Scientia iranica, Vol. 9, No. 3, pp 268-275

(© Sharif University of Technology, July 2002

Research Note

An Efficient Exact Procedure for Project
Scheduling Under Multiple Resource Constraints

M.R. Zamani!

A new procedure is presented for finding optimal solutions to resource constrained project
scheduling problems. It traverses the decision tree by investigating the most promising

partial schedule at each
procedures. These draw

teration, avoiding two main drawbacks associated with other silmilar
backs are huge memory requirements and a time consuming task

of selecting the most promising partial schedule among many candidates in each iteration.
Computational experience indicates that the procedure finds optimal schedules for 100-activity
projects, regardless of their strength of resource constraints.

INTRODUCTION

The Resource Constrained Project 9

problem may be stated as follows:

activities are given, each activity

cheduling (RCPS)
A finite set of
requiring a fixed

integer duration and a fixed amount of one or more

different resource types. Activitie

are subject to a

set of precedence relations and may [not be interrupted
once started. There are specified fixed limits on the
availability of each resource type and the objective is

to minimize the project duration.

Because of the generality of RCPS problem, a
great deal of research has been undertaken and many

procedures have been proposed for
large number of these procedures
rather than optimal solutions. A su
extensive reference list, on these he
is presented in [1,2]. Among exact
generate optimal solutions, there
approaches presented by Davis and

the problem. A
generate feasible,
vey, along with an
uristic procedures
procedures, which

are some efficient

Heidorn [3], Tal-

bot [4], Stinson, Davis and Khumavala [5], Bell and
Park [6], Demeulemeester and Herroelen [7], Icmeli
and Rom (8], Demeulemeester and Herroelen [9],

Brucker et al. [10], Reyck and H
Zamani [12].

erroelen [11] and

Despite their efficiency, none of these approaches
has been tested on tightly resourcerconstrained prob-

lems with more than 100 activities.

1. Department of Industrial Engineer
Systems Planning,

Isfahan, I.R. Iran.

ing and Center for

Isfahan Univensity of Technology,

A NEW IMPLICIT ENUMERATION
METHOD

The implicit enumeration method described in this
paper, is based on an optimal learning search technique
developed by Zamani and Shue [1] and Zamani [12].
The positive aspect of this technique is that it uti-
lizes initial heuristic estimates and lower-bounds and
continuously improves the estimates as the search
process continues. It updates the heuristic estimates of
states by comparing them with those of their children
in the search process. Updating heuristic estimates,
together with backtracking, help the method pause
the expansion of a branch to consider other promising
branches. This enables the technique to perform very
effectively.

The method presented in this paper, systemati-
cally searches a tree of partial schedules, each partial
schedule representing a node of the tree. Associated
with each partial schedule is an earliest possible time
at which new scheduling decisions are possible. In
each iteration, all subsets of activities, including the
“null” set, which can be started without violating
resource and precedence constraints, are identified as
the children of the current node in the tree. FEach
child, itself a new partial schedule, resolves the conflict
regarding concurrent demand for resources by the
activities that can start at the decision time. All leaf
nodes of this tree are complete schedules and optimal
solutions are located among these nodes. Despite
using a backtracking schema, the method selects the
most promising partial schedule at each iteration and,

Project Scheduling Under Multiple Resource Constraints

therefore, reaches only one of the leaf nodes which is
optimal solution.

Implicit enumeration methods for scheduling dif-
fer in the manner in which two important issues are
addressed, first, the way in which the tree of partial
schedules is constructed and second the means used to
prune inferior branches from the tree. These two issues
will be raised later.

Mechanisms of Improving Heuristic Estimates
and Generating Optimal Solutions

For the purpose of improving heuristic estimates during
the search process, as well as generating optimal solu-
tions, an algorithm called Learning and Backtracking
A* (LBA¥*) is used [1,12,13]. LBA* finds an optimal
solution to a general state-space search problem as a
sequence of decisions (operators) that transforms the
initial state to the goal state. All states which are
directly accessible from a state are called its neighbors.
LBA¥* starts from the initial state, as the current state,
and in each iteration either changes the current state
with one of its neighbors or backtracks. It repeats this
process until the current state becomes the goal state.

To represent a state-space formulation for any
search problem, three issues should be specified: (a)
The form of the state description and, in particular, the
description of the initial state, (b) The set of operators
and their effects on state description and (c) The
properties of goal state description. In optimization
problems it is not merely sufficient to find any path to
a goal; it is also necessary to find some path optimizing
some criterion (such as minimizing the total costs
associated with operators applied). Associated with
each state is a set of operators and each operator,
which has a cost, transforms this state to one of its
neighboring states. Each state has a heuristic estimate,
lower bound, as well as a set of operators. The initial
heuristic value of every state is an evaluation of the
distance of that state from the goal state. In LBA*
these initial heuristic values are assumed not to over-
estimate the actual distances and are improved in the
search process by being compared with those of the
neighboring states.

In LBA*, the optimal solution can be found in
a single trial. From the initial state, as the current
state, the search process starts by comparing its
heuristic estimate with the “compound values” of all
its neighboring states. For each neighboring state, the
“compound value” represents the sum of its estimate to
the goal state and the edge cost from the current state
to the neighboring state. The neighboring state with
the minimum compound value is chosen for the next
stage of expansion. If smaller, the heuristic estimate
of the current state is replaced with the minimum
compound value, to reflect a more accurate estimate

269

and a backtrack occurs. The process proceeds until a
final solution is reached.

The reason for this replacement is that since the
compound value represents a lower-bound on the actual
distance to the goal through each of the neighbors, then
the actual distance from the given state must be, at
least, as large as the smallest of these compound values.

The LBA* can be implemented as follows:

Step 0: Consider a heuristic function to generate a non-
overestimating initial heuristic estimate h(xz)
for the distance of every state z to the goal
state;

Step 1: Put the initial state on the backtrack list called
OPEN;

Step 2: Let = be the top-most state on the OPEN list.
If z is the goal state, stop;

Step 3: If = can be pruned by some pruning rule,
replace its heuristic estimate, h(z), with a very
large value, remove z from the OPEN list and
go to Step 2;

Step 4: Let k(z,y) represent the cost of transforming
state T to state y (the positive edge cost from
state z to state y). Evaluate the compound
value of k(x,y) + h(y) for every child state y of
z and find the state with the minimum value
(ties can be broken randomly or based on any
particular priority). Call this state z';

Step 5: If h{z) >= k(x,2’') + h(2'), then add z’ to the
OPEN list as the top-most state and go to Step
2;

Step 6: Replace h(z) with k(z,2') + h(z');

Step 7: If z is not the root state, remove = from the
OPEN list;

Step 8: Go to Step 2.

A full description of the algorithm, as well as
a proof for the theorem that the application of the
algorithm will lead to finding optimal solutions, can
be found in [1,12].

The algorithm keeps all the states generated and
their associated heuristic estimates in a tree structure,
so that it can have access to them by moving forward
and backward on the tree. This gives the algorithm
the advantages of avoiding a great deal of duplicate
searching, as well as being practical in the sense of
memory requirements. The reason why the application
of the algorithm to the RCPS problem, despite storing
all the partial schedules generated, does not need a
huge memory, has been described in the section of
computational results.

270

Setting up a State-Space Formulation for the
Problem

In terms of the above algorithm, in the RCPS problem,
the initial state is an empty schedule where none of
the activities has started yet and the goal state is
a complete schedule where all activities have been
completed. The process of finding the optimal solution
for the RCPS problem can be considered as making
a sequence of decisions (determining operators) that
transform the null partial schedule (the initial state)
into a complete schedule with minimum duration (the
goal).

A state (partial schedule) is a schedule in which
some of the activities have already started. Operators
associated with each state are all the possible decisions
about scheduling other activities with respect to both
precedence and resource constraints.| In the above al-
gorithm, the cost of any operator, k(a, 2z0), can depend
on both states transformed to and|from. However
in the RCPS problem, this cost depends only on the
state transformed from and is defined as the minimum
time remaining for at least one of the incomplete
activities of the state to be completed. Therefore,
associated with each operator is a cost that determines
the minimum time left for an incomplete activity of the
state transformed from to be accomplished.

Since each state (partial schedule) is a set of
some incomplete activities, it can be considered as
a new project with a heuristic estimate as a lower-
bound on its completion time. What makes the
minimum completion time of a project difficult to find
is the simultaneous existence of two sets of precedence
and resource constraints. Many different methods
have been proposed for finding lowerbounds on these
partial schedules [14-16]. Here, the modified version of
precedence- and resource-based lowerbounds are used
as follows. By ignoring resource constraints, the RCPS
problem becomes a simple problem whose CPM time
duration is a lower-bound to the optimal solution of the
original problem. This lower-bound |can be improved
by considering the fact that none of the activities in the
“unscheduled” set can be started unless at least one of
the activities in the “in progress” set|is completed.

It is clear that the more| accurate non-
overestimating heuristic estimates of states are the

more efficiently the method performs.

for every state, a second non-overest

Therefore,
imating heuristic

estimate is calculated and the maximum estimate

between the two is selected. The c

alculation of this

heuristic estimate is based on ignaring precedence-

constraints. When precedence-constr
there are some resource requiremen
complete activities. These resource

aints are ignored,
ts needed for in-
requirements are

multiplied by their duration and the sum result is
divided by the amount of that resource available per

M.R. Zamani

day, yielding a minimum number of days for which
the project continues. In the case of multiple-resource
constraints, this idea is generalized by finding the
maximum value among different types of resources.
As stated, the maximum estimate is selected from the
two non-overestimating estimates, one calculated by
ignoring resource constraints and the other calculated
by ignoring precedence constraints. The third heuristic
estimate calculated is based on repeatedly solving
subproblems.

Having discussed the mechanism of calculating
heuristic estimates, the way in which the tree of partial
schedules is constructed is now described. The space of
states reachable from the initial state can be considered
as a tree containing nodes corresponding to the states.
The nodes of this tree are linked to each other by arcs
that correspond to operators {decisions). The root of
this tree, the initial state, is an empty schedule and the
intermediate nodes are partial schedules. In this tree,
a leaf (terminal node) is a complete feasible schedule
in which all activities have already started.

As the tree is expanded from some given inter-
mediate node (partial schedule), a new set of partial
schedules is created. Each member of this new set
has, in common with its parent, all scheduling decisions
made previously. The only difference between any par-
tial schedule and its parent is that it includes one new
decision about the scheduling of one or more activities
that have not yet been scheduled. This decision is
made when at least one of the incomplete activities
of a partial schedule is completed and, consequently,
some resources are released.

The process of constructing the tree starts with
generating a null partial schedule as the current node.
After calculating heuristic estimates, from among the
children of the current node, a child with the minimum
heuristic estimate is selected. Ties are broken in favor
of children which have managed to start more activities
and the remaining ties are broken randomly. The
branching process takes place from the selected child,
which becomes the current node and its children, if
not yet having done so, are generated. Among these
children, based on their heuristic estimate, the best
one is selected again. This branching process continues
until all activities are scheduled or an updating in
the heuristic estimate of a current node occurs. In
the case of such updating, if the current node is
not the root (initial state), a backtracking from the
current node occurs and its parent will become the
current node; then the process continues afterwards.
When the heuristic estimate of the initial state is
updated, no backtracking occurs and the process pro-
ceeds.

If it can be established that further branching
from a node cannot lead to an optimal solution,
then the node can be pruned away. Two means are

Project Scheduling Under Multiple Resource Constraints

used to prune inferior branches from the tree. The
first pruning rule used is called left-shift rule. In
the tree of partial schedules, if a node includes any
activity already scheduled which can be left-shifted to
an earlier start time without violating either resource
or precedence constraints, this node can be pruned
away. This dominance role was originally established
by Schrage [17] and, since then, has been used by many
other researchers in this area [6,7,18-20].

The second pruning rule used works based on the
comparison of some nodes as follows. Every current
node at the time of expansion is checked to see if a
node with the same set of scheduled activities and
the following three conditions has previously been
expanded: (a) Its completed activities include those
of the current node; (b) The starting times of its
uncompleted activities do not exceed those of the
current node and (c) Its time of next decision is less
than, or equal to, that of the current node. The current
node is pruned away, if such a previously expanded
node exists. This pruning rule is similar to that
used by Stinson et al. [5], the only difference is that
they considered the previously expanded nodes whose
scheduled activities included those of the current node,
rather than being the same activities. Considering the
nodes with the same activities weakens the pruning
power to some extent, however, this can be handled
with just a fast hash procedure rather than a time
consuming key-search one.

A NUMERICAL EXAMPLE

A sample problem from [7,12] is used to explain the
application, as well as the efficiency of the method.
Figure 1 illustrates the problem. The two dummy
activities “a” and “i” define the beginning and end
of the project, respectively. Figure 2 depicts the
tree of partial schedules (states) generated by the
method. At the root of this tree, there stands state 1,
resulting from the only possible decision at time zero.
As stated, activity “a” is a dummy activity, which
shows the beginning of the project and, based on
the project network, no activity can start before this
dummy activity is completed. The duration of this
activity is zero; therefore, at time zero, when it is
completed, there are four eligible activities to start,
namely, activities b, ¢, d and e. Because of the
constraint on the resources, it is not possible to start
all four activities simultaneously and, even in the case
of such a possibility, all other possible decisions should
be considered.

In determining possible decisions at time zero,
when activity “a” is completed, all feasible combina-
tions of eligible activities that can enter the correspond-
ing partial schedule are considered. As stated, even in
the case where a group of activities can start together,

271

the scheduling of either of them alone or a subgroup of
them is not ignored. For instance, although in state 2,
the three activities b, ¢ and d are managed to start
together, state 4 schedules only activities b and ¢ or, in
state 8, just activity b starts. Notice that the left-shift

Total resources available: 6

Legend:

Duration, resource requirement

@— Job name

The length of the longest path to the end of the project
(based on CPM calculations)

Figure 1. A sample problem.

1.a(0)
{10]
2.bed(0 3.bce(0) 4.bc(0) 5.bde(0) 6.bd(0) 7.be(0) 8.b(0)
;10]() (10} [10] 1y 11} (11} {11]
9.-(2) 10.£(2) 11.-(2)
[9] (8] {0]
12.h(3) 13.-(3
{7 {71)
14.dg(4) 15.g(4) 16.d(4) 17.-(4)
(6} [10] [11] [11]
18.-(9)
{1
19.i(10)
(0]
Legend:
The state number based on generation order. The jobs started
(the time of starting) [The heuristic estimate]
a-z: jobs
—: Null (no job starts)

Figure 2. The tree of partial schedules (states) in which
each partial schedule is not represented in detail.

272

rule does not permit states like a state starting only
activities ¢ and d to be shown in Figure 2. The reason
this state is not shown is that, if only activities ¢ and
d were started, then, by the time of the next decision,
at time 3 when activity ¢ would be completed, resource
availability would permit activity b, |which takes only
2 days and needs only one unit of resources to be
completed. Figure 3 shows how activity “b” in this
situation can be left-shifted.

The construction of the tree begins by generating
the initial state, state 1, which is put in the OPEN
list. In this state only the dummy activity “a” starts
and all other activities are in the “unscheduled” set.
The heuristic estimate with this state is 10, which is
a lower-bound on the duration of the entire project
and has been obtained by ignoring respurce constraints.
After the completion of activity “a”, again at time
zero, all possible decisions are considered and those
which cannot be pruned by the left-shift rule, i.e., seven
states, are determined. The costs of transforming from
state 1 to all these states; k(1,2),k(1,3),...k(1,8),
which are equal to the duration of activity “a”, are zero
and need not be added to the heuristic estimate of their
corresponding state for the selection|of the best state.
Therefore, to select the best state to fransform to/from
state 1, it is enough to consider just h(2), h(3),... h(8)
rather than k(1,2)+h(2), k(1,3)+h(3),...k(1,8)+h(8)
as stated in Step 4 of the algorithm.

6

5

4

c

g b
5
2 3
w
Y
[

2

d
1
1 2 3 4 5
Time
6
b

5
[4 c
&
=
23
Q
[

2 d

1

1 2 3 4 5
Time

Figure 3. Left-shifting activity b in the situation where
activities ¢ and d start at time 0.

M.R. Zamani

As shown in Figure 2, among the seven can-
didates, the three of them have the same heuristic
estimate, h(2) = h(3) = h{(4) = 10. In this case,
the priority is given to the states which have managed
to start more activities and, then, the remaining ties
are broken randomly. Among these three states, there
are two states which have both managed to start three
activities, namely states 2 and 3. The tie is broken
randomly and state 2 is selected. The time associated
with this state is zero, when activities b, ¢, and d
start and its heuristic estimate is 10. Since the cost
of transforming from state 1 to state 2, k(1,2) = 0,
which is the difference between the times at which
they started their activities added to the heuristic
estimate of state 2, h(2) = 10, is not greater than the
heuristic estimate of state 1 (h{1) >= k(1,2) + h(2)),
no updating in the heuristic estimate of state 1 occurs
and state 2 is put on the OPEN list as the current
state.

To determine the candidate states to transform
to/from state 2, the time is first determined when the
next set of scheduling decisions, with regard to this
state, can potentially be made. In state 2 the activities
b, ¢ and d were scheduled to start at time zero, among
them activity b is completed sooner than the other
two (at time 2). Therefore, the time associated with
each child of state 2, when some other decisions can
be made, is 2. With respect to precedence constraints,
when activity b is completed, activity f can start, but
it needs 2 units of resources whereas just one unit of
resource is available and the remaining 5 units are still
seized by activities ¢ and d. Hence, regarding state 2,
just one possible decision exists at time 2: Starting no
activity (-). The result of this decision is represented
as state 9. The heuristic estimate associated with state
9, h(9), is 9 and, since k(2,9) + h(9) > h(2), based on
steps 6 and 7 of the algorithm, the value of h(2), 10,
is replaced with k(2,9) + A(9), 11, and a backtracking
occurs which causes state 2 to be removed from the
OPEN list.

Now, again, state 1 is at the top of the OPEN
list (but this time all its children have been generated
and there is no need to regenerate them). This time,
among the candidate states to transform to, there are
2 rather than 3 states, namely, states 3 and 4 both
with heuristic estimate 10. Again, the tie is broken
in favor of the state which has managed to start more
activities and state 3 is selected as the best state to
transform to/from state 1. As depicted in Figure 2,
from this point on, the expansion of states continues
and no other backtracking is encountered until the
optimal solution is obtained. To obtain the optimal
solution, 7 states have been expanded, namely, states
1, 2, 3, 10, 12, 14 and 18, and just one backtracking
has occurred.

As shown in Figure 2, the method does not

Project Scheduling Under Multiple Resource Constraints

have the drawback of best-first search schemes which
suffer from the redundancy of calculation and the
need for high memory for keeping partial schedules
as independent data. On the other hand, it does
not have the disadvantages with backtracking schemes,
in which, once a node is selected to be expanded,
all its children must be exhausted before any other
node is selected. This was shown in this example
when a branch originating from state 2, before being
exhausted, was put aside and a branch originating
from state 3 was considered instead. The branch
originating from state 2 would have had the chance
of reconsideration if all states 3, 4, 5, 6, 7 and 8
had held updated heuristic estimates greater than, or
equal to, those of states 2 and 11. Demulemeester and
Herroelen [7], who used a backtracking scheme, had
to exhaust this branch before considering the branch
originating from state 3.

COMPUTATIONAL RESULTS

There are two main generators for generating RCPS
problems [18,21]. Because of its simplicity and gener-
ality, [18] was selected and the procedure was tested on
68 randomly generated problems. A feature considered
in [18] that appears very important is the strength of
resource constraints.

This feature is measured as the ratio between the
total resource requirements (the sum of the resource
requirements of each activity by its processing time)
and the total available resources (the sum of resource
availability by the length of the longest path in the
original graph). If this ratio varied between 0.5 and
0.99 the problem was considered loosely constrained.
Problems with ratios between 1.0 and 1.5 were consid-
ered to be tightly constrained. This ratio was originally
mentioned by Davis and Patterson [22] who generated
problems with ratios between 0.53 and 1.5.

Christofides et al. [18] generated problems with
duration in the range of 1-9 and resource requirements
in the range of 0-6. They also considered six units of
resource availability and in their graphs of precedence
constraints, the ratio between arcs and vertices varied
between 1 and 3. With this network structure and
resource requirements, they tried problems with 25
activities and a maximum of three resource types. Half
of the problems (20) were tightly constrained and the
others were loosely constrained. Despite considering
such a small number of activities, they stated that 25
percent of the tightly constrained problems (5) could
not be solved within the limit of 60 CPU seconds
using the UNIVAC 1100 mainframe. In this paper,
however, with the same network structure and resource
requirements, problems were tried with the number of
activities varying between 80 and 100 and number of
resource types being between one and six. Half of these

273

problems were loosely constrained and the others were
tightly constrained. All 68 problems, regardless of their
strength of resources, were solved within the limit of
60 CPU seconds using IBM PC DX486. On average,
each problem took 8.02 seconds to be solved and the
upper limit for computation times was 57.64 seconds.
The lower limit was just 0.1 second and the tightly
constrained problems took, on average, only thirty
percent less time to be solved compared to loosely
constrained ones.

These computational results show the capability
of the method for solving a wide range of medium-sized
RCPS problems and any method capable of solving
medium-sized combinatorial problems, undoubtedly
also performs well on small-sized ones. However, it
was decided to apply the method to a complicated
small-sized problem, too. This problem was selected
from [5] and has 43 activities with three different
resource types. Bell and Park [6] have also solved
this problem and reported their computation times on
different machines. They reported that this problem
required 122 minutes on Macintosh plus, 30 minutes
on Macintosh II and 10.7 minutes on a Sun work-
station. Stinson’s algorithm solved this problem in
6.05 minutes on a mainframe IBM 370/155. As was
expected, the method described in this paper solved
this small-sized problem in a very short time, in
effect, as small as 1.65 seconds on a personal computer
DX486.

There are some superficial similarities between
this algorithm and Truncated Branch and Bound Algo-
rithms which Use Virtual Upper Bounds (TBBAVUB).
This might strengthen the hypothesis that the algo-
rithm works with the same efficiency as worked with
previously. To test this hypothesis, the computer
program was changed so that it worked based on
TBBAVUB (the object oriented property of C** made
these changes easy). The result was that the program
based on TBBAVUB solved less than 10 percent of
the test problems within the time limit, whereas
this program was able to solve 100 percent of the
test problems. Besides, on average, the presented
program worked more than forty times faster. The
causes for these performance distinctions are as fol-
lows.

For each successive restart, TBBAVUB had to
search a larger area of the tree and, therefore, compared
to its preceding restart, taking more time to find
a better lower-bound for the root. The situation
was the reverse for the algorithm described by the
author, because it kept and used all partial schedules
generated previously, as well as their updated heuristic
estimates. In other words, this algorithm continuously
improved the heuristic estimates of partial schedules
and used updated estimates rather than repeating a
lot of duplicated searching, as TBBAVUB was forced

to do. This can be verified by looking at steps 0 through
8 of LBA*. These steps show that heuristic estimates
(h(z)'s) never lose their updated values, even when the
algorithm changes the heuristic estimate of the root
and, in the terminology of TBBAVUB, restarts. In
order to keep all partial schedules and their associated
heuristic estimates, generated, the algorithm uses a tree
structure.

In regards to using the tree structure for keeping
partial schedules, the algorithm is similar to best-
first schemes [6]. However, as is| known, best-first
schemes are impractical because of their huge space
requirements. None of the best-first schemes has been
able to handle tightly resource-constrained problems
with more than 60 activities, whereas, as shown in this
paper, such problems with more than 100 activities
have been handled by the algorithm described by
the authors and their optimal solutions have been
obtained. The reason why this algorithm does not
require huge space requirements lies in the way in
which partial schedules can be represented. Because
the algorithm is based on a depth+first scheme and,
hence, can easily move forward and backward on the
tree structure to access partial schedules and to update
their heuristic estimates, partial schedules need not
be stored in detail. Each node of this tree includes
only a decision about starting one or more activities
(rather than representing all specifications of a partial
schedule). By moving forward and backward on this
tree, the algorithm puts these decisions together or
disintegrates them, respectively, to find out the actual
specifications of the partial schedule associated with
each node of the tree. In other words, by traversing
a path from the root of the tree to any node of it
and looking at the activities which have been started
on the path, the associated partial| schedule of that

node is specified. Therefore, by us
ture and a depth-first scheme, wh
extra calculations for building parti
algorithm does not suffer from the
memory for keeping partial schedule
data. This gives the algorithm the a
practical in the sense of memory
well as an ability to avoid a great d
searching.

REFERENCES

1. Zamani, M.R. and Shue, L.Y. “Dev

ing a tree struc-
ch accepts some
al schedules, the
need of a huge
s as independent
dvantage of being
requirements, as
eal of duplicated

eloping an optimal

learning search method for networks”, Scientica Iran-

ica, 2(3), pp 197-206 (1995).

2. Tsubakitani, S. and Deckro, R.F. “Heuristic for multi-

project with limited resources in the

housing industry”,

European Journal of Operational Research, 49(1), pp

80-91 (1990).

10.

11.

12.

13.

14.

15.

16.

17.

. Demeulemeester, E.

M.R. Zamani

. Davis, E'W. and Hiedorn, G.E. “An algorithm for

optimal project scheduling under multiple resource
constraint”, Management Science, 17(12), pp 803-816
(1971).

. Talbot, F.B. “An efficient integer programming al-

gorithm with network cuts for solving resource-
constrained scheduling problems”, Management Sci-
ence, 24(11), pp 1163-1174 (1978).

. Stinson, J.P., Davis E'W. and Khumavala, B.M. “Mul-

tiple resource-constrained scheduling using branch and
bound”, AIIE Transactions, 10(3), pp 252-259 (1978).

. Bell, C.E. and Park, K. “Solving resource-constrained

project scheduling problems by A* search”, Nawal
Research Logistics, 37(1), pp 280-318 (1990).

. Demeulemeester, E. and Herrcelen, W. “A branch-

and-bound procedure for multiple resource-constrained
project scheduling problem”, Management Science,
38(12), pp 1803-1818 (1992).

. Icmeli, O. and Rom, W.O. “Solving the resource

constrained project scheduling problem with optimiza-
tion subroutine library”, Journal of Computers and
Operations Research, 23(8), pp 801-817 (1996).

and Herroelen, W. “A new
benchmark results for the resource-constrained project
scheduling problem”, Management Science, 43(11), pp
1485-1492 (1997).

Brucker, P., Knust, S., Scoo, A. and Thiele, O.
“A branch and bound algorithm for the resource-
constrained project scheduling problem”, FEuropean
Journal of Operational Research, 107(1), pp 272-288
(1998).

Reyck, B.D. and Herroelen, W. “A branch-and-bound
procedure for the resource-constrained project schedul-
ing problem with generalized precedence relations”,
European Journal of Operational Research, 111(1), pp
152-174 (1998).

Zamani, M.R. “A high performance exact method
for resource constrained project scheduling prob-
lems”, Journal of Computers and Operations Research,
28(14), pp 1387-1401 (2001).

Korf, R.E. “Real-time heuristic search”, Artificial In-
telligence, 42(2), pp 189-211 (1990).

Ozdamar, L. and Ulusoy, G. “A survey on the resource-
constrained project scheduling problem”, I/E Transac-
tions, 27(5), pp 574-586 (1995).

Davis, E.-W. “Network resource allocation”, Industrial
Engineering, 21(4), pp 59-69 (1974).

Deckro, R.F., Winkofsky, E.P. and Herbert, J.E. “A
decomposition approach to multi-project scheduling”,

European Journal of Operational Research, 51(1), pp
110-118 (1991).

Schrage, L. “Solving resource-constrained network
problems by implicit enumeration non-perceptive case”,
Operations Research, 18(2), pp 263-278 (1969).

Project Scheduling Under Multiple Resource Constraints

18.

19.

20.

Christofides, N., Alvarez-Valdes, R. and Taramit, J.M.
“Project scheduling with resource constraints, a branch
and bound approach”, European Journal of Operational
Research, 29(3), pp 262-273 (1987).

Nillson, N.J., Principles of Artificial Intelligence, Cali-
fornia, Tioga, Palo Alto (1980).

Patterson, J.H. “A comparison of exact approaches for
solving the multi constrained resource project schedul-
ing”, Management Science, pp 854-867 (1984).

21.

22.

275

Kolisch, R., Sprecher, A. and Drexl, A. “Character-
ization and generation of a general class of resource-
constrained project scheduling problems”, Management
Science, 41(10), pp 1693-1702 (1995).

Davis, E.W. and Patterson, J. “A comparison of
heuristic and optimal solutions in resource-constrained
project scheduling”, Management Science, 21(8), pp
944-955 (1975).

