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Eigenvalues of Matrices with Special
Patterns Using Symmetry of Graphs

A. Kaveh* and M.A. Sayarinejad!

In this paper, a simple and efficient method is developed for evaluating the eigenvalues of matrices
having special patterns. This is achieved by decomposing the matrices into specific forms. The
application is extended to calculate the eigenvalues of the Laplacian of graphs having special

connectivity properties.

INTRODUCTION

Many engineering problems require the calculation of
eigenvalues and eigenvectors of matrices. General
methods are available in the literature for such calcula-
tions [1-3]. However, for matrices with special patterns,
it is beneficial to make use of their extra properties.

In this paper, three simple forms are introduced
for decomposing matrices. These forms cover many
cases involved in structural engineering. The eigenval-
ues of the complete matrix are obtained by evaluating
the eigenvalues of the submatrices formed after per-
forming the decomposition.

One of the most popular matrices associated with
graphs is the Laplacian matrix [4-6]. The eigenvalues
and eigenvectors of this matrix can be applied to
nodal numbering for bandwidth, profile and frontwidth
reduction, graph partitioning and domain decompo-
sition [7-9]. The application of the present method
is extended to evaluate the eigenvalues of the Lapla-
cian of graphs having special connectivity properties.
Computer programs are developed for the construction
of the patterns required for the suggested forms and
examples are also studied.

DECOMPOSITION OF MATRICES TO
SPECIAL FORMS AND THEIR
EIGENVALUES

In this section, an N x N symmetric matrix [M] is
considered with all entries being real. For three special
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forms, the eigenvalues of [M] are obtained using the
properties of its submatrices.

Form I

In this case, [M] has the following pattern:

—_ [A]nxn [O]an
[M] = [[O]an [A]nxn]NxN’ (1)
with N = 2n.

Considering the set of eigenvalues of the subma-
trix [A] as {AA}, the set of eigenvalues of [M] can be
obtained as:

{AM} = {MAA} U {)A}. (2)

Since det M = det Ax det A, the above relation can
easily be proved.

Form I can be generalized to a decomposed form
with diagonal submatrices Ay, A2, A3, -+, Ap and the
eigenvalues can be calculated as:

{(AM} = {MA1} U DA} U {AA5}U - U{AA,},
3)

and the proof follows from the fact that det M =
det A1X det A.2>< det Az x .- X% det Ap.
As an example, consider the matrix [M] as:

1 2
M] = ,  with [A] = [3 4] .
Since {AA} = {-0.3723,5.3723}, therefore,

{AM} = {-0.3723,5.3723, —0.3723, 5.3723}.
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Form I1

For this case, matrix [M] can be decomposed into the
following form:

[Alnxn

M] = |(g],.

[Blnxn
[A]"x"}NxN. @)

The eigenvalues of [M] can be calculated as:

{AM} = {AC} U {\D}, (5)
where:
[C] = [A] + [B] and [D] = [A] - [B], (6)

[C] and [D] are called “condensed submatrices” of [M].
Let a 4 x 4 symmetric matrix be considered as:

L1 a b &

L2 d e
L. fl (7)
Sym. L2

In order to have a matrix in Form II, the following
should hold:

c=d and f=a,

i.e., [M] should be as:
L1 a b d
_ L2 d [
= Il
Sym. Ly

This matrix is symmetric and its transposed upper
triangular submatrix is the same as its lower triangular
submatrix and vice versa. The number of entries in its
main diagonal is even.

M]

(8)

Proof

Expanding the determinant of [M] in Equation 8, with
respect to the first row and performing the necessary
operations, leads to:

det M = [(L1 + b)(L2 + ) — (a + d)(a + d))]
X [(L1 ~ b)(L2 — €) = (a — d)(a - d)].

The first bracket is the determinant of [C] and the
second is that of [D]. Therefore:

det M = det C x det D. (9)

In order to find the eigenvalues of [M], A should be
subtracted from the diagonal entries of ([M]. In fact,
L; and L should be replaced by L1 — A and Ly — A,
respectively. Therefore:

{AM} = {A\C} U {AD}. (10)
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This proof holds for any 2N x 2N matrix with Form II
pattern.

As an example, consider the matrix [M] as fol-
lows:

10 15 | 8 2
16 20 | 4 -3
[M] = {8 ) ‘ 10 ISJ '

4 -3 16 20

This matrix has the pattern of Form II and is decom-
posed according to Equation 4, leading to:

A= [ig 20 e 1= 5 3]

Matrices [C] and [D] are formed using Equation 5 as:

Cl=(al+B)= |35 17|

and:

D = [A]- Bl = | {5 3)-

For these matrices, the set of eigenvalues are:
{AC} = {35.9459, —0.9459},
{\D} = {-3.8172,28.8172},

hence:
{AM} = {-0.9459, —3.8172,28.8172,35.9459}.

A computer program is developed to transform a given
matrix into Form II by row and column interchange
operations. Naturally, the original matrix should have
all the properties necessary to be transformed into
Form II, otherwise the program will be terminated with
a message indicating that no such form exists.

The computational time required for such a trans-
formation is not much, e.g. a few seconds for a 100x 100
matrix, on a 500MHz Pentium(r) III. However, as will
be discussed in the next section, in this paper the
symmetry of the graph is used for constructing this
form.

Form III

This form has a Form II submatrix, augmented by K
rows and columns, as shown in the following:

M]=
[ Ly ce Lk
[A] (B} L o L%
(B] [A] Ly . Lk
CRn1 1) C2n+1,27) C2n+1.2n+1) C2n+l.2n+K)
LZ(?TA-‘{-K, ) Z@ntK.2n) ZOn+K.2n4) Z@nK.204K)

(11)
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where [M] is a (2n + K) x (2n + K) matrix, with a
‘2n x 2n submatrix with the pattern of Form II and
K augmented columns and rows. The entries of the
augmented columns are the same in each column and
all the entries of [M] are real numbers.

Now [D] is obtained as [D] = [A] — [B] and [E] is
constructed as the following:

(E] =
_ L
[A + B] Ly
L,
C(2n+1,1)+C(2n+1,n+1) C(2n+1,2n+1)
| Z(2n+K 1)+ Z(2n+K,n+1) Z(2n+K 2n+1)
Ly i
Lk
Lk (12)

C(2n+1,2n+ K)

Z(2n+ K,2n+ K)

The set of eigenvalues for [M] is obtained as:
{AM} = {AD} U {AE}, (13)
and:

det M = det D x det E.

A special form, with only one augmented row and
column, is as follows:

M]=
Ly
A B Ly
B A l ﬁ )
Ly
C(1,1) -+ C(n+l.n+1) C(2n+1,2n+1) (2nH)(2mH1)
(14)
with:
(D] = [A] - [B],
and:

L
[E]= { [A + B] L, ] .
AL D)+Cr+1n+1l) CRn+12n+1) (15)

As an example, consider [M] as follows:

-1 05| -07 -0.7|-103
3 4/ 08 09]-103

M= | 07 —07] -1 05]-103
0.8 09 3 4]-103

—11.3 -123 —133 13 -57
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Condensed submatrices are calculated using Equa-
tion 15 as:

=[5 ][0 os) =22 1)

and:

[ -1-07  05-07 —103
E]=| 3+08 4409  -103
~133-11.3 -123+13 =57
[-1.7 —0.2 -10.3
=| 38 49 -103|.

_—24.6 -11 =57

Eigenvalues for [D] and [E] are calculated as:
{AD} = {-0.9516,3.7516},
{AE} = {1.6224,17.6885, —21.8109}.

Therefore, the eigenvalues of [M] are obtained:

{AM}={-0.9516, 3.7516,1.6224, 17.6885,—21.8109}.
THREE FORMS FOR LAPLACIAN OF

GRAPHS AND THEIR EIGENVALUES

The Laplacian L{G) = [l;;]nxny of a graph G is an
N x N matrix defined as follows:

L(G) = D(G) - A(G), (16)
where:
-1 if n; is adjacent to n;
l;j = degreen; ifi=j (17)
0 otherwise

D(G) and A(G) are the degree matrix and adjacency
matrix of G, respectively [4-7].

In this section, [M] is taken as the Laplacian of
G and, for different forms of [M], the corresponding
graphs are introduced. This correspondence provides
efficient means for calculating the eigenvalues of the
Laplacian of graphs.

Form I

This form for the Laplacian, in graph theoretical
terms corresponds to disjoint graph G. Obviously, the
eigenvalues of G will be the union of the eigenvalues for
the components of G.
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Figure 1. A symmetric graph G.

Form I1

Consider the symmetric graph shown in Figure 1.

The nodes A,B and C in the first half have
corresponding nodes A’, B’ and C’ in the second half.
Two types of nodes can be recognized, namely, ‘linked’
and ‘unlinked’ nodes. A ‘link’ is an edge (member)
connecting two halves, e.g. CC’. The nodes A and B
are unlinked and C is a linked node.

If A,B,C,A’,B" and C' are numbered as 1 to 6,
then, the Laplacian of G in Figure 1 can be written as:

[ T

2 -1 -1 0 0 0

-1 2 -1 0 0 0

-1 -1 3| 0 0 -1
(L] =

0 0 0] 2 -1 -1

S | LI

LI S
L NxN

The entry —1 in LI corresponds to the link CC’, i.e.
LI(i,j) = LI(j,i) = —1 with j =i + N/2.
The condensed matrices [C] and [D] in this form
are obtained as:
[C]=[S] +[LT] and [D]= [S]— [LI]. (18)

Matrix [C] is the same as [S] with —1 added to its
linked node C and [D] is the same as [S] with —(—1)
added to its linked node C’. Therefore, [C] and [D] can
be viewed as the Laplacian matrices of two subgraphs,
C and D, as shown in Figure 2, with one loop being
added to D. A decomposition of G is obtained where
modifications are made to include the effect of link
member CC’.

Therefore, in place of finding the eigenvalues of
the Laplacian of G, those of C and D can be calculated
and:

{AL(G)} = {AC(G)} U {AD(G)}. (19)

If the subgraphs obtained in this way have symmetry,
then further decomposition can be performed.

B C c! B’

Figure 2. Decomposition of a symmetric graph G into
two subgraphs C and D.

Table 1. Subgraphs of G and their eigenvalues.

Subgraphs Eigenvalues
CC 0,7,4,5
DC 1.4364, 9.8053, 6.3596
CD 1.4364, 9.8053, 4.3987, 6.3596
DD 2.1518, 5.6727, 7, 9.1755
Example

Consider graph G as shown in Figure 3a. The
Laplacian of G is a 16 x 16 matrix, which is put
in Form II with suitable ordering. The subgraphs,
corresponding to the condensed submatrices [C] and
[D], are obtained, as shown in Figure 3b. Further
decompositions result in the subgraphs illustrated in
Figure 3c. The eigenvalues are then calculated for the
subgraphs, as provided in Table 1.

The eigenvalues for the Laplacian [L] of G are
obtained as:

{AL(G)} = {0,7,4,5,1.4364,9.8053, 6.3596, 1.4364,
9.8053, 4.3987, 6.3596, 2.1518, 5.6727,7,9.1755}.

Using the symmetry, the Laplacian matrix of G with
a dimension of 16 x 16, having 256 entries, is reduced
to four matrices of dimension 4 x 4, having counted
together 64 entries.

Form 111

Consider the Laplacian for Form II and augment it by
a row and a column as:

S LI b
c
L= s (20)
LI S .
La b c - - - 2z ]

Here, we have no column with equal entries and the
only augmented row is the transpose of the augmented
column. Similar to the general case, many augmented
rows and columns may be included.

Consider the graph shown in Figure 4. The
Laplacian is formed as:
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Figure 4. Graph G.

Figure 5. A graph with a symmetric core.

The condensed matrices [D} and [E] and their
eigenvalues are obtained as:

[D] = [2] - [-1] = [3] and {AD} =3,

and:
24(-1) -1 0 1 -1 0
[E]= |-1+ (-1) 3 -1|=1(-2 3 -1},
0+0 -1 1 0 -1 1
{\E} ={0,1,4}.

Hence, {\L(G)} = {0, 1,4, 3}.

Figure 3. A graph G with symmetry and its In Form III, the matrix [L} contains a submatrix,
decomposition.
S LI
=0 s

corresponding to the symmetric core of the graph. As
an example, for the graph shown in Figure 5, the edge
KL is the symmetric core.

Node ¢ is linked to nodes K and L in a symmetric
manner. K and L are called “in-core” nodes and ¢ is
where [S] = [2] and [LI} = [-1]. known as the “out-of-core” node.




Eigenvalues of Matrices with Special Patterns

In order to construct Form III, the in-core and
out-of-core nodes should be ordered. In-core nodes are
numbered in a suitable manner for Form II, followed
by an arbitrary ordering of the out-of-core nodes.

Example 1

Let G be a graph, as shown in Figure 6a and, then,
decompose and order the nodes of the subgraphs as
illustrated in Figure 6b.

The Laplacian of the graph G is formed as:

[ 2|-1|-1] o] o] o] o]
1] 2|-1{ o] ol of o
-1 -1 3| ol-1| o] o
L= o 0 o 1|-1] of o
0 0 -1 -1 3|-1| o
0 0 0 0 -1 2|-1
0o 0 0 0 0 -1 1

The core in Form II is shown in the upper-left part

(b)

Figure 6. Graph G and its decomposition.
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" Figure 7. A graph with 10 nodes.

of the matrix. Augmented rows and columns are
illustrated by separating lines.

Ezxample 2
Consider the graph shown in Figure 7 with 10 nodes.
This graph has a core in Form II with nodes 1-8. Nodes
9 and 10 are connected to this core and the entire graph
has Form III.

The 10 x 10 Laplacian matrix for the graph of
Figure 7 is:

L=

[ 3 -1 -1 0 0 o 0 0| -1 [

—1 3 o -1 0 0 0 0 0o -1

-1 0 3 -1 0 0o -1 0 0 0

0 -1 -1 3 0 0 0 -1 0 0

0 0 0 3 -1 -1 0| -1 0

0 0 0 o -1 3 0o -1 [

0 0o -1 R 0 3 -1 o 0

0 0 0 -1 o -1 -1 3 0 0

=1 0 0 0 -1 0 0 0 3 -1
0 -1 0 0 0o -1 0 0o -1 3

This matrix has Form III and can be decomposed into
its cores with the following submatrices:

3 -1 -1 0

-1 3 0 -1
D=1_1 0 4 -1|>

0 -1 -1 4

3 -1 -1 0 -1 0

1 3 0 -1 0 -1

1 0 2 -1 0 0
E=lo -1 21 2 0 o

2 0 0 0 3 -1

0o -2 0 0 -1 3
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Now, the eigenvalues can be calculated as:
{A\D} = {3.3820, 3.6180, 1.3820, 5.6180},

{\E} = {5.6180,0, 2, 3.6180, 1.3820, 3.3820},
{AL} = {Ap} U{2e},
{\} = {5.6180,0, 2, 3.6180, 1.3820, 3.3820, 3.3820,

3.6180,1.3820, 5.6180}.

Therefore, a graph with 10 nodes, having a 10 x 10
Laplacian matrix with 100 entries, is decomposed into
two 4 x 4 and 6 x 6 matrices, having 52 entries.

CONCLUDING REMARKS

Civil engineering structures contain a large number
of members and nodes with many symmetries. The
present method simplifies the numerical operations
required for calculating the eigenvalues of the corre-
sponding matrices.

Applications of these forms can be extended to
include different civil engineering problems, where
eigenvalues and eigenvectors of matrices are involved.
The present method can also be employed in other
fields of engineering where eigenproblems are encoun-
tered.

For future developments, other useful forms
should be constructed and their properties explored.

A. Kaveh and M.A. Sayarinejad
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