed as follows [2,3]:
)0.5

1 X Ent,

nflow to reservoir,

th mean @,; and
a random variable
N(0,1) to model
relation coefficient
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The Mathematical Model

Referring to derivations provided in the previous sec-
tions, the mathematical model of a long-term hydro-
thermal coordination problem, as considered in this
paper, is given as follows:

Minimize

T N
[ S GCm(@m) + 3 TCalvnrs1)]

m=1 t=1 n=1

+ZT:IEARt 1—%)/ [ —(ixmt
t=1 ESi>0 me1
N
+ 3 i) | aFp(d0), (4)
n=1
subject to:
Un,t41 = Unt + @nt — Ynt — Snt
n=1,---,N; t=1,---,T, (5)
Zmt < Tmt < Tt
m=1,--- M, t=1,--- T, (6)
Ynt < Ynt < Ynt
n=1,--,N; t=1,---,T, (7)
Upt < Unt < Unt
n=1,--,N; t=1,--,T, (8)
Unt < Unt < Ut
n=1,--- ,N; t=1,---,T, (9)
M N
Pr(met-i-Zuszt)Z%
m=1 n=1
t=1,---,T, (10)

where E[.] represents the expected value with respect to
reservoir inflows. It is also assumed that the expected
amount of spillage in each period is determined, such
that the objective function of the problem is minimized
and no attempt is made to minimize the spillage in each
period separately. This is due to the fact that if an
operation policy spills more water, its expected hydro
generation will reduce; therefore, it must use more
thermal generation to satisfy demand which, in effect,
will increase the expected total cost of the system. In
addition, it is assumed that all reservoir releases, except
spillage, are through turbines.
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OPTIMAL LEVEL OF RELIABILITY

It is a common practice to select a reliability level
for each period, e.g., 7:, as an input parameter of
the system. However, in order to minimize the total
expected cost of the system, this important factor is
determined. In fact, in this paper, the reliability level
4, is considered as a decision variable. It is clear that
system operation cost is an increasing function of ~,
while expected cost of energy interruption (EIC) is a
decreasing function of it. Thus, the total cost assumes
its minimum value at a single specific level, say 7;,
which, clearly, is not at either bound of v = 0 or
7 =1

Theorem 1

Let demand be normally distributed with mean D,
and standard deviation of ¢;. If, for a given feasible
solution, the following set of equations hold, then the
solution is optimal,

OEENS;
IEAR - ¥
(IEAR;) % o + 1y
_ P2
X VQWUtEXp(LM—;:L)-> =0,
207}
t‘:lv"'»Ta (11)

where, A, = Fp!(y:) and pf is the optimal Lagrange
multiplier for period &.

Summary of Proof

Using NOMENCLATURE section, the total cost of the
objective function (Equation 4) is OC(y) + EI C(7v),
where EIC(7) is defined by Equation 2 and,

M T
OC(~) = Minimize E [ Z Z GCrm(Zme) +

m=1t=1

N
Z TCn(’Un,T-b-l)} , (12)

n=1

subject to Constraints 3 and 5 to 9.

By taking derivatives from both terms of the
objective function, with respect to v and considering
the fact that for optimal solution, ; is neither zero nor
one, it is implied that, for optimal solution,

80C(v) AEENS,
Y L (JEAR) x ——— =0,
O ( 2 Oyt
t:1,,T, 0<’7t<11 (13)

using chain rule, the following is obtained:

20C(y) _ 90C() | OFp'(x)

07 OFD—l (71) ot
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and applying the concept of shadow prices, it is known
that:

M:ﬂ:a t:l’...,T’

OFp ()

also for normal distribution,

—1 52
OF5 " (1) ZMUtEXP((At ?t) )’
on 20}

and, by substitution, the proof is complete. ®

THE ALGORITHM

The model is a large nonlinear stochastic programming
problem. Therefore, obtaining an optimal solution
is quite complicated. An algorithm, on the basis of
Lagrangian relaxation and decomposition technique, is
proposed to solve the problem.

Framework

The problem is solved hierarchically in three stages,
moving forward from first to third stage and then
backward to the first stage.

Stage 1

For a given level of reliability v;, The Master program
is obtained by Equation 12 as its objective function,
subject to Constraints 3 and 5 to 9.

Stage 2

By applying Lagrangian relaxation for Constraint 3,
the corresponding dual problem is,

. M T N
max min [ S5 GCom(Tme)Y Tcn(vn,TH)} +
T

m=1t=1 1

T M N
zlftt{FE}(%)— (Z mt+Zunt>:\v
t=1 m=1 n=1

subject to Constraints 5 to 9. The expectation is taken
with respect to reservoir inflows.

Stage 3

The problem of Stage 2 is separable, in terms of hydro
and thermal power plant subproblems. The thermal
subproblem is, for m =1,--- , M:

T
Minimize Z[GCm(scmt) — e X mmz]

t=1

subject to:

Tont < Tt L Tmty, =1, T,



and the hydro subproblem is, for n += 1,.---

T
Minimize E|TCp(vnr41) = Y 4

t=1

subject to Constraints 5 and 7 to 9.

Since thermal power plant ge
period are independent of their gener,
periods, thermal subproblem can al
in time. Therefore, the solution of th
for period t, z},,, is found by equat
of [GCm(Tms) — pe % ZTmt) tO zero a

result, ,,:, with the lower and upper bounds.

the optimal solution is:

z,,, = min{7,;, Max{Tm¢, Tme } }-

t X Unt (Unta ynt)

nerations in each
ations in the other
50 be decomposed
ermal subproblem
ing the derivative
nd comparing the
Then

Dynamic programming is applied to solve the
hydro subproblem starting from terminal cost function
as illustrated in Figure 1 and moving backward to
period ¢ = 1. The functional optimization is described

by the following relation:

Bnt (Unt, Qn,t-—l) =

E min [Bn,t+l(vn,t+17Qnt
Qat]Q@n.t—1\ Ynt

Eq..

where Bpi(vnt, Qn¢—1) is the expecte
tion for reservoir n in period ¢, know
period ¢ — 1. In order to calculate th
generation in each period, the method

— Mt X unt])y

d cost-to-go func-
ng the inflows in
e expected hydro
suggested in (2,3]

is employed. In this method, a number of historical

inflow sequences are used and the
optimization is carried out for each
the expected hydro generation for ea.

above functional
of them. Then,
th power plant is

calculated as the average of hydro generation for the

same power plant over all inflow sequ

ences.

After obtaining hydro and thermal subproblem
optimal solutions, they are coordinated by updating
Lagrange multipliers. This can be done by applying
any one of the existing methods, such as subgradient
or variable metric method. The subgradient method is
used here, in which multipliers are updated according

to the following formula:
peth = pf 4ok x AR

where,

M N
AfZFBtI(%)— (Z xmt+zunt)7
m=1 n=1

k 1
_a0+5.k’

t=1,---,1

M. Modarres and D. Farrokhzad

and pf is the Lagrange multiplier for period ¢ in
iteration k. o* is the scalar correction step in iteration
k and ap and § are system dependent parameters.

After updating Lagrange multipliers, Stage 2
is reconsidered and the updated problem is solved.
As long as the convergence is not reached, moving
between the second and third stages continues. Then,
the optimality is tested according to Theorem 1. If
optimality conditions are not satisfied, the procedure
continues by moving between Stages 1 and 2 again.
The method is summarized as follows and shown in
the flow diagram of Figure 2:

1) Select an initial level of reliability of supply and set
up OC () defined as Master program;

2) Select initial values for Lagrange multipliers, which
are close to the thermal system marginal cost in
each period;

3) Solve hydro and thermal subproblems with given
reliability level and the corresponding Lagrange
multipliers;

4) If the convergence is not reached, modify Lagrange
multipliers by applying subgradient method and go
to Step 3. The convergence criterion is:

'Af - Af_ll <e,

t=1,- T,

where ¢, is an arbitrary tolerance;

5) With optimal values obtained from Step 3, check
for optimality condition of Theorem 1. This is
done by finding the roots of Equation 11, which
are Af,t =1,--- T, while other variables are given
their corresponding values in iteration k. If in
iteration k¥ and for ¢t = 1,--. T, |yfF - v <
g, stop. Otherwise go back to Step 3 with the
new values for reliability levels, which are %Hl =
Fp(Ar),t=1,--.,T.

It should be noted that 7 and ~, are being
considered as the upper and lower bounds for Ve, t =
L,---,T, up to the current iteration, respectively.
If the new estimate for the optimal reliability level
in period ¢t does not lie within [v¢+ 7], then its
value is set equal to (v, + 7;)/2. 1In this way, the
algorithm monotonically improves either the lower or
upper bound of the optimum reliability level for period
¢ in each iteration.

Algorithm Convergence

To prove that the algorithm is convergent, first it
is shown that ~,, obtained as roots of Equation 11,
fluctuates from one side of 4} to the other. On the
other hand, the procedure to adjust v, when it is not
within [v:,7;], forces the absolute deviation of v from
v# to be reduced constantly.
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¥

Select initial reliability levels and initialize
Lagrange multipliers

¥

Set up the master program and establish
corresponding hydro and thermal subproblems

Y

[ Solve hydro and thermal subproblems

Find the new values of reliability level
from the roots of Eq. 11 for each period

A

Is the convergence
criterion satisfied?

Update Lagrange multipliers
using subgradient method

A

Is the optimality
condition of Theorem
1 satisfied?

/ Print output /

Figure 2. Flow diagram of the proposed method.

Theorem 2

Suppose in iteration k and for some ¢, 1 <t < T, vF >
~;. Then, the next estimate of 47, i.e. v, will be
less than +;. (The converse is also true.)

Summary of Proof

Let the corresponding values of ¥, 2%, and u¥, as well
as Ak, the roots of Equation 11, be obtained from the
algorithm. Then:

i) Considering the fact that both operating cost and
F D_!l('yt) are monotonically increasing functions of
~¢, it is implied that pf > pf and 2%, + uk, >
Ty + Uny.

ii) Since z¥, +u¥, is an increasing function of 4F, it is

implied from Equation 1 that OEENS, -, OBENS
o, 2%

Therefore, the first term of Equation 11 is greater
than the same term with ~;.

iii) Thus, the second term of Equation 11 must be
less than the corresponding term with optimal

solution. On the other hand, since A\; = F 5}(%) is
a monotonically increasing function of v, for each
period, it follows that 4F™' < 4f. (Proof of the

converse is similar.) m

Preprocessing of Input Data

The method is implemented after the required data is
gathered and preprocessed. Although preparation of
such data needs a great deal of work, fortunately power
companies have almost all the necessary information
from historical data collected in their data bases. Thus,
in this section there is a summary of how to prepare
and process the input data required for the method.

1. By applying Maximum Likelihood Estimation
(MLE) method, estimate D, and o; (mean and
standard deviation of energy demanded) for t
1,---,T, from historical data;

2. Estimate parameters of the distribution of water
inflow for each period, as well as the correlation
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coefficient for successive periods from historical

data;

3. Obtain cost functions for therma,
of each thermal power plant from
applying MLE method;

4. Given seasonal limitations, fue
curves of reservoirs, availability

energy generation
operation data by

constraints, rule
and maintenance

schedules for generating units, establish the corre-

sponding lower and upper bound

5. Determine the modified param
probability distribution by cons
mation regarding energy intercha
neighboring regions;

6. Calculate TEAR, by using the
function obtained from regional
be done, for example, by Monte
As mentioned before, IEAR; do

constraints;

eters for demand
idering the infor-
nge contracts with

customer damage
surveys. This can
Carlo simulation.
es not vary signif-

icantly when the system demand level and other

factors change.

CASE STUDY

Several examples are tested in order to examine the
robustness of the proposed algorithm. Among them is
an interconnected power system located in Khuzestan,

a southern province of Iran. There
units and 2 hydro power plants (ir
units) in this power system, with 4
3778 MW, of which 1520 MW is p
power plants. This province has a

exist 12 thermal
icluding 12 hydro
total capacity of
roduced by hydro
maximum load of

2837 MW with a load factor of 82% at the peak period.
The energy demanded at the peak period has a mean
value of 1636 GWh. It is assumed that the variance of
energy demand distribution is increasing with respect

to time and, in the first month, fo
standard deviation equal to 2% of
demand, which linearly increases t|
period.

The reservoirs of existing hydro

recast error has a
the mean energy
o0 5% at the last

power plants have

a total storage volume of 6240 MCM, while there

is a vital demand of 150 CM/S o

f discharge water

for irrigation and domestic consumption that must be

satisfied. It should be emphasized th

at the distribution

of turbine discharges among different water users in
different periods of the year is usually performed on
downstream of the reservoirs. Therefore, only the sum

of the needs of different water users

are considered at

each period and incorporated as a lower bound on the
discharges of the turbines. On the other hand, because
of the extreme heat during four months of the year, the
power supply is critically needed; thus great damage
cost is envisaged for these months, which is found via

regional surveys.

Table 1 gives the average of energy demanded and

the corresponding IEAR for various months.

In the
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Table 1. Data from Khuzestan power system.

Month| IEAR |Average Load|Demand |Export

(8/KWh) (MW) (GWh) |(GWh)
1 1 1506.9 738.6 595
2 1.6 1726.8 1086.9 600
3 1.8 1928.2 1419.2 480
4 2 2004.6 1561.3 400
5 2 2062.8 1636.1 350
6 1.4 1982.4 1574.8 110
7 1.05 1542.9 1245.1 -10
8 1.05 1662.4 818.2 -89
9 1.1 1695.8 799.5 -20
10 1.2 1728.8 918.2 18
11 1.3 1754.4 925.9 185
12 1.1 1684.6 870.9 508

fifth column, the minus sign indicates import of energy.

Results

The results of implementing the proposed method
for Khuzestan power system is shown in Table 2,
where 7} and pj are optimal reliability level and
optimal Lagrange multiplier in period ¢, respectively.
The expected total cost obtained by the method is
$191294, which includes cost of energy interruption.
The actual operation cost of Khuzestan system to meet
the demand of Table 1 has been $417210 (based on 1$
= 8000 Iranian Rials) for the same year as optimized by
the model, which does not include interruption costs.
It should be emphasized that the actual operation
cost cannot be compared directly with the results of
the proposed model. This is due to the fact that in

Table 2. The optimal solution for Khuzestan power
system.

Month oy Ty OC; EIC: | Total Cost,
(%) (%) (%)
1 0.882 8.453 3228 171 3399
2 0.886 | 12.665 8834 329 9164
3 0.869 | 18.669 | 18242 610 18852
4 0.866 | 21.741 | 24450 811 25261
5 0.864 | 22.334 | 25756 932 26688
6 0.842 | 20.788 | 22422 943 23365
7 0.829 | 17.620 | 16338 686 17024
8 0.826 | 18.201 | 17380 819 18199
9 0.834 | 17.343 | 15855 830 16685
10 0.847 | 16.201 | 13940 813 14753
11 0.865 14.004 10621 727 11348
12 0.872 | 10.220 6038 518 6556 |
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the actual operation of a power system, some short-
term considerations, such as frequency control of the
whole power system by hydro power plants and online
transmission constraints, must be taken into account.
These short-term considerations are not modeled in
long-term studies because of the degree of the details
required for their incorporation [5]. However, they
greatly affect hydro generation of the system and will
increase actual operation costs.

Nevertheless, the actual operation cost can act as
an upper bound for the value obtained by the model.
If the results obtained by the model show a potential
improvement in system operations, then they should
still be tested using a special measure called “value of
stochastic solutions”, which will be explained at the
end of this section.

In order to observe the difference between stochas-
tic and deterministic treatment of demand, the pro-
posed method was also implemented for the above
system for the following cases:

a) Considering the energy demand in each period
as a deterministic quantity, which is equal to its
expected value at the same period; in fact, v; = 0.5.

b) Considering an extra supply equal to 10% of average
demand as reserve for each period.

The results for the above cases are summarized in
Tables 3 and 4. Note that Tables 2 to 4 are developed
based on the assumption that the actual water year
1999-2000 (1378 in the Iranian calendar) has been a
dry year. Therefore, a value for the initial inflow to
each reservoir is specified, which is sufficiently lower
than the average inflow of the corresponding period
during the last 30 years. The distribution function
of inflow to each reservoir is then determined, based
on the assumption that inflow follows a Markov Chain

Table 3. The optimal solution for Case (a) deterministic
demand.

Month uy OC, EIC,:; | Total Cost;
(%) (%) %)
1 8.308 2904 5032 7936
2 12.200 8258 10464 18722
3 18.198 | 17374 14165 31539
4 21.175 | 23235 17850 41085
5 21.609 | 24158 19899 44057
6 20.073 | 20962 14416 35378
7 17.126 | 15481 8725 24206
8 17.605 | 16312 10028 26340
9 16.642 | 14664 11386 26050
10 15.277 | 12485 13408 25893
11 13.007 9275 15621 24896
12 9.272 5114 12741 17855
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Table 4. The optimal solution for Case (b}, considering
extra supply.

Month Y. uy OC: | EIC: | Total Cost:
% (%) (%)
1 0.9999 8.873 4198 1E-7 4198
2 0.9999 | 13.916 | 10498 1E-5 10498
3 0.9998 | 19.998 | 20811 3E-4 20811
4 0.9996 | 23.122 | 27546 4E-3 27546
5 0.9990 | 23.640 | 28758 3E-2 28758
6 0.9979 | 21.978 | 24967 0.1 24967
7 0.9962 | 18.609 | 18131 0.2 18131
8 0.9938 | 19.208 | 19263 0.6 19264
9 0.9907 | 18.333 | 17620 1.7 17622
10 0.9869 | 17.148 | 15517 4.0 15521
11 0.9824 | 14.885 | 11893 8.8 11902
12 0.9772 | 10.938 6797 12.3 6809

pattern, as mentioned in the previous section and, by
application of correlation coefficients calculated, using
the historical inflow data of the last 30 years.

Total expected costs for Cases (a) and (b) are
equal to $323957 and $206027 respectively. This means
that there is an increase of 69% in total cost as com-
pared with that obtained using the proposed method,
if the demand is considered as a deterministic quantity,
i.e., Case (a). Similarly, if Case (b) is adopted, then the
cost is 8% higher than that of the proposed method.
Also it can be seen that if uncertainty in forecasting
demand is increased, further savings will be obtained
by the proposed method.

To investigate the convergence behavior of the
algorithm, 108 different runs were performed on the
Khuzestan power system, using different data. It was
found that the initial values of Lagrange multipliers
have a great impact on the number of iterations of the
algorithm in Stage 2. In most cases, the number of
iterations in Stage 2 was between 5 to 20. The number
of iterations, moving between Stages 1 and 2, was
always less than 6. Total CPU time with a Pentium-
Pro 200 PC varied from 1h:20m:16s to 2h:43m:39s, with
a mean of 2h:11m:8s.

The procedure suggested by Kall and Wallace [15]
was also applied to obtain a measure of the value of
stochastic solutions. To do this, first the problem was
solved with random inflow and demand for each period
replaced by their expected values. This gives a solution
for each period, while only the solution for the first
period is adopted. Then the solution was implemented
for the first period and the total expected cost was
calculated for this period, using a number of randomly
generated reservoir inflows and demand for the first
period. In the next stage, with the initial conditions
obtained from each random variable realization, the



deterministic model from period two onwards was again
solved and the solution was implemented for the second
period. This procedure was repeated until the last
period was reached, where the termjnal cost for each
realization of the inflow sequence for the last period
could be calculated. Calculation of|interruption cost
for each period was carried out by computing the
difference between the generation level of that period,
as obtained by implementing the deterministic solution
and the value of randomly generated demand for the
same period. The result of calculation was multiplied
by interrupted energy assessment rate (IEAR) for the
corresponding period. The sum of the operating and
interruption costs for each period and the terminal cost
for the last period will give the valug of the objective
function for each realization of random variables.

Due to the fact that inflow data was available
for the last 30 years, they were used, together with
randomly generated demand, using & normal random
number generator that has the same mean as used
by the deterministic model and the |[same variance as
used by the stochastic model. The mean value of the
objective function for 30 samples was $302259.2, while
the value of the objective function for the stochastic
model was $191294. Comparing the results with those
obtained using the stochastic model, it can be con-
cluded that using a deterministic model when demand
and reservoir inflows are uncertain, is not a proper
choice.

CONCLUSION

In this research, a new model was developed for long-
term operation of hydro-thermal power systems. In
the proposed model, not only the optimal amounts of
turbine discharge of hydro power plants and the energy
output of thermal power plants were obtained, but also
the system reliability was determined simultaneously,
in order to minimize the total cost. To solve the result-
ing problem, a method was also developed, applying
decomposition technique, Lagrangian relaxation and
nonlinear and dynamic programming. The problem
was solved within three stages. To see the efficiency
of the proposed method, it was also| tested for a real
case.

An extension of this research is to consider the
forced outage rate of thermal and hydro units in
the model and to enhance the savings from system
operation optimization. It is also possible to extend the
‘model to the cascaded reservoirs in multi-area power
systems, including transmission constraints. As men-
tioned previously, hydro energy generation is calculated
using constant efficiency and average|head during each
period. However, efficiency of a hydro power plant
depends on its head and the head itself depends on
the reservoir volume, which is a function of turbine

M. Modarres and D. Farrokhzad

discharge. Therefore, considering variable efficiency
and head relationships for hydro energy generation is
another research extension of this work.
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NOMENCLATURE

T number of operation periods

M number of thermal power plants

N number of hydro power plants

Tt energy output of thermal power plant
m in period ¢

Ynt water discharged from turbines of
hydro power plant n in period ¢

Unt energy output of hydro power plant n
in period ¢

Unt water content of reservoir n in the

beginning of period ¢

TCph(v) terminal cost of reservoir n as a
function of its water content v

Qne inflow of water to reservoir n in period
t

Tmt,Tme Minimum and maximum allowable
values for x,,;

Ynts Unt minimum and maximum allowable
values for y,;

Ung, Unt minimum and maximum allowable
values for u,;

Unt, Unt minimum and maximum allowable
values for v,;

Snt water spilled from reservoir n in period
t

D, energy demand in period ¢

D,, o, mean and standard deviation of energy
demand in period ¢

Fp, () distribution function of demand D;

IEAR; interrupted energy assessment rate in
period ¢t

Ve the level of reliability for period t
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