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Development of a Zero Extension Line Method for

Axially Symmetric Problems in Soil Mechanics

M. Jahanandish!

In this paper, a theory regarding the zero extension line method for axial symmetry has been
developed. The method assumes that the soil will yield progressively in accordance with the
Mohr-Coulomb failure criterion. A simple approach has been employed for the derivation of
equations, which is completely different from the method of characteristics. Equations satisfying
equilibrium and yield have been directly written along the zero extension lines to allow the
calculation of stresses and displacements at the same points in the soil mass. The governing
equations have been shown to be more general in the axi-symmetric case so that those for plane
strain cases can be deduced from them. The mobilized strength in soil is related to shear strain.
The finite difference form of the equations has also been put forward and the steps towards
calculation of the fields have been presented. The most important application of the theory is
the prediction of the load-deflection curves for structures in contact with soil. This has been
shown using examples of circular footings on clay and sand. It has been concluded that the
zero extension line theory provides a relatively simple analytical method for the prediction of the

load-deflection curves in both axi-symmetric and plane strain problems in soil mechanics.

INTRODUCTION

Although the concept of Zero Extension Lines (ZEL)
has evolved from the characteristic method used in the
theory of plasticity, the ZEL theory can be established
rather independently. The characteristic method has
been used in soil mechanics for many years. It has
been used to investigate the limiting equilibrium of
soil masses under plane strain [1] and axi-symmetric
conditions [2], as well as to obtain the equations for the
velocity field when the flow rule is associated [2]. The
method has also been extended to the case of variable
strength parameters, ¢ and ¢, in both plane strain [3]
and axi-symmetric conditions [4]. Further extension of
the method to the case of variable v was also made [5].

The progressive nature of failure in soil and the
need for knowing the load-deflection behavior at loads
other than the ultimate, made the researchers pay more
attention to the strain field [6]. Attempts were made
to predict the pattern of ZEL (velocity characteristics),
and to use them in finding the developed field of strains
in the soil mass under the effect of different boundary
deflections [6,7]. A simple pattern of ZEL was used to
find the strain field behind a model retaining wall [7].
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The predictions were in agreement with what was
observed [7]. Success in the prediction of the strain field
by the ZEL persuaded the researchers to implement
them in obtaining the mobilized strength at different
points of the soil mass [6]. This information would be
necessary if a more realistic field of stresses had to be
obtained. It was this idea that led to the development
of the method of associated field [8-10], which worked
well in the prediction of the load-deflection behavior.
There were, however, some other difficulties with this
method [4] including its use of an iterative process of
computations in obtaining convergence and compati-
bility between ¢, v, and p fields in each increment and
that it required elaborate interpolation routines, since
velocities and stresses were not calculated at the same
points.

Attempts were then made to find a way of
calculating the stress field by the ZEL alone. Two
approaches were made to this problem. In the first,
the stresses were calculated by considering the force
equilibrium of the soil elements between the ZEL [11].
This method was used in the calculation of the static
and dynamic bearing capacity and the active and
passive pressures [12,13]. It was also used to predict the
load-deflection behavior in these problems [14,15]. The
second was to transfer the equilibrium-yield equations
written along the stress characteristics onto the ZEL
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directions [16]. This approach has more applications
although it was shown to yield the same results as the
first [16].

Previous work on the ZEL method has all been
limited to the plane strain case and it is the aim of
this paper to extend the method to the axi-symmetric
case. It has also been shown that the ZEL theory
can be established independently rather than using
the method of characteristics. The equilibrium-yield
equations can also be written directly along the ZEL
without any reference to the stress characteristics. The
most important application of the ZEL theory is the
prediction of the load-deflection behavior of structures
in contact with soils. This has been shown by some
examples of axi-symmetric problems in soil mechanics.

THEORY

The ZEL theory is used for bearing capacity and earth
pressure problems in plane strain and axi-symmetric
conditions. The shearing of soil in these cases occurs
in a principal plane in which the major and minor
principal strain increments do not have the same sense.
In the axi-symmetric case, these planes are the radial
planes on which the intermediate principal stress, og
acts. Figure 1 shows an element of soil in this plane
and the Mohr circle for incremental strains. The in-
plane dilation angle of soil is defined as:

€1t €3

siny = — .
€1 — €3

(1)

As shown in the figure, there would be two directions
along which linear incremental strain is zero. These
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directions, known as the directions of zero extension,
make the same angle with the direction of ;. The
directions of £; and o; are assumed to coincide. If the
angle ¢ is equal to 45 — v/2, there exist two families of
ZEL namely, the minus and plus zero extension lines,
which make the angles ¢—¢ and ¢ +¢ with the direction
of r-axis, respectively, so that:
. dz
Along the minus (-) ZEL : — = tan(y — §),
dr (2a)

Along the plus (+) ZEL: %id—j = tan(y + £). (2b)

A network of ZEL is formed by these two families of
curves which intersect each other at 90 + v.

Velocity Field

The important role of ZEL is that the displacement
field can be calculated if they are in hand. If AB is an
element of the zero extension line of length, de, shown
in Figure 2, then it should work as a rigid link between
these two points, so that AB remains the same after
the increment of displacement. This implies that the
displacement of B relative to A should be normal to
AB so that:

du dz

= 3

dw dr’ (3)
where 4 and w are the components of displacement in
r and z directions, respectively. This equation holds
for both families of ZEL. The finite difference form of

this equation, when written along both directions, can
be used to calculate the displacements.
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Figure 1. An element of soil in r — z plane and Mohr circle for incremental strains.
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Figure 2. A zero extension line element of soil.

Equilibrium of Progressively Failing Soil

The polar coordinate system (r,6,2) is used for the
axi-symmetric problem. The depth of half-space is
measured by the z coordinate and the #-direction is the
direction of intermediate principal strain increments
and stress.

The differential equations of equilibrium for the
axi-symmetric problem can be written as:

90, 4 Orp;
FrE )
Gt GE=1

where:
r:-R_2 T
AP ®)
fzzz-%'rrz

where n is 1 and R and Z are body and/or inertial
forces per unit volume in r and z directions, respec-
tively. The integer n has been used in these equations
to show that they reduce to those for the plane strain
case if it is set equal to 0. Based on the Harr & Von-
Karman hypothesis [17], 04 in the axi-symmetric case,
is set equal to either of the minor or major principal
stresses. If the mobilized friction angle and cohesion
are ¢ and c, respectively, progressive failure of soil in
the r — z plane can be represented by the Mohr circle of
stress drawn in Figure 3. Assuming S to be the average
of o, and o,,T to be the radius of Mohr circle and ¢
to be the angle between the direction of o, and r-axis,
one can write:

o, =S8 —Tcos2y,
o, =8+ T cos2y,

rz = 1 sin 29). (6)

Using these expressions, Equation 4 can be written as:

?9—8 + cosZw-—T— + sin 21/J—T

+ 2T (cos 2¢—1£ — sin Zw ) I (7a)
%g— + sin 211)?9—1; - cos21/)g—z

+ 2T (cos 21/)86—1f + sin ng—qf) = f,. (7b)

These equations consider both equilibrium and yielding
of soil in r and z directions, respectively.

Stress Field

As will be shown later, the network of ZEL can be used
to find the displacement and strain fields. It would
then be advantageous to calculate the stress field using
the same network. In this way, stresses, strains and
displacements are calculated at the same points and
the difficulties involved in methods of associated fields
and characteristics would be avoided. An approach
was made previously by writing the equilibrium-yield
equations along the stress characteristics first and then
transferring them onto the ZEL [16]. A rather simpler
approach is made here which avoids the elaborate
method of characteristics. The equilibrium-yield equa-
tions along r and 2 directions, i.e. Equations 7, can
be directly transferred onto the ZEL. This is done by
using the covariant law of transformation of partial
derivatives of a function F as:

%ITE: =3 [sm(t/)-i-f) in(y) — f)aa+
%@:sml%[cosw E)—.F—COS(1/J+§)35— 7(8)

where ¢ and et are distances along the (-) and (+)
ZEL and F stands for S,7T, and . Using these
expressions, partial derivatives of these functions, with
respect to v and z in Equations 7, can be replaced by
those with respect to e~ and et. The new form of these
equations would be:

as oT as arT
Sm(¢+€)(—+ 8_+> sin(y — §)<85+ 85—)
— 2T [cos(t — {)l — cos() + f) lb +]
= f.cosv, (9a)
as oT
cos(¢ — €)<35+ ) s(v + €) ( 85+>
0 d
~ 2T [sin(¢) + 5)% = sin(¢) — é)ae—di
= f.cosv. (9b)
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Figure 3. An element of soil in r — z plane and Mohr circle for stresses at failure.

Combining these equations, first, in a way to cancel
0S5/0¢* and, second, in a way to cancel 0S5/9~ will
result in the following pair of equations along the zero
extension lines:

Along the (-) ZEL:

or | _ 2T ] oY | _
dS + ‘GFdE - oS U (dw — Sin Vas—_'_d&' )
= [frcos(yp — &) + fosin(y — €)]de™. (10a)
Along the (+) ZEL:
or . oT oy
s + 85——(15 + p—— (dd) — sin Vae_—d6+>
= [frcos(¥ + &) + f.sin(y + &)]de™. (10b)

Equations 10 satisfy the equilibrium and yield along
the zero extension lines. Note that T, i.e. the radius
of Mohr circle, is a function of S,c and ¢, defined by
S.sin ¢ + c.cos ¢. Also, note that ¢ and ¢ are different
from point to point due to the differences in strains.
Therefore, if the strains due to boundary deflections
are determined, the developed strength is known at
each point and progressive failure of the mass can
be considered by solving Equations 10. The method
assumes v to remain constant during the shearing of
soil. This assumption and the coaxiality of €; and o;
have been used extensively in the literature [6,7,11-16].

The values of f. and f, are obtained from
Equations 5. Therefore, Equations 10 hold for both

axi-symmetric and plane strain cases provided proper
values of f are obtained from Equations 5 and sub-
stituted in Equations 10. As mentioned before, n is
set equal to zero for the plane strain case. For this
case, f’s are nothing but the components of body
and/or inertial forces in lateral and vertical directions.
For the axi-symmetric case, f’s are also functions of
stress and r-coordinate of the points. It should be
mentioned that the above derivation holds only when
o¢ is the intermediate one of the principal stresses,
which, in turn, secures the occurrence of yielding in
r — z plane. o0y is usually assumed to be equal to
o3 in passive pressure problems [18] and, with this
assumption, Equations 5 reduce to:

fr=R- #(1 + cos 2¢)
{fz:Z~¥sin21/1 : (11)

in which n is equal to 1. Assumption of o9 more than
o3 (for example, o9 = S§) will cause the calculated
pressures in passive pressure problems to reduce. As
was shown, the governing equations in axial symmetry
are more general so that those for plane strain can be
deduced from them by setting n = 0.

Strain Field

Once the displacement field is determined, calculation
of the strain field can follow simply. The shear
strain can be calculated using the strain-displacement
relationships or simply by considering the change in the
shape of an element of soil between the ZEL [14,15].
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Both approaches yield the same result. Using Equa-
tions 8 for partial derivatives of u and w, the shear
strain-displacement relationship along the ZEL can be
written as:

2

0
7= [cos( + )5 — cos(p — ) 55

—sin(y + {)gguj + sin(y — {)%}/cosu.(m)

This equation can be used to find the developed shear
stain field due to the boundary deflections. The
calculated shear strain field can be used to find the
values of strength parameters, ¢ and ¢, at different
points of the ZEL net. This is done by using the
relation between ¢ or ¢ with maximum shear strain,
Ymax- This relation can be established by using the
result of a typical shear test performed in the average
stress range.

CALCULATION PROCEDURE AND
RECURRENCE FORMULAE

Calculations consist of two major steps. In the first
step, the ZEL net is constructed. This is done by
writing Equations 2 and 10 in finite difference form
and using them in a calculation of r,2,5,T and ¢ of
any point like C from the information at points A and
B (Figure 4). Note that T is not independent of S.
Starting from the boundary at which the stress state
is defined, the ZEL net is constructed and the initial
stress field is obtained at the nodes of the ZEL net
in a procedure similar to that used by the method
of characteristics (for more information see [19]). In
the second step, the constructed ZEL net is used to
find the displacement and strain fields. Displacements
are calculated by writing Equation 3 in finite difference

(-) (+)

Figure 4. Obtaining the information at C from those of
points A and B using ZEL net.

form for both zero extension directions as:

(up —uc)(rp —rc) + (wp —wc)(zp — z¢) =0,
(13a)

(ua — uc)(ra —re) + (wa — we)(za — z¢) = 0.
(13b)

Starting from the boundary at which the displacements
are known, u and w of any point like C can be
calculated from those of A and B using Equations 13.

The shear strain field is calculated from the
displacement field. This can be done simply by writing
Equation 12 in finite difference form or considering
the distortion of soil elements between the ZEL. The
mobilized c or ¢ at each point can also be obtained from
the stress-strain curve of the material using the strain
of the point. The obtained field of ¢ or ¢ is then used
in calculating the stress field under this deformation
field using the finite difference form of Equation 10a.
In solving this equation, the following approximations
are used in calculating the rate of change of functions
¥ and T along the ZEL:

Along BC:
oF > _ < oF > _ de~
— ) dem=2{— | de” =(Fc - Fa)—.
(c’)e+ B Ot /4 d5+(14a)
Along AC:

(—a—F—> det = (a—F> det = (FC - FB)E
0e= ) 4 B

where F stands for 1 and T, and de~ and dec* are
lengths BC and AC, respectively. For obtaining
better results from the solution of finite difference
equations, the quantities multiplying the differences are
averaged along the linear zero extension line elements
in iterations after the first. The average stress S for
the points along any (-} ZEL can be calculated from
Equation 10a when written in finite difference form.
Calculations of stress starts from the boundary at
which the stresses are known and proceeds toward the
boundary at which the stresses are to be determined.
Iterations are required to obtain convergence since S¢
is involved in calculation of the right side. A computer
program has been written to solve the problems by this
procedure.

SOME APPLICATIONS

Examples are provided here to illustrate the capability
of the model in solving the axi-symmetric problems.
The main purpose here is to show the required data for
the model in each case and the capability of the model
in providing the load-deflection curves.
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Smooth and Rough Circular Footings on Clay

The behavior of circular footings on a saturated soft
clay is considered as the first example. A smooth
footing of 1 meter diameter is compared with a rough
one of the same size. It has generally been accepted
that Hill's mechanism will develop in the smooth case
and Prandtl’'s in the rough case. In the rough case
a conical wedge is assumed to form under the footing
which plays the role of a relatively rigid cone [20]. Soil
volume is assumed to remain constant in undrained
shearing. The stress-strain curve of the soil in a typical
unconfined compression test has been used to construct
the relationship between the undrained shear strength
and maximum shear strain of the soil. This relation
has been shown in Figure 5a. The unit weight of the
soil is 19 kN/m3. Load-settlement curves for both
footings in the form of average footing pressure versus
settlement have been drawn in Figure 5b. The rate

Cu (kPa) Av. normal pressure (kPa)
204 1504
- Rough footing
----- Smooth footing
15 4
100{ -
10 4 -
50 1
5 4
0 v v 0 v v
0.0 0.1 0.2 0.00 0.02 0.04
Max. shear strain Settlement (m)
(a) (b)

Pressure under rough footing

————— No settlement
0.025 m settlement
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Pressure (kPa)

-

0.2
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0.4

Zero extension lines
for rough footing

1 ! i i {
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0 0.2 0.4 0.6 0.8 1.0
' (m)
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Figure 5. Load-deflection behavior of circular footings on
saturated clay.
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of increase in average pressure at higher settlements is
much slower. The values of pressure at final settlement
for rough and smooth footings are about 2% less
than the ultimate pressure obtained by the method
of characteristics {2,4]. The pattern of the ZEL field
for the rough footing is shown in Figure 5c, together
with the deformed net indicating the developed velocity
field and heave at the ground surface. The pressure
distribution under the rough footing for 0%, 50%, and
100% of the final settlement has also been shown on
the same figure.

Circular Footing on Sand

A rough 1 meter diameter circular footing on a medium
dense sand would be considered as another example.
The stress-strain curve of the sand in a triaxial test
performed at an average stress range has been used
to construct the ¢ — ymax relation of the sand shown
in Figure 6a. The unit weight is 19.6 kN/m3 and the
dilation angle is 10°. The pattern of the ZEL net for
this case is shown in Figure 6c. The average pressure-
settlement curve obtained from the analysis is shown in
Figure 6b. The developed average pressure at 0.15 m
settlement is 1553 kPa and is still increasing with more
settlement. The ultimate bearing capacity for this
condition using Bolton’s suggested bearing capacity
factors is 3418 kPa [20]. The pressure distribution
under the footing for different percentages of the final
settlement has also been shown in the figure. The
velocity field induced in this case is also shown by the
deformed ZEL net in the figure.

CONCLUSION

In this paper, a simple derivation has been put for-
ward for the zero extension line theory for both axi-
symmetric and plane strain cases, which is different
from the method of characteristics. The zero extension
line theory provides a rather simple method by which
the solution of earth pressure problems can be obtained
in the form of the load-deflection curves. The method
is capable of predicting the pattern of development
of the velocities and strains in the soil mass. It
provides a simple way for predicting how the strength
is mobilized at different locations of the soil mass due
to the boundary deflections. It can also predict the
pressure distribution on the structures in contact with
soil. The zero extension line method assumes coaxiality
of principal stress and principal strain increments.
It relates the mobilized strength to the strain but
assumes the dilation angle to remain constant during
the shearing of soil. The method satisfies the equi-
librium and progressive yielding conditions by writing
the relevant equations directly along the zero extension
lines. In this way, the stresses and displacements are
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Figure 6. Load-deflection behavior of a rough circular
footing on sand.

calculated at the same points in the soil mass and the
difficulties involved in the associated fields method are
avoided. It can then be concluded that the method
provides a simple analytical tool for predicting the
soil-structure interaction behaviors in plane strain and
axially symmetric conditions. This has been shown
by examples of smooth and rough circular footings on
clay and sand. Attempt has not been made to verify
the model quantitatively. This requires extensive full
scale tests and proper laboratory tests on the same soil
under the same conditions. Despite this, the calculated
pressures at final settlements have been compared with
the ultimate pressures obtained by the method of
characteristics and were found to be generally lower
than them. This is because the ultimate bearing
capacity or passive loads obtained by the characteristic
method are relevant to the conditions at which the
full strength of the soil is mobilized everywhere with
which the flow of soil is associated. These conditions

rarely happen in applying the ZEL method to different
problems. The ZEL method provides a more realistic
analysis of the ultimate load, as well as the load-
deformation behavior, since it considers the pattern of
development of strains and strength in soil.
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NOMENCLATURE
c cohesion
I [z as defined by Equations 5 and 11
F function of variables r and 2z or ¢~ and
+
€
n an integer equal to 1 for axi-symmetric

and 0 for plane strain problems

average stress =(o, +0.)/2

u, W components of displacement in r and z
directions, respectively

T, Z coordinates along r and z axes

R, Z body and/or inertial forces in r and z
directions, respectively ‘

£1,€3 major and minor principal incremental
strains

de™,de* small distances along the - and + zero

extension lines

¢ angle of internal friction

¥ shear strain

& =m/4 — v /2 angle between zero extension lines and
the direction of oy or €;

v in plane dilation angle of soil

) density of soil

P angle between oy or €; and r direction

OryOyyTrz components of stress tensor with
respect to r — z coordinates

o1 major principal stress

oo circumferential stress in the axi-
symmetric problem

T shear stress

0 annular coordinate in the axi-

symmetric problem
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