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An Actuator-Level Robust Joint Torque Control

of Robot with Harmonic Drive Transmission

M.M. Moghaddam* and A.A. Goldenberg!

Motion and torque control of flexible joint robots is difficult, due to the inherent characteristics
of such systems. The joint flexibility may generate resonant frequencies within the range of
control bandwidth that may destabilize the system. The joint flexibility should be considered
in motion control of high performance robots. This paper presents a new H.,— based torque
control design method for flexible joint robots. First, a nominal torque transfer function of the
joint is identified from input-output experimental tests. Second, by varying the input signal
amplitude, a set of models describing the effect of nonlinearities in the system is extracted. The
difference between this set and the nominal transfer function defines the uncertainty bounds
for control design purposes. Third, an H,— based torque control law is designed to minimize
the oo-norm of the torque transfer function. Finally, the effectiveness of the proposed torque
control design method is experimentally verified on the IRIS-facility (a versatile, modular and
reconfigurable prototype robot developed at the Robotics and Automation Laboratory of the

University of Toronto).

INTRODUCTION

Motion control of flexible joint robots has been the
subject of many research investigations over the past
decade. It is an interesting and challenging problem
as well as useful, because most robots exhibit some
degree of joint flexibility. It is a challenging issue since
the joint flexibility introduces undesired degrees of
freedom at the robot joints, making the control of such
systems a difficult task. The sources of joint flexibility
may be gears, belts, chains, torsional shafts, torque
transducers or harmonic drives [1,2]. Problems of
robot manipulation and joint flexibility were addressed
in [3]. In the literature, different techniques have
been proposed to deal with related modeling and
control issues. In general, control schemes suitable
for flexible joint robots can be categorized as: Simple
PID, feedback linearization, integral manifold, singular
perturbation, passivity approach, torque feedback and
adaptive control designs. A simple PD controller
for robots with flexible joints was introduced in [4].
A singular perturbation technique to control flexible

*. Corresponding Author, Department of Mechanical Engi-
neering, Unwversity of Tarbiat Modarres, Tehran, LR.
Iran.

1. Robotics and Automation Laboratory, Department of
Mechanical Engineering, University of Toronto, Canada.

joint robots was proposed in [5]. In [6] an adaptive
controller, based on integral manifold and singular
perturbation techniques, was constructed, assuming
high joint flexibility. An adaptive control law for
flexible joint robot control was introduced in {7]. The
effect of joint flexibility on robot motion control, based
on joint torque feedback, was presented in [8]. A
robust adaptive control of flexible joint robots with
joint torque feedback was proposed in [9].

In this paper, the torque control problem of a flex-
ible joint robot is considered. A nominal input-output
torque transfer function is derived from experimental
tests. Furthermore, by changing the input command
amplitude, a set of models that describe the effect of
nonlinearities is identified. The difference between this
set and the nominal model is then incorporated into the
control design procedure through the use of uncertainty
bounds and weighting functions. The role of the
weighting functions is to model the variation between
the real and nominal system model. Furthermore,
the effects of sensor noise, actuator-saturation limit
and unmodeled high-frequency dynamics are consid-
ered through another set of weighting functions. The
robustness and performance requirements of the closed-
loop system are traded off through modifications of the
weighting functions [10]. Finally, the theoretical design
is experimentally validated on the TRIS-facility setup.

The paper is organized as follows. First, the prob-
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lem formulation is presented. Then, the experimental
identification of the nominal torque transfer function is
discussed and the determination of uncertainty bounds
is presented. After that, the proposed actuator-level
torque control design and the experimental setup are
introduced. Then, the experimental evaluation of the
proposed control law is investigated and finally, the
results are summarized .

PROBLEM FORMULATION

To include actuator dynamics into robust control de-
sign of flexible joint robots the recursive or back-
stepping design method [11] is followed. In doing so,
one starts with the model of a flexible joint robot and
derives its error dynamics model. Furthermore, using
Hoo— design method, a joint torque control design is
proposed to guarantee the stability and convergence of
the error dynamics model [12]. :

The model of an n-DOF flexible joint robot with
HD transmission can be written as follows [13,14]:

r+1

M(QC)‘ic+N(q0vQC): Ths (1)

Jmwim + Bmw(@m, Gm: @) + (B, B )Sgn(dm)
1
- = Tm, 2
+ TTh T, (2)

where ¢, and ¢,,, are the n x 1 vectors of shaft displace-
ment on the joint side and actuator side, respectively,
M (g.) is a n x n link inertia matrix, N(g.,q.)isanx 1
vector of centrifugal, gravity, and Coriolis (generalized)
forces; 73 is the torque sensor output located at the link
side, 7 is the harmonic drive gear ratio, J,,, is the n x n
diagonal matrix of actuator inertia, B,,, is a n x 1
vector of damping and (B}, B;,,,) are friction terms
associated with the actuator and H.D. bearings. 7,, is
the n x 1 vector of control torque input.

The first step in the proposed design method is
the formulation of the error dynamics. Let the link
position error be defined as:

e=gq!—q, (3)

where g, is the n x 1 link position and ¢? the n x 1
desired link position vector, respectively. It is assumed
that g% and its derivatives up to the third order are
bounded. Now, the rigid-body dynamics (Equation 1)
can be written in terms of Equation 3 as:

. . . r+1
M(go)gt — M(qe)é + N(ge,gc) = —h. (4)

In state-space form, Equation 4 can be written as:

T+1

é=Ape+ Byl + M™'N — M~ Th), (5)
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where:

b doacfl )

Since there is no exogenous input in Equation 5, let
BoM~'u; on the RHS of Equation 5 be added and
subtracted to yield:

é=Age+ Byl§e + M7'N — M~y

r+1

+ BoM_l[U[ - Th]7 (7)
where u; is a n x 1 vector of a virtual control input to
be defined later. It is assumed that «; can be designed
so that the tracking error e approaches zero in spite of
external disturbances. Herein, u; is chosen as:

w = MG —us) + N, (8)

where M and N are the mathematical models of the M
and N, respectively, and u, is the new control input,
designed using Ho,— and u-synthesis design methods.
Substituting Equation 8 for only the first «; in RHS of
Equation 8 yields:

r+1

é=Aoe+B0(T)+Uoo)+BOM—.1[Ul_ Th]7 (9)

where:
n=AG+ux)+6
A=I-M7'M, 6§=M"YN-N),
let one define:

r+1

ne = [w — Th)s (10)

then, one can write Equation 9 as:

é=Aoe+Bo(T]+uoo)+B0M“IC77f, (11)
where:
T+l
_ M| _ W TR
C —_ [I 0] Y 77f - {nf] - |:ul _ Tj,-l’i—h} (12)

In Equation 11 if the last term (n¢) is made to vanish,
then it reduces to a usual state-space error equation
where, by appropriate design of u.,, the error would
stably vanish. Hence, the goal is to force n¢ to zero.
This requirement can be satisfied if the dynamics of the
actuator and transmission system is known. In other
words, an actuator-level torque control law has to be
designed to provide the desired torque, based on Equa-
tion 8. Furthermore, having the following procedure
for control design, it is required that the actuator-level
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torque characteristic of the joint is identified, which is
explained in the next section.

Next section presents the experimental identi-
fication of the actuator-transmission system models.
Moreover, the determination of uncertainty bounds to
incorporate the effect of the variations between the real
system and the identified model is introduced. Finally,
an actuator-level robust H.,— based torque controller
is designed to guarantee the stability and convergence
of the error dynamics.

EXPERIMENTAL IDENTIFICATION OF
THE TORQUE TRANSFER FUNCTION

The frequency response method is used to experimen-
tally provide an input-output torque model of the IRIS-
facility test-joint. Such experiments can be dangerous
if the arm is unrestrained, due to the elastic coupling
between high-frequency “internal” (joint) and low-
frequency “external” (arm) dynamics. In contrast, the
experiments can be performed successfully if the arm
is restrained against a stiff environment. The stiff en-
vironment prevents the external dynamics from being
excited, such that no effect on the internal dynamics
takes place. The experiments were carried out for the
test-joint using an input signal frequency in the range
of 0-150 Hz. The same set of experiments were repeated
for varying levels of input signal amplitude. Figures 1
and 2 show the magnitude and phase plots of input-
output torque (TI,Z,',') for three different amplitudes of
sinusoidal signal.

Since the highest useful frequency of the system
is below 100 Hz, the transfer function of the input-
output torque is based on the experimental data in the
range of 0-100Hz. More precise analysis using Signal
Processing and Identification Toolbox of MATLAB [15]
shows that the transfer function can be approximated
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Figure 1. Input-output torque magnitude plot of
IRIS-joint for three different input signal amplitude.
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Figure 2. Input-output torque phase plots of IRIS-joint
for three different input signal amplitude.

by Paom(8) = %%, where b(s) and a(s) are second and
fourth order polynomials, respectively, given as:

b(s) = 0.001  (—0.0022s> — 0.14115 + 0.1258),
(13)

a(s) = s* — 3.9607s® + 5.9049s% — 3.92765 + 0.9834.
(14)

Comparison of the measured and identified input-
output torque signals in Figure 3 shows a very good
match for the operating range of 0-100Hz.

The variations between the measured and identi-
fied torque transfer function are modeled as uncertainty
bounds in the proposed control design method. A ro-
bust Ho,— design approach is proposed to incorporate
these variations and to guarantee the robustness and
performance of the closed-loop system. The selection
of uncertainty descriptions and bounds is described in
more detail in the next section.

20 T T T

Nominal model

~

= Identified model

z

o -20

T

3

= L ]

0

®

= -40 ]
-60 1

1071 100 10! 102 103

Frequency (Hz)

Figure 3. Measured and identified input-output torque
transfer function of the IRIS-joint.
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DETERMINATION OF UNCERTAINTY
BOUNDS

A frequency domain uncertainty description is em-
ployed to account for the variation between the mea-
sured and identified models. A multiplicative uncer-
tainty weight is used to account for the low frequency
inaccuracies (below 0.2 Hz) and the unmodeled high
frequency dynamics (above 50 Hz). It is modeled as an
unstructured full block uncertainty, A;, located before
the error dynamics transfer matrix (P,om) (Figure 4).
The magnitude of the multiplicative uncertainty weight
at high frequency is selected to envelope the unmodeled
modes of the system. A plot of the worst case variations
between the measured and identified models, along
with the multiplicative uncertainty weight, are shown
in Figure 5. Moreover, an additive uncertainty weight,
W,, is included to represent the torque sensor noise
measurement (Figure 5). It envelopes the torque
sensor noise characteristics in the frequency range of
its application. Also, to limit the actuator power
in control design, W, has been considered, which
models the servo motor characteristic used in this
robot. To reflect the various performance requirements
in different frequency ranges, another weighting matrix
is included (W,). The set of weighting functions that
are used for the test-joint control design purposes are
as follows:

1. Model uncertainty weight:

500s + 5000

W =r—, 15
1(8) = "= To000 (15)
AY]
Whult Pert. Disturbance
T Pnom ‘*é—

Control Noise
Wn

)

Woe bB— Wp

Figure 4. Block diagram of trade-off control problem
formulation.
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Figure 5. Magnitude plot of error torque and
multiplicative uncertainty weight.
2. Noise weight:
25 + 2.56
Wo(s) = n.———e| 16
(8) =n=755 (16)
3. Performance weight:
0.005s + 200
W, =P —— 17
»(8) = P-5575 + 0.00518 (17)
4. Actuator saturation weight:
0.01s + 0.01
Wa(s) s (1)

= %001s+0.001°

where the unknown parameters (r,n,p,a) are selected
based on performance and robustness requirements in
the control design method.

TORQUE CONTROL DESIGN

In the previous section, uncertainty descriptions are
introduced to account for variations between models
and the physical system. The selection of uncertainty
descriptions plays a major role in the trade-off between
robustness and performance requirements in the con-
trol design process.

This section investigates this trade-off in the
selection of uncertainty descriptions and levels for the
test-joint experiment. The control objective is to track
a desired command torque in spite of nonlinearities,
friction and flexibility in the actuator-transmission sys-
tem. This is formulated as minimizing the ||.||o norm
between the input disturbances and sensor outputs.
Moreover, the block diagram is reformulated into the
Linear Fractional Transformation (LFT) framework to
design control laws using the p-synthesis methodology
(Figure 6). The dimensions of the A blocks are:
1 x1 for Ay, and 3 x 2 for Ay. A; is associated
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Figure 6. LFT of trade-off control problem formulation.

with the multiplicative uncertainty and A, with the
performance specification weights (i.e. W,, W,).

Different control laws are designed for the test-
joint experiment by varying the levels of uncertainty
weights. A set of controllers is designed by varying the
multiplicative uncertainty weight bound and keeping
the rest of weighting functions fixed. Another set
of controllers is designed by varying the actuator-
saturation level weight while keeping the multiplicative
uncertainty weight fixed. For further details, the reader
may refer to [16].

EXPERIMENTAL SETUP FACILITY

This section briefly presents the IRIS-facility experi-
mental setup introduced in [13,17] (Figure 7). The
IRIS-facility is a versatile and reconfigurable robot
arm. It is designed to be easily disassembled and
assembled as required and provides a multitude of
configurations. Each joint-module is composed of
a frameless DC-motor, HD gear, an optical rotary
encoder to measure the motor displacement and a
custom-designed torque sensor to measure the load
torque.

For the purpose of experimental tests, the joint-
module is constituted of a RBE-01202 motor (Inland
Motor Corp.) capable of delivering up to 1.12 Nm. The
motor is coupled to a harmonic drive with 100:1 speed
reduction [18]. The rated torque of this unit is 40 Nm,

Figure 7. IRIS arms.
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Fixture

Figure 8. Restrained motion setup.

maximum average torque is 49 Nm and momentary
peak torque is 108.4 Nm. A custom-designed torque
sensor, which has a stiffness coefficient 10 times higher
than that of the harmonic drive, is used to measure the
load torque.

For the purpose of torque-feedback control design,
the stator of the joint-test motor is fixed to a stationary
frame. Hence, the measured torque is proportional to
the torque experienced by the rotor (Figure 8).

EXPERIMENTAL RESULTS
Model Uncertainty Weight Variation

Three control laws are synthesized based on the block
diagram in Figure 4, with varying levels of model
uncertainty weight (i.e. Wy varied), while the rest
of the weighting functions are kept constant. Table 1
contains a list of the control parameters used in the
design and the results of implementation on the test-
joint experiment. The parameters in the table are from
Equations 15 to 18.

The closed-loop torque responses of the test-
Joint experiment for implementing these controllers are
shown in Figures 9 to 14. MU-K1 achieves a u value

Table 1. Parameters for control design with fixed
performance weight.

Ctrl. Input | a n P r p | Figure

MU-K1| Step |1.0|10=* | 1073 [ 0.01 | 9.4 | Figure 9
MU-K2 | Step [1.0[10-%{10-3 | 0.1 {1.3 | Figure 10
MU-K3 | Step |[1.0|107% | 1073 | 1.0 | 2.7 | Figure 11
MU-K1 | Sin [1.0| 1074 {103 | 0.01 | 9.4 | Figure 12
MU-K2 | Sin |[1.0[10=% | 102} 0.1 | 1.3 | Fiure 13

MU-K3| Sin |1.0|107%|1073 | 1.0 | 2.7 | Figure 14
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Figure 9. Step response of the IRIS-joint for controller
MU-K1.
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Figure 10. Step response of the IRIS-joint for controller
MU-K2.
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Figure 11. Step response of the IRIS-joint for controller
MU-K3.
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Figure 12. Sinusoidal response of the IRIS-joint for
controller MU-K1.
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Figure 13. Sinusoidal response of the IRIS-joint for
controller MU-K2.

of 9.4 and the step response settles down in about 1
second. However, the step response shows an overshoot
as high as two times the desired step command. MU-
K2 is designed by increasing the model uncertainty
weight by a factor of 10 compared to the previous
case. However, the step response does not show any
overshoot, but a steady-state error of 15% can be
observed (Figure 10). The level of uncertainty weight
is increased to 1 in the MU-K3 controller and it can be
observed that the step response of the system is better
compared to the two previous cases.

Figures 12 to 14 show the sinusoidal response of
the system for the same sets of controllers. In this
set of experiments, controller MU-K3 shows superior
performance compared to the two other controllers.

Actuator-Saturation Limit

A series of control laws is synthesized using varying
levels of actuator-saturation limits (i.e., W, is varied),
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Figure 14. Sinusoidal response of the IRIS-joint for
controller MU-K3.
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Figure 15. Step response of the IRIS-joint for controller
AC-K1.

while multiplicative uncertainty and noise weights re-
main fixed. Table 2 shows the control parameters used
in the design and the results of implementation on the
test-joint experiment.

Figure 15 shows the step torque responses of
the test-joint for controller AC-K1. The actuator-
saturation level is chosen as 10 in this case. If the
actuator-saturation limit is decreased to 2 (i.e. AC-
K2 controller), the performance of the system does
not change compared to the first case (Figure 16).
But if the actuator-saturation limit is decreased to 1,
the steady-state error gets smaller values (Figure 17).
Figures 18 to 20 show a set of sinusoidal responses

Table 2. Parameters for control design with varying
performance weight.

Crtl. |Input| a n P r 7
AC-K1| Step |10.0{10-%|10-%|1.0|2.26 | Figure 15
AC-K2 | Step | 2.0 {104 |10-3 [ 1.0 2.27 | Figure 16
AC-K3!| Step | 1.0 |10-*]10-3{1.0] 2.7

Figure

Figure 17
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Figure 16. Step response of the IRIS-joint for controller
AC-K2.
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Figure 17. Step response of the IRIS-joint for controller
AC-K3.

Table 3. Parameters for control design with varying
performance and uncertainty weight.

Crtl. |Input| a n P Ed u
AC-K4| Sin [2.0]10=%|1073 | 10-3 | 1.55 | Figure 18
AC-K5| Sin [1.0]10-*|1073| 0.01 | 9.4
AC-K6{ Sin [0.5]107*|10~3|0.001 | 0.73| Figure 20

Figure

Figure 19

of the system for varying actuator-saturation limits
and model uncertainty weights, simultaneously. The
controller AC-K4, with a saturation level of 2 and
model uncertainty weight of 0.001, achieves the best
performance in comparison to the two other cases
(Table 3).

CONCLUSIONS

Representing the actuator-transmission system in flex-
ible joint robots with a nominal model and an un-
certainty description provides an excellent model for
use in robust torque control design. The theoretical
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Figure 18. Sinusoidal response of the IRIS-joint for
controller AC-K4.
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Figure 19. Sinusoidal response of the IRIS-joint for
controller AC-K5.

and experimental results indicate that uncertainty
modeling plays a major role in the trade-off between
performance requirements and robustness properties of
synthesized control laws. A series of control laws are
synthesized with a varying level of model uncertainty
and actuator-saturation limit. It is experimentally
verified that the performance of the system is sensi-
tive to the uncertainty description and the actuator-
saturation level in the control design. Increasing the
level of the multiplicative uncertainty model while the
actuator-saturation level is fixed, leads to a better
performance of the system. On the other hand, choos-
ing a high level of actuator-saturation limit, while the
model uncertainty weight remains fixed, deteriorates
the performance and large steady-state errors appear
in the step response. Furthermore, it is verified that
varying, simultaneously, the performance and model
uncertainty weights, leads to high performance closed-
loop systems.
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Figure 20. Sinusoidal response of the IRIS-joint for
controller AC-K6.
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