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In this paper, two methods to solve multi-response statistical problems are presented. In these

methods, desirability function, genetic algorithm and simulation methodology are applied. The

desirability function is responsible for modeling the multi-response statistical problem, the genetic

algorithm tries to optimize the model and, �nally, the simulation approach generates the required

input data from a simulated system. The methods di�er from each other in controlling the

randomness of the problem. In the �rst method, replications control this randomness, while,

in the second method, the randomness is controlled by a statistical test. Furthermore, these

methods are compared by designed experiments and the results are reported.

INTRODUCTION AND LITERATURE

REVIEW

A usual problem in the real world environment involves
selecting a set of input conditions (the x's being
independent variables) which will result in a product
with a desirable set of outputs (the y's being response
variables). Essentially, this becomes a problem in the
simultaneous optimization of the response variables,
each of which depends upon a set of independent
variables, x1; � � � ; xp. In this problem, the levels of the
independent variables are to be selected, such that all
the response variables optimize. In this case, however,
the selected levels of the x's that optimize, for example,
y1, might not even come close to optimizing y2.

As an example, in quality control environments,
the goal may be to �nd the levels of the input variables
(quality characteristics) of the process so that the
quality of the product or responses has the desired
characteristics. Also, in Response Surface Methodol-
ogy (RSM) [1] the levels of the input variables are
adjusted until the set of outputs are optimized. In most
RSM problems, the form of relationship between the
response and the independent variables is unknown.
Thus, the �rst step in RSM is to �nd a suitable
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approximation. Usually, a low-order polynomial is
employed. If there is curvature in the system, then,
a polynomial of higher degree, mainly second order, is
used. Then, by a sequential procedure and the method
of steepest ascent or steepest descent, the best set of
input for response is determined. RSM usually works
well when one response is considered. Also, usually,
RSM is not applied in complex cases, such as non-
polynomial and higher-order or multi-modal functions.

While many real world problems involve the
analysis of more than one response variable, most
of the mathematical programming applications in the
literature have focused on single response problems
and few attempts have been made to solve multiple-
objective statistical problems. These attempts can be
classi�ed into four categories [2,3].

The usual practice in the �rst category is to
simplify the problem, selecting the most important
response and ignoring the other responses or consid-
ering them as the model constraints. For example,
one can refer to Hartmann and Beaumont [4] and
Biles [5]. While Hartmann and Beaumont modeled the
problem using a linear programming approach, Biles
used this approach once in conjunction with a version
of Box's complex method [6] and, alternatively, along
with a variation of the gradient method. The proposed
procedures of this category would generally lead to
unrealistic solutions, especially when conicting objec-
tives are present. For example, in a capital investment
problem with two objectives, pro�t maximization and
risk minimization, it usually happens that the higher
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the pro�t, the bigger the risk. For this reason, treating
this problem using a single objective will lead to a poor
solution.

The second category, where, basically, the objec-
tives are aggregated into a single objective function,
has been attempted several times in the literature,
each time with relative success [3]. One of these
attempts is called the weighted sum method and
consists of adding all the objectives together using
di�erent weighting coe�cients. Also, a variation of the
goal programming method falls into this category. For
instance, Clayton et al. [7], Rees et al. [8] and Baesler
and Sepulveda [9] used this approach, along with
other optimization methods. Baesler and Sepulveda
integrated goal programming and Genetic Algorithm
(GA) methods to solve the problem. Moreover, they
used some statistical tests to control the random nature
of the problem. Another method in this category is
the goal attainment method, in which, in addition to
the goal vector for each response, a vector of weights,
relating the relative-under or relative-over attainment
of the desired goals, must be elicited from the decision
maker. The most serious pitfall of the method in
this category is the importance of the responses and,
hence, the determination of the weights in the objective
function.

In the third category, some multi-attribute value
functions are used. Mollaghasemi et al. [10] used
a multi-attribute value function representing the
decision-maker preferences. Then, a gradient search
technique was applied to �nd the optimum value
of the assessed function. Moreover, Mollaghasemi
and Evans [11] proposed a modi�cation of the multi-
criteria mathematical programming technique, called
the STEP method, which works by interaction with
the decision-maker. Teleb and Azadivar [12] proposed
an algorithm based on the constrained scalar simplex
search method. This method works by calculating
the objective function value in a set of vertices of a
complex. It moves towards the optimum by elim-
inating the worst solution and replacing it with a
new and better solution. The process repeats until
a convergence criterion is met. Boyle [13] presented
a method called the Pair-wise Comparison Stochastic
Cutting Plane (PCSCP), which combines features from
interactive multi-objective mathematical programming
and response surface methodology.

In the fourth category, a search-heuristic algo-
rithm is basically used. Cheng et al. [14] presented
a neuro-fuzzy and GA method for optimizing the
multiple response problems. Scha�er [15] introduced
a new method, called the Vector Evaluated Genetic
Algorithm (VEGA), which di�ered from the simple
GA method by way of chromosome selection. Allen-
son [16] used a population-based modeling on VEGA,
in which gender was used to distinguish between the

two objectives of a problem, consisting of planning
a route composed of a number of straight pipeline
segments. In this method, only male-female mating
is allowed and gender is randomly assigned at birth.
Fourman [17] suggested use of a GA-based method
on the lexicographic ordering problem. In his ap-
proach, the designer ranks the objectives in order of
importance. The optimum solution is then obtained
by optimizing the objective function, starting with
the most important and proceeding according to the
assigned order of importance. Periaux et al. [18]
proposed a GA-based method that uses the concept
of game theory to solve a bi-objective optimization
problem. Coello [19] proposed a min-max strategy
with a GA. In this method, the decision maker has
to provide a prede�ned set of weights that will be
used to spawn several small subpopulations that evolve
separately, each trying to converge to a single point.
Fonseca and Fleming [20] proposed a GA scheme, in
which the rank of an individual corresponds to the
number of chromosomes in the current population by
which it is dominated. Kim and Rhee [21] proposed
a method based on the desirability function and GA
and applied this method to optimize a welding process.
Heredia-Langner et al. [22] presented a model-robust
alphabetically-optimal design with a GA. This tech-
nique is useful in situations where computer-generated
designs are most likely to be employed. In summary,
the review of the literature in this category reveals that
the Genetic Algorithm (GA) method has a speci�c role
and works successfully.

In the following section, a brief description of the
desirability function approach will be given. Then, a
multi-response statistical optimization problem is mod-
eled through the desirability function method. After
that, two procedures will be presented, both based on
the GA approach, to solve the problem. In order to
evaluate the performance of the proposed procedures
and to compare them, some numerical examples will
be solved and the results will be reported. Finally,
the conclusion and some recommendations for future
research are reported.

DESIRABILITY FUNCTION

The desirability function approach is one of the most
widely used methods in industry for dealing with
the optimization of multiple-response problems. It
is based on the idea that the quality of a product
that has multiple quality characteristics is completely
unacceptable if one of the characteristics lies outside
the desired limits. This method assigns a score to a set
of responses and chooses factor settings that maximize
that score.

In order to describe the desirability function ap-
proach mathematically, suppose each of the k response
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variables are related to p independent variables by the
following equation:

yij = fi(x1; � � � ; xp) + "ij ;

i = 1; � � � ; k; j = 1; � � � ; ni; (1)

where yij is the jth observation on the ith response and
fi denotes the relationship between the ith response,
yi and x1; � � � ; xp. The parameter, ni, is the maximum
number of observations for each of the k responses and
"ij is an error term with mean E("ij) = 0 and variance
VAR("ij) = �2i , such that one can relate the average
response to the p independent variables by the following
equation:

�i = fi(x1; � � � ; xp); i = 1; � � � ; k: (2)

A desirability function, di(yi), assigns numbers be-
tween 0 and 1 to the possible value of each response,
yi. The value of di(yi) increases as the desirability
of the corresponding response increases. The overall
desirability, D, is de�ned by the geometric mean of
the individual desirability values shown in the following
equation:

D = (d1(y1)� d2(y2)� � � � � dk(yk))
1

k ; (3)

where k denotes the number of the responses. Note
that if a response, yi, is completely undesirable, i.e.,
di(yi) = 0, then, the overall desirability value is zero.

Depending on whether a particular response, yi, is
to be maximized, minimized or assigned a target value,
di�erent desirability functions can be used. Derringer
and Suich [23] introduced a useful class of desirability
functions.

There are two types of transformation from yi
to di(yi), namely; one-sided and two-sided transforma-
tion. The one-sided transformation is employed when
yi is to be maximized or minimized and the two-sided
transformation is used when yi is to be assigned a target
value.

In a two-sided transformation, assume li and ui
to be the lower and upper limits and ti be the target
value of the response, yi, such that li < ti < ui. Then,
the desirability function is de�ned as the following
equation:

di(yi) =

8>>>>><
>>>>>:

0; yi < li�
yi�li
ti�li

�s
; li � yi � ti�

yi�ui
ti�ui

�t
; ti � yi � ui

0; yi > ui;

(4)

where the exponents, s and t, determine how strictly
the target value is desired and that the user must
specify their values. For s = t = 1, the desirability

Figure 1. Graph of the two-sided transformation.

function increases linearly towards ti. For s < 1 and
t < 1, the function is convex and, for s > 1 and t > 1,
the function is concave. This function for di�erent
values of s and t is graphed in Figure 1.

In Figure 1, the value of ti is chosen to be in
almost the lower 25% of the interval between li and
ui. From Figure 1, one can see that the large values
of s and t are chosen for situations in which one needs
to have the response near ti. In situations in which
one desires to have the response near li, the values of
t and s are chosen small. Medium values are used for
s and t (close to one) when a case between the above
two extremes is desired. Furthermore, if the user wants
to have the response approaches to ti very quickly and
any value for the response greater than ti and less than
ui is desirable, then, the value of s is chosen to be large
and the value of t to be small.

Similarly, one can de�ne one-sided desirability
functions in cases of minimizing or maximizing. It
should be noted that while some modi�ed versions of
the desirability functions are useful for situations in
which the exact mathematical methods of optimization
are used, the introduced basic desirability functions
are good enough for the search methods applied for
optimization problems [24]. For a good reference,
see [23].

PROBLEM MODELING

The candidate problem in the framework of this re-
search has two main characteristics. First, the prob-
lem itself is a computer simulation of a real world
problem. For example, a real world production sys-
tem is simulated, in which events occur stochastically
and di�erent factors are a�ecting multiple responses
simultaneously and where the goal is to determine the
levels of the factors that optimize the responses. In
this case, when di�erent inputs are selected as the
levels of the factors, the values of the responses are
observed by simulation. Second, the levels of the
factors can be modeled by a real variable. A real
example of the problems having these characteristics
is a quality control process, in which the reaction time,
the temperature and the percent catalyst are the input
variables and the responses are the percent conversion
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and thermal activity of the process. In this situation,
one may �rst want to simulate the production process
and, then, determine the input variable levels, such
that the outputs are maximized, minimized or set to
a target value.

In the modeling phase of a multi-response statis-
tical optimization problem, the objective function is
transformed to a single function, using the desirability
function framework. First, one must identify all the
factors that make up the input of the problem. These
factors are:

1. The independent variables, x1; � � � ; xp;
2. The lower and upper bounds of the independent

variables (L(xh) and U(xh));

3. The output of the problem. This output is the
response variables denoted by y1; � � � ; yk;

4. One-sided or two-sided desirability functions for
each response. It is obvious that a one-sided or two-
sided transformation for each response depends on
the nature of the objective of the problem.

Then, the mathematical model of the problem be-
comes:

maxD = k

p
(d1(y1)� d2(y2)� � � � � dk(yk))

s.t.:

L(xh) � xh � U(xh);

h = 1; 2; � � � ; p: (5)

Based on the lowest error criterion, two methods are
presented to solve the above model (Equation 5) in the
next section.

METHODOLOGY

In order to solve the mathematical model of the
problem (Equation 5), �rst, a simulation approach
is employed to generate output response values for
all the objectives in the problem. Note that the
problem has a stochastic nature. This means that
if the set of x1; � � � ; xp is �xed, then, in each of the
simulation execution cases, the set of y1; � � � ; yk may
be di�erent.

Because of the stochastic nature of the model, one
needs to apply a heuristic-search algorithm to solve
it. Among these algorithms, the GA is shown to
be successful in optimizing multi-response problems,
especially when the objectives are combined into one
objective [3].

The usual form of GA was described by Gold-
berg [25]. Genetic algorithms are stochastic search
techniques based on the mechanism of natural selection

and natural genetics. GA is di�erent from conven-
tional search techniques in a sense that it starts with
an initial set of random solutions called population.
Each individual in the population is called a chromo-
some, representing a solution to the problem at hand.
The chromosomes evolve through successive iterations,
called generations. During each generation, the chro-
mosomes are evaluated, using some measures of �tness.
To create the next generation, new chromosomes,
called o�springs, are formed by either a crossover
or mutation operator. A new generation is formed
according to the �tness values of the chromosomes.
After several generations, the algorithm converges to
the best chromosome.

Knowing that a GA method needs scalar �tness
information to work, the simplest idea would be to
combine all the responses into a single one. In this
methodology, the desirability approach is used for com-
bining all the responses. Desirability functions have
many advantages in comparison to other combining
techniques. They have, in particular, a very exible
role. It means that one can, simultaneously, maximize
some of the responses, minimize others and set target
values to some of them.

Two GA methods are presented, which are di�er-
ent in structure, especially in controlling the stochastic
nature of the problem. These methods have many
similarities described in the following sub-sections.
However, in the �rst method, the random nature of the
problem is controlled by replication and, in the second
method, the randomness is controlled by some multiple
comparison statistical tests.

Initial Conditions

The initial information required to start the GA meth-
ods is as follows:

1. Population size: This is the number of the chromo-
somes or scenarios that are kept in each generation,
denoted by N ;

2. Number of replications: This is the number of the
simulation replications of each scenario, denoted by
n;

3. Crossover rate: This is the probability of perform-
ing a crossover in the GA method, which is denoted
by Pc;

4. Mutation rate: This is the probability of performing
mutation in the GA method, denoted by PM .

Chromosome

In the GA methods, as a solution to the problem, one
de�nes chromosomes or scenarios as being a set of the
values for x1; � � � ; xp.
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Initial Population

Generating an initial population of solutions or scenar-
ios is the �rst stage towards starting the optimization
process. The number of the scenarios is N and the
scenarios are selected randomly to cover a wide range of
solutions. Generally, users have a good idea where they
can �nd good solutions. Some of the user's suggestions
can be considered in the initial population.

In order to obtain the total desirability value
of scenario j; x1j ; x2j ; � � � ; xpj , after its preparation,
it is simulated in n replications. Then, in each
replication, the response variables are generated and
the desirability value of each response is determined.
To do this, the following parameters are de�ned:

xij is the input variable, i, in scenario j,
i = 1; � � � ; p, j = 1; � � � ; N ;

yijr is the response variable, i, in scenario j and
in replication r, i = 1; � � � ; k, j = 1; � � � ; N ,
r = 1; � � � ; n;

dijr is the desirability, i, in scenario j and in
replication r, i = 1; � � � ; k, j = 1; � � � ; N ,
r = 1; � � � ; n and its value is obtained based on
the desirability function characteristics
described in the previous section;

Djr is the total desirability value of scenario j in
replication r, j = 1; � � � ; N , r = 1; � � � ; n;

Dj is the mean of the total desirability in
scenario j, j = 1; � � � ; N and it is calculated
by Dj =

Pn

r=1Djr=n;
Sj is the standard deviation of the total

desirability in scenario j, j = 1; � � � ; N .

Crossover and Mutation

In a crossover process, it is necessary to mate pairs of
chromosomes to create o�spring. This is performed by
selecting a pair of chromosomes from the generation
randomly and with probability Pc. There are many
di�erent types of crossover operators. In this research,
a variation of the crossover operators are used that
work very well when the chromosome is represented
using real and not binary code [26]. To de�ne this
operator precisely, assume that chromosomes A and B,
presented, respectively, in the forms [a1; a2; � � � ; ap] and
[b1; b2; � � � ; bp], are selected for the crossover operation.
This crossover operator, using the following relations,
will create the new chromosomes, C and D:

C = �A + (1� �)B; (6)

D = (1� �)A + �B; (7)

where � is a parameter ranging between 0 and 1. One
of the advantages of this crossover operator is that the
new chromosomes, C and D, will be feasible.

Mutation is the second operation in the GA
method for exploring new solutions. In mutation,
a gene is replaced with a randomly selected number
within the boundaries of the parameter [26]. More
precisely, assume a speci�c gene, such as aj , is selected
for mutation, then, the value of aj is changed to the new
value, a�j , according to Equations 8 and 9, randomly
and with the same probability:

a�j = aj + (uj � aj)� r �
�
1� i

maxgen

�
; (8)

a�j = aj � (aj � lj)� r �
�
1� i

max gen

�
; (9)

where lj and uj are the lower and upper limits of the
speci�ed gene, r is a uniform random variable between
0 and 1, i is the number of the current generation
and max gen is the maximum number of generations.
Note that the value of aj is transferred to its right or
left randomly by Equations 8 and 9, respectively and
r is this percentage. Furthermore, 1 � i

max gen
is an

index with a value close to one in the �rst generation
and close to zero in the last generation, which makes
large mutations in the early generations and almost no
mutations in the last generations.

Objective Function Evaluation

After producing the new chromosomes by crossover
and mutation processes, they must be simulated. The
value of response variables, desirability functions and
total desirability for each of the new scenarios can be
generated by simulation.

Chromosomes Selection

In the next phase of the methodology, the chromosomes
are selected for the next generation. This selection is
based on the �tness function value of each chromosome.
The di�erence of the two proposed GA methods ap-
pears in this phase.

In the �rst method, the �tness function is consid-
ered, to be the total desirability, Dj , of scenario j and,
based on the better value of Dj , N chromosomes are
selected from the old and new ones deterministically.
However, in the second method, because of the random
nature of Djs the chromosomes are selected statisti-
cally. In this regard, �rst, the Djs are statistically
compared and, then, the ones with better values are
selected. To do this, a multiple-comparison statistical
test [1] is applied to control the random nature of
the situation and chromosomes are grouped, such that
there is no statistical di�erence within the groups but
there exist di�erences among di�erent groups.

The multiple-comparison test used in the second
method is Tukey's test. Tukey's test determines a
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critical value, T�, such that the probability of making a
type I error is � for all comparisons. Any pairs of Djs
that di�er by less than T� are statistically equal. The
value of T� is determined by the following equation.

T� = q�(N; f)�
p
MSEp
n

; (10)

where q�(N; f) is the upper percentage point of the
Studentized Range Statistic [17], N is the population
size, MSE is the mean squared error of Djs and f is
the degrees of freedom associated with MSE, which is
equal to n(N � 1).

Now, based on the �tness function value, the chro-
mosomes are ranked in ascending order and grouped
with a di�erence between their �tness function values
less than T�, accordingly. In this way, groups of
chromosomes are created that are not statistically
di�erent.

In order to generate chromosomes for the
next generation, the roulette-wheel-selection tech-
nique [26,27], which is the most common selection
technique, is applied. In this technique, �rst, the
probability of selecting group k; pk, is calculated by the
following equation:

pk =

P
8j2Group kDjPN

j=1Dj

: (11)

Then, by the roulette-wheel-selection method, a group
is chosen randomly and its best chromosome is selected,
based on its �tness function value. This is done N
times, making a generation with N chromosomes.

After the next generation is created, the crossover
and mutation operators will operate on the new gen-
eration again and the selection phase will be repeated.
This loop continues until the stopping criteria are met.

Stopping Criteria

The last step in the methodology is to check if the se-
lected method has found a solution that is good enough
to meet the user's expectations. Stopping criterion is
a set of conditions such that when the method satis�es
them, a good solution is obtained. In this research,
one stops when no improvement in �tness function
values of several consecutive generations is observed.
The number of sequential generations depends on the
speci�ed problem and the expectations of the user.

PERFORMANCE OF THE PROPOSED

METHODS

The performance of the proposed methods is studied
in the following section.

Polynomial Examples

Since most of the applications of the new methods
are in the quality control and RSM environments
and considering the fact that polynomials are used in
these situations, in order to evaluate the performance
of the new methods and to compare them, di�erent
polynomial examples are applied. The examples of
the experiments are polynomial in nature such that
when the values of the independent variables are �xed,
the expected values of the responses are known. For
example, consider three responses (output variables)
as polynomial functions of three independent variables
(input variables) as follows:

y1 = x51 + x41 + x32 + x63 + x1x2x3 + "1;

y2 = x21 + x1x3 + x2x3 + x1x2x3 + "2;

y3 = x31 + x32 + x43 + x1x
2
2x

4
3 + "3;

where "1, "2 and "3 are the error terms with the
following distributions; "1 � N [0; 1], "2 � EXP(0:10),
"3 � N [2; 4], and the input variables ranging in 0 �
x1 � 5, 0 � x2 � 3 and 0 � x3 � 4. Note that for
�xed values of the independent variables as x1 = 2,
x2 = 1 and x3 = 3, the average value of responses
will be T1 = E(y1) = 784, T2 = E(y2) = 19:1 and
T3 = E(y3) = 254. In this case, based on the �xed
values of the response being T1 = 784, T2 = 19:1 and
T3 = 254 and applying a two-sided desirability function
described in previous sections, the method that reaches
closer to these values of the independent variables has
a better performance than the other.

Thus, in order to compare the methods, a perfor-
mance measure is de�ned as:

Q2(m) =

pX
j=1

(xj(m)� xj(a))
2 ; (12)

where xj(a) is the given value and xj(m) is the
obtained value of the input variable, j. Then, the
method with a lower value of Q2(m) performs better.

In order to obtain results that are more reliable,
the experimental examples are classi�ed based upon
the order of the polynomials and the degree of the
variability of the example. Both factors are considered
to have two levels, low and high. When the order of
the polynomial is less than, or equal to, �ve, then, this
factor is set to a low level, otherwise, it is set to its
high level. The variability of the example is de�ned
in terms of the sum of the error term's variances.
Furthermore, the low and high levels of this factor are
set when it is less than, or equal to, 50 and greater
than 50, respectively. Therefore, di�erent examples are
considered in four classes. Class 1 contains examples in
which both factors are set to their high levels. Class 2
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consists of examples with both factors at their low
levels. In Class 3, the order is high and the variability is
low and, �nally, Class 4 is designed to contain examples
with the order at its low level and variability at its high
level.

Then, both methods are applied to the examples
of these classes several times, each time calculating the
performance measure in Equation 12 and statistically
comparing the two methods. In each class, �ve di�erent
polynomial functions are employed in four types of
replications, making the total number of examples 80.
As the case in all GA applications, in each example, the
values of the mutation and crossover rate are chosen by
trial and error.

For all of the examples, a two-sided desirability
function is applied with the parameters s and t both
being equal to one and the type I error in Tukey's
test being equal to 0.05. Moreover, the value of the
responses in each method is generated by random
numbers from the error term's polynomials.

Tables 1 to 4 show the performance of each
method when applied in di�erent classes with di�erent
numbers of replication. Table 5 shows the results
of the comprehensive case, where the two methods
are applied to the problems of all classes in di�erent
replications. In addition, Figures 2 to 6 show the
value of the performance measure vs. the number
of replications being equal to 5, 10, 25 and 50 in
di�erent classes and in the comprehensive case. The
�gures are the graphical representation of the tables.
For instance, consider Table 1 or Figure 2. Five
examples in class one are run by the two methods.
These examples are applied to a di�erent number of
replications. For each case, the error of the method
is determined by Equation 12 and the corresponding
sum of the error terms is shown in Figure 2. For
example, 0.3714 is the sum of the error terms in
�ve examples that have been run by the 1st method
and the number of replications is equal to 5. Either
Table 1 or Figure 2 shows that the 1st method is

Table 1. Performances in Class 1.

Methods No. of Replications

5 10 25 50

First Method 0.3714 0.5495 0.4915 0.7555

Second Method 0.2318 0.3160 0.5773 1.2325

Table 2. Performances in Class 2.

Methods No. of Replications

5 10 25 50

First Method 0.4363 0.5787 0.2095 0.1357

Second Method 2.0951 0.1875 0.1242 0.1707

Table 3. Performances in Class 3.

Methods No. of Replications

5 10 25 50

First Method 0.0002 0.0003 0.0020 0.0039

Second Method 1.2048 0.4893 0.3762 2.9873

Table 4. Performances in Class 4.

Methods No. of Replications

5 10 25 50

First Method 6.4144 0.4614 0.2316 0.1873

Second Method 4.1841 3.0127 0.1989 1.093

Table 5. Performances in the comprehensive case.

Methods No. of Replications

5 10 25 50

First Method 7.2223 1.5899 0.9346 1.1824

Second Method 7.7158 4.0055 1.2766 5.4835

Figure 2. Graph of Class 1.

better than the 2nd method for a small number of
replications and is worse for a large number of repli-
cations. Moreover, the �gures show that the errors in
both methods, when the number of replications is at
its medium level, are relatively low. In this case, the
second method performs better when both variability
and order of example factors are set to their low or
high levels. Besides, in cases when the variability
factor is set to its low level, increasing the number
of replications would result in increasing the variance
of the error term and, hence, decreasing the power of
the test statistics. Furthermore, with the variability
factor set to its high level, increasing the number of
replications would not much decrease the magnitude
of the variance of the error term. It is recommended
to do the experiments with an average number of
replications.

In order to statistically compare the performances
of the two methods, the methods are considered as
the treatment levels. Since di�erent random number
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Table 6. Values of the F -test statistic.

Type Class 1 Class 2 Class 3 Class 4 Comprehensive Case

F0 0.0902 0.43699 4.3966 0.089 4.099

p-value � 0:428 � 0:495 � 0:192 � 0:527 � 0:291

F0:05;1:3 = 10:13

Figure 3. Graph of Class 2.

Figure 4. Graph of Class 3.

Figure 5. Graph of Class 4.

Figure 6. Graph of the comprehensive case.

seeds are used in di�erent replications, the randomized
complete block design [1] is used, the blocks being
the replications. This design is applied to both of
the classes and for the comprehensive case, and the
performances of the methods are compared for each
class. Thus, two treatments and four blocks are
de�ned. The observations are the performances of the
methods given in Tables 1 to 5. The linear statistical
model of this experiment is:

Qij = �+ �i + �j + "ij i = 1; 2; j = 1; 2; 3; 4; (13)

where Qij is the performance or error value of the ith
method in the jth replication, � is an overall mean, �i
is the e�ect of the ith method, �j is the e�ect of the
jth replication and "ij is the usual NID(0,�

2) random
error term.

Table 6 summarizes the computational results of
the experiment. From this table, one can see that the
two GA methods are not statistically di�erent in all of
the cases.

Benchmark Case

For better comparison of the presented methods with
similar works, in this section a benchmark example is
used. This is a numerical example about a chemical
process that was used by Cheng et al. [14] in their
research. In this problem, there are three design
variables and two responses. The design variables
are reaction time (x1), temperature (x2) and percent
catalyst (x3) and the responses are percent conversion
(y1) and thermal activity (y2). The objective is to
maximize y1 while keeping y2 between 55 and 60, with
a target value of 57.5.

Although the characteristics of the framework
presented in Cheng et al.'s work is totally di�erent from
the ones in this research, in the sense that the data
are the results of designed experiments (as opposed
to simulated results) and the factor levels do not vary
in a continuous manner (as opposed to real ones), for
comparison purposes it was attempted to �t and use
this example in our methodology.

Based on the experimental design data [14], two
linear polynomial functions were estimated for each
response. These estimates are:

y1 = 78:3 + 1:0284x1 + 4:0403x2 + 6:2037x3;
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y2 = 60:51 + 3:583x1 + 0:2546x2 + 2:2298x3:

It is assumed that the error term has normal distri-
bution with mean zero. Based on the experimental
results, the variance of the error terms in each model
were estimated and, hence, the distributions of the
error terms were estimated as: "1 � N [0; 33:2] and
"2 � N [0; 0:73066].

The one-sided desirability function was selected
for the �rst response and its minimum and maximum
values were set as 50 and 100, respectively. Also, a two-
sided desirability function was selected for the second
response and the values of 55, 60 and 57.5 were set as
its minimum, maximum and target value, respectively.
The possible ranges for x1, x2 and x3 are set within
the interval [�2, 2]. The number of replications was
set to be equal to 25. Table 7 summarizes the results
obtained by the two proposed methods.

The results show that in terms of the �rst response
value, the �rst method works better than the second
method. However, in terms of the second response,
the second method works better than the �rst one.
Although the nature of this problem is not the same
as the ones for the proposed method, the results are
very close to the results of Cheng et al.'s research [14].

CONCLUSION AND RECOMMENDATIONS

FOR FUTURE RESEARCH

In this paper, a multi-response statistical optimization
problem was modeled through the desirability function
approach. Then, two GA methods were applied to
solve this model by simulation. The performance of
each method was studied through di�erent simulation
replications and statistically compared by a perfor-
mance measure. The statistical design used for this
comparison was the randomized complete block design,
the blocks being four replications in each case. It
was concluded that no statistical di�erence existed
between the two methods in all situations. This was the
case if the experiments were not performed in classes.
However, the value of the test statistic becomes larger
in the latter case. At the end, the performance of
the proposed methods was compared with the one by
Cheng et al.'s procedure through a designed experiment
and it was shown that the proposed methods work well
in experimental environments too.

For future research in this area, the following are
recommended:

1. One needs to perform some experiments at the

Table 7. The results of the benchmark case.

Method x1 x2 x3 y1 y2

1st Method -1.9408 1.9924 1.987 96.6793 58.4939

2nd Method -1.9871 1.9973 1.9718 96.5572 58.2947

medium levels of the order and variability factors.
This can be done either by a 23 design or the
credibility of the statistical test can be enhanced
by making some experiments at the center point of
a 22 design;

2. In cases when the user has no idea how to set the
parameters l and u in the initial step, their extreme
values can be assigned. Then, the method can be
applied sequentially, selecting the best solution at
each step. Next, the solution is replaced with l in
the maximization case and with u in a minimiza-
tion environment. This process continues until no
feasible solution is obtained;

3. In addition to Tuckey's test, other multiple com-
parison tests can be performed. The performance
of other statistical tests can be compared in this
regard;

4. Di�erent crossover and mutation operators in the
GA methods may lead to di�erent conclusions;

5. One may think of di�erent �tness functions in the
algorithms;

6. Instead of selecting the chromosomes based on their
�tness function values, they can be chosen ran-
domly. This will lead to another type of research,
when a comparison can be made between the two
ways of chromosome selection;

7. Instead of preparing the data by simulation, the
method can be applied to a real world situation,
such as quality improvement in industry, where the
best subset of the input variables are to be chosen
for multi-response optimization purposes;

8. Rather than polynomials, the performance of the
method can be evaluated by some other functions
of the input variables;

9. A comprehensive set of benchmark cases is needed
for comparison of the performance of di�erent
search-heuristic methodologies in this area.
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