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Experiments on Pulsation Effects
in Turbulent Flows, Part I:
Investigation on Simple Shear Flows

S. Shahidinejad!?, A. Hajilouy*, M. Farshchi’ and M. Souhar?

This article describes the results of experimental observations in pulsating Simple Shear Flows
(SSF). A uniform-mean-gradient shear flow was generated within the test section of an open
circuit wind tunnel. Transverse arrays of honeycomb channels with differing resistances were
used to generate shear flow at low shear rates (less than 20 s™!). A set of rotating vanes
pulsated the flow field at 8.5 Hz and 18 Hz. Instantaneous velocity was measured by employing
a two-component hot wire anemometry technique. The experimental credibility of the facility
was established in stationary SSF. In pulsating flows the pulsation effects on mean shear rate,
the kinetic energy of turbulence, Reynolds stresses and the probability density of stream-wise
velocity fluctuations were studied. It was found that deviation from stationary turbulence with
pulsation at 8.5 Hz was more significant than that at 18 Hz. The modified form of the governing
equations for pulsating flows was derived. The emphasis of the analysis was placed on the
production and dissipation mechanisms in pulsating SSF. The results are discussed in connection
with the modified equations and physically plausible explanations are offered to interpret the
laboratory observations. It is concluded that the anisotropic dissipation mechanism may be
responsible for the observed experimental results.

INTRODUCTION The triple decomposition approach is based on the
fact that random hydrodynamic motion subjected to
pulsation can be decomposed into mean, fluctuating
and pulsating parts. An attempt has been made
in this study to derive the modified form of the
governing equations and to provide an interpretation
for experimental observations. One prominent feature
of shear flows is the coupling of turbulence to the mean
shear of the flow through the mechanism of turbulent
energy production. Homogeneous turbulence sustained

This study is concerned with pulsating Simple Shear
Flows (SSF). No previous effort to document the effect
of pulsation on SSF has been reported in the open
literature. The purpose of the present experimental
study was to provide an understanding of the way
pulsation might interact with turbulent mechanisms
such as production and dissipation in SSF. These
interactions could be identified through various terms

in the averaged equations for momentum, turbulence by a constant mean shear is the simplest flow, in which

}{met}c energy and turbulent dissipation rate. This the interactions between turbulence and mean flow can
identification is me‘Ld.e possible by the introduction be studied. The practical significance of uniformly
of ‘triple decomposition” in the governing equations. sheared turbulence lies in its value as a test case for the
verification of general turbulence theories and models
and, also, in its structural resemblance to common
flows, such as the outer part of turbulent boundary
layers.

Corrsin was the first to realize the laboratory set
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turbulence with the mean velocity gradient come from
the complicating effects of rigid walls, non-turbulent
streams and large-scale inhomogeneities associated
with non-uniform shear. There is a consensus that, in
flows where turbulent shear stress is carried by eddies
comparable in size to the shear field zone, the integral
scales grow monotonically downstream [2-4]. Giving
sufficient flow development time, 7* = (X/%)(du/dY),
an asymptotic state establishes in which the Taylor
micro scale remains longitudinally constant (despite
increasing transversally), with increasing mean veloc-
ity [3]. Tavoularis [5] suggested a weak exponen-
tial stream-wise growth of turbulent kinetic energy
in agreement with his semi-analytical prediction [6],
which was experimentally verified afterwards [7].

Although much has been learned from previous
experiments on stationary homogeneous shear flows,
an improved understanding of the pulsation effects on
SSF is yet to be established. The distinct feature of
the present experiments is that the simple shear flow
is subjected to well-defined and controlled oscillations
of the free stream. Many engineering applications are
concerned with modeling the effects of pulsation on
turbulent shear flows, notably in the fields of aero-
dynamics and turbomachinery. An unbounded flow
with uniform mean shear and statistically homogeneous
velocity fluctuations is a suitable test case on which
pulsation can be imposed. Such a flow is subject to
basic physical mechanisms of turbulence but free from
the complicating boundaries effects.

In part I of this study, the emphasis was placed on
investigating the effects of pulsation on turbulent shear
flows. Shear flows occur in a variety of engineering
applications and acquiring an improved understanding
of their behavior is of prime importance in turbulence
modeling.

In part II, however, fundamental investigation
on grid-generated turbulence subject to pulsation will
be presented. The pulsation effects on characterizing
length scales and the statistical description of fluctu-
ations were studied. No signification change in the
character of the turbulent flow with pulsation was
observed.

In this study, the credibility of the experiments
was established by duplicating some reported measure-
ments in stationary SSF. Experiments on SSF were
extended to the pulsating case. The observations were
discussed in connection with the modified governing
equations and suggestions for further work were pro-
vided.

EXPERIMENTAL ARRANGEMENT

The experimental facility employed in the previous
studies on pulsating grid-generated turbulence was
used for this study [8]. Figure 1 shows the sketch of
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Figure 1. Experimental facility.

the set-up generating a linear velocity profile in the
test section. A two-component hot wire anemometry
technique, with a maximum frequency response of 3
KHz, was used in the test section of the wind tunnel in
which a variable blockage method for pulsating the free
stream at 8.5 Hz and 18 Hz was used. The amplitude to
mean velocity ratios at 8.5 Hz and 18 Hz were 0.4 and
0.17, respectively. A KEITHLEY DAS-1700 HR data
acquisition board (16 bit precision; 8 channel), along
with Test Point® and Matlab® software packages,
were used. The specifications of the wind tunnel and
the pulsation mechanism, along with the accuracies of
the measuring devices and data acquisition-processing
systems were described in more detail in our previous
study [8]. The pulsating and fluctuating components
of the velocity were separated from the mean velocity
by using the FFT-based method developed in our
experiments on grid-generated turbulence [8]. A ‘shear
generator’ was designed and constructed to generate
a reasonably uniform-mean-gradient shear flow. It
consisted of an array of channels with a hexagonal cross
section (honeycomb), transversally cut by a water-jet
technique. The linear velocity profile was obtained
in the test section, due to a linear variation of the
hydrodynamic resistance of the channels (30 < L/D <
100). The dimension of the shear generator, in a
transverse direction (H), was 0.4 m. The aluminum
partitions used in making the honeycomb channels
were 0.1 mm thick and the hydraulic diameter of the
channels (D) was 5 mm. Unless otherwise explicitly
stated, the centerline speed, %., sampling frequency
and sampling duration in all experiments were con-
stant and equal to 3 m/s, 6 KHz, and 60 seconds,
respectively. The credibility of the data acquisition
and data processing methods in providing repeatable
results was inspected in all cases. By doubling the
sampling frequency and duration and repeating the
calculations five times, the uncertainty of the results
were found. The Reynolds number, based on the
hydraulic diameter of the honeycomb cross-section and
centerline velocity, Rep, was 1.0 x 103. Measurements
were carried out downstream of the shear generator in
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longitudinal and transverse directions within the plane
of symmetry of the test section.

GOVERNING EQUATIONS IN PULSATING
FLOWS

Triple decomposition is customarily used [9] to describe
the time-dependent, turbulent behavior of a general
dependent variable, f(z,t), which could be expressed
as the summed contribution of the three parts as, given
by Equation 1:

f@,t) = F(@t) + f(2,0) + f'(2,8). (1)

These components are the mean, periodic and fluctuat-
ing, respectively. Equations 2 and 3 give the definitions
of time and phase averaged terms, respectively:

lI

Z f(z,nAt), (2)

= Z[f(x t +nTy,) - f]. (3)

Here NAt should be much greater than the period
of pulsation (7,). Triple decomposition was used to
obtain modified conservation equations for mass and
momentum, Equations 4 and 5, respectively.

Ui,y =0, 4)

U, = —Pa/p + vl — (Wi + wiug) ;. (5)
The modified transport equation for the kinetic energy

of turbulence, k = 0.5{u}u}), was obtained, as given by
the following equation.

1 -
ki+ak 5 =—ulu’; i - ulug s g 2(ugu jruiuiul)
L= ———
—;(p ul) 5+ vk j;—vug sug . (6)

The second and third terms on the right hand side
(two new terms), represent production and diffusion
due to pulsation, respectively. By following the same
approach as that of the stationary case, the modified
equation for the dissipation rate, ¢ = wvuj u;;, in
pulsating SSF, was obtained as follows:

T YR T o = .
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Here, ¢’ = wuj,u;, is the instantaneous dissipation
rate. In addition to the standard terms for production,
turbulent and molecular diffusion and the destruction
of ¢, the last four terms represent destruction due to
pulsation.

RESULTS AND DISCUSSIONS
Stationary Flow

The major reason for carrying out experiments on
stationary flows was to establish the credibility of the
set-up for further experiments on pulsating SSF. A
series of experiments on stationary SSF, for which
reliable data existed, was carried out to validate the
performance of the shear generator used in this study.
The landmark study of Champagne et al. [3] (here-
inafter referred to as CHC) was partly duplicated.
The centerline velocity was set to 13 m/s and the
mean transverse velocity gradient, du/dY, was 18.8
s~1, nearly the same conditions as those in CHC
experiments (H = 0.3 m, & = 13 m/s, Reg =
2.6 x 10°, di/dY = 12.9 s7!). The Reynolds number
in this study was Rey = 3.47 x 105. However,
our test section was smaller in length (X/H < 2.5)
than that used in CHC experiments (X/H < 11.0).
The sampling frequency and duration in this study
were 4 KHz (per channel) and 30 seconds, respec-
tively.

Figure 2 shows the linear velocity profile ob-
tained downstream of the shear generator at three
downstream stations (X/H = 1.25,1.75 and 2.25). A
plausible degree of linearity for the velocity profile was
obtained far from the rigid walls (0.35 < Y/H <
0.75) for all stations. A deviation from the expected
linear profile near the rigid walls was noticeable, due
to the presence of the boundary layer. This effect
was more pronounced near the upper wall (slightly
divergent 2.2°), because the boundary layer becomes
thicker while the positive pressure gradient decelerates
the flow field. Thus, all results are presented within
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Figure 2. Velocity profiles at three downstream stations
in stationary flow; (O0) X/H = 1.25, (¢) X/H = 1.75 and
(A) X/H = 2.25, Mean shear rate: du/dY=18.8 (s™')
and T, = 13 m/s.
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the linear range (0.35 < Y/H < 0.75) in this paper. It
is noteworthy to focus on the differences between the
present set-up and that of CHC. The shear generator
in CHC experiments consisted of parallel channels of
equal width with adjustable internal resistances, in
which a square splitter rod along the centerline of each
channel exit plane, was used to reduce the length and
time scales of the initial turbulence. The turbulence
level of the empty tunnel in CHC experiments was
0.15%. In our experiments, the turbulence level in an
empty tunnel was 1% but the honeycomb channels re-
duced the turbulence to an acceptable level and nearly
the same results were found. CHC results indicate that
the turbulent intensities decrease while the normalized
turbulent stresses increase, monotonically, downstream
before the establishment of an asymptotic state fairly
downstream (X/H >.10) [3]. The measurements of
the turbulent intensities in a transverse direction at
three downstream stations are presented in Figure 3.

The normalized turbulent stress, —w'v’/Vu'2V/ 1’2, is
presented at the same stations in Figure 4. The results
show the same trend, in good agreement with those
reported by CHC, in the same range of X/H values.
Average values are presented in Table 1 for better
comparison.

The reported results of the stationary shear flows
in the literature indicate that the stream-wise integral
length scale, A,, grows monotonically downstream
and attains an approximate length of 1.5D to 1.8D
in an asymptotic state fairly downstream [3-6]. The
transverse integral length scales are known to be a
fraction of the stream-wise scale (A, = 0.23A,,A, =
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Figure 3. Variation of the turbulent intensities in
transverse direction at three downstream stations;

(O) X/H = 1.25, (0) X/H = 1.75 and (A) X/H = 2.25.
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Figure 4. Variation of the velocity fluctuation correlation
coefficient in transverse direction; (Q) X/H = 1.25,
(0) X/H =1.75 and (A)X/H = 2.25.

Table 1. Stationary flow: Normalized turbulence
intensities and Reynolds stress in comparison with the
results of Champagne et al. [3].

x/H | Vaim | VR | e e /or
1.25 0.02 0.01 0.14

1.57 0.01 0.01 0.18

2.25 0.01 0.01 0.21
3.37 (CHC) 0.02 0.02 0.27
5.00 (CHC) 0.02 0.02 0.33

0.34 A,) [6]. Thus, relatively fine structures of order
O(10~3 m) were expected in our set-up. Owing to
insufficient resolution of the measuring system, direct
measurement of the various length scales was not
possible in this study. Figure 5 presents a comparative
summary of the development time for the present
study, along with the results from previous stationary
SSF experiments (adapted from [10]). Depending
on the development time in shear flows, the ‘low’
shear zone, 7 < 0.25 and the ‘high’ shear zone,
* > 2.5, are defined after Harris et al. [4]. In the
‘high’ shear zone they achieved an asymptotic state in
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0.3 M = (m| a o

Ry 0.2+

s
0.1_6**
| ¢

I I

Figure 5. Variation of the normalized Reynolds stress
with flow development time 7* in stationary shear flow
experiments (adapted from [10]). (o) Rose [11], (A)
CHC [3], (O) Harris et al. [4] and (*) This study, I: Low
shear zone and II: High shear zone.
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the flow field, for which the following relations hold:
—uV/k = 03,u?/k =~ 1,v2/k =~ 0.4,w'2/k ~ 0.6.
The development time for the present study lay close
to the lower limit of the experiments of Rose [11] in the
‘low shear zone’ due to the low rate of shear generated
and the spatial limitation of the test section used.
In this region, turbulence needs more development
time to achieve an asymptotic state where the rate
of turbulence dissipation is balanced by the rate of
production, due to the mean shear [4].

The results on the stationary SSF show that
credible measurements in SSF can be carried out in
the set up used. Thus, it was expected that the
same methodology could be employed for studying
pulsating SSF. Due to lack of previously reported data
on pulsating SSF, the results were compared with those
of stationary SSF, performed with the same centerline
velocity in each case.

Pulsating Flows

Here, selected findings of the experimental observations
used in pulsating simple shear flows are reported.
The shear flow was pulsated at 8.5 Hz and 18 Hz.
Measurements were carried out at four stations in the
test section (X/H = 1.25,1.58,1.9 and 2.25). Due
to the unwanted vibration effects of the tunnel in the
pulsating SSF experiments, the mean velocity was set
to 3 m/s. The Reynolds number was Rey = 8 x 10%.
The development time, 7*, calculated based on the time
averaged centerline velocity in pulsating SSF, was less
than 2.5. Therefore, similar to the stationary SSF, all
pulsating results correspond to the ‘low shear’ zone in
Figure 5. Figures 6a and 6b show a variation of phase
angles, measured with respect to the reference signal, in
the transverse direction in pulsating SSF, at 8.5 and 18
Hz, respectively. The respective average phase lags at
8.5 Hz and 18 Hz were 40° and 52° in the test section.
The measured values were more scattered at 8.5 Hz.
The exact values of the time averaged centerline
velocities at the four stations are given in Table 2. The
pulsation amplitudes normalized by the corresponding
centerline velocities are presented in Figures 7a and
7b at 8.5 Hz and 18 Hz, respectively. The pulsa-
tion amplitude decreases with increasing the pulsation
frequency, because the effective blockage of the vane
set mechanism increases with increasing the angular
velocity of the vanes. The typical value of d|u|/dY

Table 2. Centerline velocities at various stations in
stationary and pulsating experiments.

X/H Stationary 8 Hz 18 Hz
1.25 3.27 3.09 3.12
1.57 3.20 3.09 3.07
1.90 3.26 3.13 3.09
2.25 3.19 3.14 3.14
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was approximately 0.06 s~!. The pulsation amplitude
was more scattered at 8.5 Hz than that at 18 Hz.
Figure 8 presents mean velocity profiles in pul-
sating flow at 85 Hz and 18 Hz, in comparison
with the stationary counterparts with the same mean
centerline velocity at two stations. All velocity profiles
demonstrated a plausible degree of linearity around
the centerline region at all stations. No change was
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Figure 6. Variation of phase angle in transverse direction
(in degree). (0) X/H =1.25, (0) X/H = 1.57,
(&) X/H =19 and (o) X/H = 2.25.
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Figure 7. Variation of the normalized pulsation
amplitude in transverse direction. (¢) X/H = 1.25,
(O) X/H =157, (A) X/H =19 and (o) X/H = 2.25.
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Figure 8. Profiles of the normalized mean velocity
gradient at two stations. (Q) Stationary flow, (O) 8.5 Hz,
(o) 18 Hz.

found in the mean strain rate (du/dY = 3 s~! for
all stations) with pulsation. The gradient of the
mean velocity in the stream-wise direction was also
measured (di./dX = —0.3 s7!) at the centerline.
Of particular interest, from the viewpoint of the ob-
jective of these experiments, was the observation of
the probable pulsation effects on turbulent intensi-
ties.

Transverse variation of the normalized turbulent
intensities, ( u"’/ﬂ2 \/—Q 2/@?), is presented in Fig-
ures 9 and 10, respectively. Variation of the normalized
Reynolds stress, (—u'v'/ \/u_j\/ﬁ), in a transverse
direction, is shown in Figure 11. It was found that
at 8.5 Hz, turbulent intensities and, consequently,
turbulent kinetic energy, are considerably higher than
those corresponding to 18 Hz and to the stationary
flow. The same distinct behavior at 8.5 Hz was
observed in a transverse variation of the Reynolds
stresses, as shown in Figure 11. The uncertainty in
the determination of the kinetic energy and Reynolds
stresses was 10%.

It is well known that turbulence is a random
process in time and space. A statistical description of
this randomness in isotropic turbulence is a Gaussian
distribution. In turbulent shear flows near the rigid
walls, the distribution has been found more or less
skewed [12]. Assuming Gaussian distribution might
be very helpful for simulating real turbulent fields,
because they can be made more accessible to theo-
retical treatment. Significant deviation from Guassian
distribution may invalidate some basic assumptions of
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Figure 9. Transverse variation of normalized turbulent
intensity in X-direction. (¢) Stationary flow, (0) 8.5 Hz
and (A) 18 Hz.

turbulence models. This point was inspected in this
study. Figures 12 and 13 show a transverse variation
of the flatness (Kurtosis) and skewness factors at a
typical station, X/H = 1.9, respectively. Table 3
gives a summary of the average values at all stations.
Uncertainties in the determination of F,, and S, were
20% and 30%, respectively. The results concerning
the stream-wise velocity fluctuations, clearly indicate
a distinct feature at 8.5 Hz, where deviations from
Gaussian distribution were significant. Pulsating the
flow field at 18 Hz did not lead to the same result. The
transverse velocity fluctuations could be described with
Gaussian distribution in all cases.
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Figure 10. Transverse variation of normalized turbulent
intensity in Y-direction. (#) Stationary flow, (0OJ) 8.5 Hz

and (A) 18 Hz.

Table 3. Flatness and skewness factors in experiments on stationary and pulsating flows (8.5 Hz and 18 Hz) at all stations.
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Figure 11. Variation of normalized Reynolds stress in
transverse direction. () Stationary flow, (O) 8.5 Hz and
(A) 18 Hz.

Station X/H = 1.25 X/H = 1.57 X/H =1.9 X/H = 2.25
Condition | Stat. | 8.5 Hz | 18 Hz | Stat. | 8.5 Hz | 18 Hz | Stat. | 8.5 Hz | 18 Hz | Stat. | 8.5 Hz | 18 Hz
F, 3.1 11.1 4.1 3.4 9.7 3.7 3.5 8.1 3.9 3.7 9.4 3.8
F, 2.0 4.0 2.7 3.4 3.6 2.7 4.5 4.4 2.8 4.9 4.8 2.8
Su 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 -0.2 0.0
Sy -1.1 -1.3 -1.1 -1.2 -1.1 -1.2 -1.1 -1.2 -1.2 -1.3 -1.3 -1.2
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Figure 12. Variation of the flatness factor in transverse
direction for u-fluctuations (black) and v-fluctuations
(white).

The results, presented here clearly indicate that
pulsation of a simple shear flow can cause an elevated
level of turbulent stresses. However, the increase
in turbulence levels appears to be frequency depen-
dent. Turbulent intensities and the Reynolds stress
at 8.5 Hz were considerably larger (roughly 250%)
than corresponding stationary values (Figures 9 and
10). However, at 18 Hz, the change in the turbulent
intensities and the Reynolds stress, in comparison
with stationary values was relatively small (roughly
25%). Explanation of the observed behavior requires
consideration of turbulent mechanisms in pulsating
flows. The role of pulsation frequency and amplitude in
the modified governing equations cannot be separately
discussed, however, different terms in the equations can
be evaluated according to the experimental results.

An elevated level of turbulence at 8.5 Hz may be
interpreted through consideration of the corresponding
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Figure 13. Variation of the skewness factor in transverse
direction for u-fluctuations (black) and v-fluctuations
(white).

levels of turbulence production diffusion and dissipa-
tion.

The pulsation velocity, %, introduced by the
triple decomposition, enables energy transfer to take
place between three participating fields, i.e., mean,
turbulent and pulsating velocity fields. However, at
frequencies considered here, the pulsating production

term u'v'9u/dy was at least one order of magnitude
smaller than the conventional turbulent production
term. The measured pulsation amplitudes at 8.5 Hz
and 18 Hz were different but their derivatives in the
transverse direction were approximately the same and
about 50 times smaller than the mean shear rate.
Thus, nearly all energy transferred to the turbulent
field was supplied directly from the mean flow with
little dependence on the pulsating velocity amplitude.
This finding is consistent with previous studies on wall
bounded shear flows [9].



Turbulent diffusion can be physically interpreted
as a mechanism responsible for shifting (displacing)
physical quantities in space. Figures 9 and 10, however,
indicate no shift of turbulence intensities in space.
Moreover, careful examination of these figures reveals
that the distinct behavior observed at 8.5 Hz cannot
be attributed to a change in the turbulence energy
redistribution mechanism. This is because the increase
in the kinetic energy of turbulence in an X-direction
was not at the expense of a decrease in the Y-direction.

Another interesting feature that can be gleaned
from careful study of the presented results is a kind
of directional preference in the flow field. It was
observed that the second, third and fourth moments
of the turbulent velocity fluctuation (turbulent shear
and normal stresses, skewness and a flatness factors)
in the stream-wise direction were considerably larger
than those in a transverse direction. This effect was
also more pronounced at 8.5 Hz.

It is generally accepted that in shear flows with
low shear (zone I in Figure 5), the rate of dissipation
has not reached a level to be balanced by the rate of
production and, therefore, to achieve the asymptotic
state (zome II in Figure 5) [3,4]. In other words,
in shear flows where the asymptotic state has not
been achieved, dissipation requires more development
time, 7%, to balance the production rate. Thus,
the experimental results lead one to believe that, in
such shear flows, pulsation may affect the imbalance
between dissipation and production mechanisms. It
can be also assumed that pulsation in one direction
introduces a directional preference in the dissipation
mechanism. Larger amplitude and a longer period of
influence makes a pulsation at 8.5 Hz more effective
than that at 18 Hz in the set-up used. Our observations
support this idea.

It should be noted that many turbulence models
have been developed, based on the assumption that the
small-scale dissipative structures in very large Reynolds
number flows are isotropic. This is not the case in
those engineering applications where the time scale of
some additional effects introducing anisotropy in the
flow may be of the same order as the time scale of
dominant turbulent mechanisms. The results of this
study show that pulsation may be one of these effects
and any modeling should mirror this anisotropy.

CONCLUDING REMARKS

The present experimental investigation was intended
to study shear flows subject to pulsation effects. In
this study, a stationary turbulent shear flow was
compared with one developing under the same average
conditions, only with an additional pulsating velocity
field superimposed. The results were discussed in
connection with the modified equations. Although

S. Shahidinejad, A. Hajilouy, M. Farshchi and M. Souhar

attaining the asymptotic state at large development
times, 7*, was not possible in our set-up, it provided
a comparative basis to study the differences between
stationary and pulsating shear flows. An important
feature of this study was the emphasis on turbulence
mechanisms (production, dissipation and diffusion) in
pulsating simple shear flows.

No significant change in the measured features
of the turbulent flow, with pulsating at 18 Hz, was
observed. However, at 8.5 Hz, turbulent intensities and
Reynolds stress were significantly larger than those in
stationary flow.

The distinct behavior observed at 8.5 Hz was
discussed. This behavior could not be attributed to
the production mechanism in pulsating flows. The
results, therefore, led one to believe that the dominant
mechanisms for production of turbulence in pulsating
shear flows cannot differ from those in stationary shear
flows. This finding was in perfect agreement with
several previous studies, which featured development of
shear flows near solid walls in boundary layers {9,12,13].
It was also shown that diffusion in pulsating flow could
not be responsible for the observed behavior. However,
it was suggested that anisotropic dissipation could be
introduced in the flow. The experimental evidence
showing direction preferences in all moments, con-
firmed this view. Based on the results of this study, the
development of more comprehensive turbulence models
for special flow fields, where anisotropic dissipation
may be a determinant factor, was recommended.
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NOMENCLATURE

D hydraulic diameter of the honeycomb
channels (m)

fifp frequency, pulsation frequency (Hz)

H transversal dimension of the shear
generator (0.4 m in this study) (m)

k kinetic energy of turbulence,
k = 0.5(ulu!) (m?/s?)

P static pressure (pa)

Rey reynolds number based on the
characteristic length H, Rey = Hu./v

t, T, time, period of pulsation (sec)

T, |ul mean velocity at centerline, pulsation

amplitude in pulsating flow (m/s)



Investigation on Simple Shear Flows

u', v, w'
XY

velocity fluctuations (m/s)

longitudinal distance downstream
of the grid or the shear generator,
transversal coordinate (m)

Greek Symbols

€ dissipation rate of turbulence (m?/s3)

) phase difference between pulsating flow
at data points and the reference signal
(degree)

density (kg/m?)

flow development time, 7* =

(X/w)(du/dY)
v kinematic viscosity (m?/s)
w circular frequency, w = 27 f (rad/s)
Superscripts

— time-averaged

~ pulsating component

! fluctuating component

Subscripts

centerline
p pulsating
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