
Arc
hi

ve
 o

f S
ID

Scientia Iranica, Vol. 13, No. 1, pp 25{32

c
 Sharif University of Technology, January 2006

Shortest Paths with Single-Point

Visibility Constraint

R. Khosravi
1
and M. Ghodsi

�

In this paper, the problem of �nding the shortest path between two points in the presence of

single-point visibility constraints is studied. In these types of constraint, there should be at least

one point on the output path from which a �xed viewpoint is visible. The problem is studied

in various domains, including simple polygons, polygonal domains and polyhedral surfaces. The

method is based on partitioning the boundary of the visibility region of the viewpoint into a

number of intervals. This is done from the combinatorial structure of the shortest paths from

the source and destination to the points on the boundary. The result for the case of simple

polygons is optimal with O(n) time bound. The running time for the cases of polygonal domains

and convex and non-convex polyhedral surfaces are O(n2), O(n2) and O(n3), respectively.

INTRODUCTION

Finding the shortest path between two points is a basic
problem in computational geometry and has many
applications in di�erent areas, such as motion planning
and navigation. The problem has been studied over
various geometric domains, such as simple polygons [1],
polygonal domains [2,3] and polyhedral surfaces [4-
6]. Also, several variations exist, depending on the
metric used for computing distances and the di�erent
constraints applied to the solution path. Examples
of such restrictions are curvature constraints [7] or
altitude constraints [8]. The visibility constraints have,
so far, been studied less. In this type of constraint, the
path is required to satisfy some visibility properties,
e.g., the entire or parts of the path should be visible
from a given viewpoint. Applications for this constraint
are mainly in communication systems, where direct
visibility is needed, or, in guarding problems. An
example of a motion planning problem combined with
visibility constraints can be found in [9], in which
the problem of locating a continuously-moving target,

1. Department of Computer Engineering, Sharif University
of Technology, P.O. Box 11365-9517, Tehran, I.R. Iran,
and IPM School of Computer Science, Tehran, I.R. Iran.

*. Corresponding Author, Department of Computer En-
gineering, Sharif University of Technology, P.O. Box
11365-9517, Tehran, I.R. Iran, and IPM School of
Computer Science, Tehran, I.R. Iran.

using a group of guards moving inside a simple polygon,
is studied.

Single-point visibility constraint requires the path
to include at least one point from which a given
viewpoint is visible. In this paper, the problem of
�nding the shortest path with a single-point visibility
constraint is studied in several domains, including
simple polygons, polygonal domains and polyhedral
surfaces. The algorithms proposed for the cases of
simple polygons and polygonal domains run in O(n)
and O(n2) time bounds, respectively. The authors have
studied the case of polyhedral surfaces in [10] and pro-
posed an algorithm with O(n2 logn) and O(n3 logn)
time bounds for convex and non-convex cases, respec-
tively. The extra O(n) factor in the latter case comes
from the fact that the visibility region for a viewpoint
on a non-convex surface has O(n) components of O(n)
edges. In this paper, the time bound is improved for
both cases. This is done for the convex case by a more
accurate analysis of the previous algorithm to obtain a
running time of O(n2). Also, an improvement to the
algorithm for the non-convex case yields a O(n3) time
bound.

If one has to visit multiple viewpoints during
motion along the path, a related problem, called
TBP with Neighborhoods is faced, in which multiple
polygonal regions, called neighborhoods, are given and
the goal is to �nd a tour that visits every neighborhood.
The problem is NP-hard [11] and several approximation
algorithms have been presented for di�erent cases [12-

www.SID.ir



Arc
hi

ve
 o

f S
ID

26 R. Khosravi and M. Ghodsi

14]. Recently, Dror et al. [15] presented an algorithm
for the problem of �nding a shortest path that visits
k, given convex polygons in a given order. Also, they
showed that the problem is NP-hard for the case of
non-convex polygons.

The approaches used in this paper for di�erent
domains have a similar structure, so, they were formu-
lated in a generic form in the following section. Then,
issues speci�c to the cases of simple polygons, polyg-
onal domains and polyhedral surfaces were discussed,
respectively.

GENERAL APPROACH

In this section, a general approach is considered for
�nding the shortest path between two points, with the
constraint that at least one point on the path is visible
from a given viewpoint. Let P be the geometric domain
of the problem under consideration. P is considered as
a set of points, Vp as the visibility region of the given
viewpoint p 2 P and Bp as the boundary of Vp. In
all domains considered in this paper, Bp consists of a
number of line segments. The set, P � Vp, consists of
a number of connected sets of points, called invisible
regions of the domain.

A path between two points, s and t in P , is called
a p-visible path, if it has a non-empty intersection with
Vp. The goal of this paper is to compute the shortest
path, p-visible path, between s and t. Note that in
polygonal domains and polyhedral surfaces, there may
be no \unique" shortest path between two points, so,
there may be several shortest p-visible paths between
s and t in those cases. In the authors algorithms, the
concentration is on �nding one of these paths. Let q
be the �rst point visible from p, when walking along
a shortest p-visible path from s to t. Obviously, q lies
somewhere on Bp, and the subpaths from s to q and
from q to t are locally optimal. So, the problem is
reduced to �nding a point q with this property.

The main idea of the algorithm is to partition Bp

into a set of intervals, such that for each interval, I , one
can easily �nd the point, q(I) 2 I , whose total shortest
distance to s and t is minimum among all points on
I . Then, q is the one with the minimum total shortest
distance.

To do this, the notion of interval of optimality is
used, which has been previously used in works on this
topic [4]. A connected set of points, I on Bp, is an
interval of optimality, with respect to a point, x 2 P ,
if the shortest paths from x to any point inside I have
a �xed combinatorial structure. The set of all such
intervals is denoted by Lx. When it is clear from the
context, one may use \interval" instead of the term of
\interval of optimality". To partition Bp, Ls and Lt

are computed and the endpoints of the intervals in the

two sets are merged to obtain a set of intervals denoted
by Ls;t (Figure 1).

Intervals in Ls (resp. Lt) can be found by
intersecting Bp with the edges of the shortest path
map of s (resp. t), although computing the entire
set of intervals may not be necessary. For the case
of polyhedral surfaces, a subdivision of the surface is
used giving the same information as the shortest path
map for the two-dimensional cases.

Based on the above de�nitions, the generic algo-
rithm for computing shortest p-visible path between s

and t is sketched as the following:

1. Compute Bp (or the relevant portion of it);

2. Compute the set Ls;t on the relevant subset of Bp;

3. For each interval I 2 Ls;t, �nd the point q(I), which
has the minimum total distance from s and t;

4. Let q be the point with the minimum total distance
from s and t among fq(I) : I 2 Ls;tg;

5. Report a shortest path from s to q appended by a
shortest path from q to t.

The �rst two steps in the above algorithm depend on
the speci�c geometric domain of the problem, which is
considered in the succeeding sections.

SIMPLE POLYGONS

For the case of simple polygons, many shortest path
problems have linear algorithms, due to the fact that
there is exactly one \taut-string" between any two
points in a simple polygon that can be found using
the dual of a triangulation for the polygon, which is a
tree. In the method presented by Guibas et al. [1], one
can construct the shortest path map of a given source
point using a DFS traversal of the mentioned tree. The

Figure 1. An interval of optimality I 2 Ls;t (shown with
heavy solid line). q(I) 2 I is the point with minimum
total shortest path distance to s and t.

www.SID.ir



Arc
hi

ve
 o

f S
ID

Shortest Paths with Single-Point Visibility Constraint 27

method maintains a funnel-like structure during this
traversal to construct the shortest path map. It will
be considered how to use this structure to �nd the
intervals of optimality on the relevant portion of Bp

in linear time.
In this case, P is supposed to be a simple polygon

with n edges. Bp is also a simple polygon, whose edges
are extensions of segments connecting p to the vertices
of P visible from p. Hence, each edge of Bp decomposes
P into two parts, one contains Vp and the other is an
invisible region (Figure 2). If either s or t lies inside
or on the boundary of Vp, the shortest path between s

and t is already p-visible. The same is true if s and t lie
in two di�erent invisible regions (like the points x and
z in Figure 2). This is due to the fact that the only way
for the path to exit from an invisible region is to cross
an edge of Vp. So, one can assume that the points s and
t are both in one invisible region. This invisible region
is named W . Note that testing the above conditions
can be done in O(n) total time.

Based on the above assumption, the computations
can be restricted to the relevant portion of Bp, which is
a single edge, e, common to Vp and W . It can be easily
veri�ed that in this case, the shortest p-visible path
does not enter Vp, just touches Vp and returns (like
the path between x and y in Figure 2). The reason is
obvious, since one can take a shortcut along e between
the point where the path enters Vp and the point where
it exits. So, the problem is to �nd the set of intervals
of optimality on the edge e.

Since the shortest path does not exit W , one can
�nd the intervals on e easily using the shortest path
algorithm of [1] to construct the shortest path map
of a simple polygon. W is considered as the input
polygon to the mentioned algorithm, with s as the
source point. During the DFS traversal, the boundary
edge, e, is �nally, visited (Figure 3). Assuming the
funnel-like structure maintained during the traversal
has the form [ul; ul�1; � � � ; u1; a; w1; � � � ; wk] at that

Figure 2. A simple polygon with a viewpoint p inside it.
The shaded area is Vp and there are six invisible regions in
the polygon. The shortest path between x and z is already
p-visible, while the shortest p-visible path between x and y

touches e and returns.

Figure 3. Intervals of optimality on the edge e obtained
by running a shortest path algorithm in the polygon W .

time, with a = u0 = w0 as its cusp (thus, e = ulwk),
the rays emanating from ui (resp. from wi) and passing
through ui+1 (resp. through wi+d) partition e into
k+l�1 intervals. Each interval has the property where
the last polygon vertex, on the shortest paths from s

to all of its points, is the same. These intervals form
the set, Ls.

Computing the set, Ls;t, for this case is now easy.
One has to compute Ls and Lt using the method
mentioned above, and a merging process is required to
obtain Ls;t from the computed intervals. Assuming the
shortest Euclidean distances from s and t to all vertices
of P have already been computed, the following lemma
is obtained.

Lemma 1

Let I be an interval in Ls;t. One can �nd the point
q(I) on I with minimum total distance to s and t in
constant time.

Proof

I has the property where the last vertices of the
shortest paths from s and t to an arbitrary point on
I are the same for all points of I . Let u (resp. v)
be the last vertex on the shortest paths to form s

(resp. t) to the points of I . To �nd q(I), v can be
re
ected about the line supporting I and the re
ected
point be connected to u. If the segment obtained in
this way intersects I , the intersection point will be
q(I). Otherwise, q(I) will be one of the endpoints of I ,
depending on which side of I lies the intersection point
between the segment and the line supporting I .�

Based on the above discussions, the following
steps are taken to compute the shortest p-visible path
in a simple polygon:

1. If p is visible from either s or t, report the shortest
path between s and t;

2. Compute the visibility polygon of p(Vp);

www.SID.ir



Arc
hi

ve
 o

f S
ID

28 R. Khosravi and M. Ghodsi

3. Compute the invisible regions in which s and t lie;

4. If the invisible regions of s and t are di�erent, report
the shortest path between s and t, otherwise, name
the invisible region in which both s and t lie, as W ;

5. Run the shortest path algorithm in the simple
polygon W twice, assuming s and t as the source
point each time. As the result of this step, the
following information is generated:

� Shortest distances from both s and t to every
vertex of P ;

� The two sets Ls and Lt;

6. Compute Ls;t by merging the end points of the
intervals in Ls and Lt;

7. For each interval, I 2 Ls;t, �nd the point q(I),
which has the minimum total distance from s and
t. Let q be the point among all q(I) that has the
minimum total distance;

8. Report the shortest path from s to q appended by
the shortest path from q to t.

To analyze the running time of the algorithm,
observe that the check in step 1 of the above algorithm
can be easily done in linear time. Step 2 can be done
using the linear time algorithm of Lee [16,17]. To
compute the invisible region in which s (resp. t) lies
(step 3), one can traverse the boundary of the invisible
region, starting from the intersection of the ps (resp.
pt) directed half-line and the boundary of P . This can
be done in linear time, assuming that the vertices of
P are in order. Step 5 is calling the shortest path
algorithm of Guibas et al. [1] twice which can be done
in O(n) time. Since the funnel structure is stored in a
�nger search tree [18], which is based on the B-tree data
structure, one can obtain the sorted list of intervals in
Ls and Lt both in O(n) time. Therefore, Ls;t can be
computed in linear time (step 6). Finally, the minimum
point, q, can be computed in O(n) time, according to
Lemma 1. Each step of the algorithm uses, at most,
O(n) space, hence, the overall algorithm needs linear
time and space. Thus, one has the following result for
the case of simple polygons.

Theorem 1

Given a pair of points, s and t, and a viewpoint, p,
inside a simple polygon, the shortest p-visible path
from s to t inside the polygon can be computed in O(n)
time and O(n) space.

POLYGONAL DOMAINS

In this case, P is supposed to be a polygonal domain
with total number of n edges. The problem is to �nd
a shortest obstacle-avoiding p-visible path between s

and t. It is assumed that the domain is bounded by a

given simple polygon with a number of (simple, non-
overlapping) polygonal obstacles inside. By free space,
one means the set of points inside or on the bounding
polygon minus the interior of the obstacles. The
shortest path map of the free space can be computed
using the algorithm of Hershberger and Suri [3], in the
worst-case optimal time O(n logn), using O(n log n)
space, where n is the total number of vertices of
the domain. The subdivision can be used to answer
single-source shortest path queries, using classic point-
location algorithms in logarithmic time.

As stated earlier, the main challenge in a partic-
ular domain is to �nd the set of intervals of optimality
e�ciently. Taking the same approach as the case of
a simple polygon, one must �nd the invisible region in
which s and t lie (W ) and run a shortest path algorithm
(such as [3]) to construct the shortest path map of W
and take the intervals made on the edges common toW
and Vp. However, unlike the case of simple polygons,
the boundary between W and Vp may consist of more
than one edge. So, there may be cases where the only
shortest p-visible path between s and t enters Vp from
one edge and exits from another, while s and t both lie
in one invisible region, W , and the only shortest path
between them lies completely inside W (Figure 4).

Based on the above observation, the general
approach presented in the previous section is used
without major modi�cations for the case of polygonal
domains. To compute Ls and Lt, the shortest path
map of the domain is computed twice, with respect
to the points s and t and the intersections of the two
maps are found with Bp. To �nd the intersections, one
can use known algorithms for the subdivision overlay,
such as the algorithm of Finke and Hinrichs [19], which

Figure 4. The shortest p-visible path between s and t

(shown with dots) crosses part of Vp (lightshaded) while s
and t are in one invisible region and the shortest path
between them (dashed line) does not cross Vp. Dark
shaded polygons are obstacles.

www.SID.ir



Arc
hi

ve
 o

f S
ID

Shortest Paths with Single-Point Visibility Constraint 29

solves the problem in optimal time, O(n + k), where
k is the number of intersections, which is O(n2) in
the worst case. So, the method computes Ls and
Lt in O(n2) time. Note that to compute Ls;t, one
needs to merge the endpoints of the intervals in Ls

and Lt, which requires having the intervals at each set
in sorted order. The algorithm of Finke and Hinrichs
produces the output subdivision in a quad view data
structure [20], which allows ordered traversal of the
intervals in Ls or Lt, using the operations provided for
traversal of vertex rings and edge rings in the output
subdivision.

Now, the running time of the algorithm is ana-
lyzed in this case. Computing the visibility polygon
can be done using the optimal algorithm of He�ernan
and Mitchell [21], which requires O(n + h logh) time
(h is the number of obstacles in the domain, which
is O(n) in the worst case). Constructing the shortest
path maps takes O(n log n) time and the same space.
Computing Ls and Lt is done in O(n2), based on the
preceding lemma. Finally, the minimum point, q, can
be computed in O(n2) time, since the size of Ls;t is
O(n2) and the property stated in Lemma 1 holds in
this case too. Thus, one has the following result for
the case of polygonal domains.

Theorem 2

Given a pair of points, s and t, and a viewpoint, p,
inside a polygonal domain, a shortest p-visible path,
from s to t inside the free space, can be computed in
O(n2) time and the same space.

POLYHEDRAL SURFACES

In this section, the geometric domain of polyhedral
surfaces, are considered, i.e., P is the surface of a
polyhedron. In the case of a convex polyhedron,
Vp is a connected region whose boundary consists of
O(n) edges of P . In a non-convex case, Vp is a set
of possibly disconnected regions of total complexity
of O(n2). As the complexity of the visibility region
of a point on a (possibly non-convex) polyhedron is
quadratic in size and the algorithms for �nding the
visibility map are superquadratic in general [22], one
assumes that the visibility region of the point to be
seen is determined through a preprocessing stage and
one focuses on �nding a shortest p-visible path.

The problem of �nding the shortest path between
two points on the surface of a polyhedron is well
studied. Especially, Chen and Han [5] presented a
method for building a subdivision of the surface, which
can be used for �nding the shortest path from a
�xed source to a given query point e�ciently. The
subdivision can be built in O(n2) time. The best
known algorithm for �nding the shortest paths on
polyhedral surfaces is in [6], which �nds a shortest

path in O(n log2 n), using the wavefront propagation
method.

Shortest Paths on a Polyhedron

The related terminology borrowed from [4] is brie
y
reviewed. Two faces, f and f 0, are said to be edge-
adjacent if they share a common edge, e. A sequence
of edge-adjacent faces is a list of one or more faces,
F = (f1; f2; � � � ; fk+1), such that fi is tedge-adjacent
to fi+1 (sharing a common edge ei). The (possibly
empty) list of edges " = (e1; e2; � � � ; ek) are referred to
as an edge sequence and the vertex of face f1 opposite
e1 is referred to as the root of " (Figure 5).

Each face has a two-dimensional coordinate sys-
tem associated with it. If faces f and f 0 are edge-
adjacent sharing edge e, the planar unfolding of face
f 0 onto face f is de�ned as the image of points of f 0,
when rotated about the line through e into the plane
of f , such that the points of f 0 fall on the opposite side
of e to points of f . Extending this notation, it is said
that an edge sequence " = (e1; e2; � � � ; ek) is unfolded,
as follows: Rotate f1 around e1 until its plane coincides
with that of f2; rotate f1and f2 around e2 until their
plane coincides with that of f3, continue in this way
until all faces (f1; f2; � � � ; fk) lie in the plane of fk+l.

It is said that a path � connects the edge sequence,
" = (e1; e2; � � � ; ek), if � consists of segments which join
interior points of e1; e2; � � � ; ek (in that order). A path
on P is called geodesic if it is locally optimal and cannot
be shortened by small perturbations. The following
lemma (taken from [4]) characterizes such paths.

Lemma 2

The general form of a geodesic path is a path which
goes through an alternating sequence of vertices and
(possibly empty) edge sequences, such that the un-
folded image of the path along any edge sequence is a
straight line segment and the angle of the path passing
through a vertex is greater than, or equal to, �. The
general form of an optimal path is the same as that of a
geodesic path, except that no edge can appear in more
than one edge sequence and each edge sequence must
be simple.

Figure 5. Shortest path from s to t unfolded along its
edge sequence.

www.SID.ir



Arc
hi

ve
 o

f S
ID

30 R. Khosravi and M. Ghodsi

Computing the Shortest p-Visible Paths

Consider a maximal set of points on Bp whose shortest
paths to a point, x, connect the same edge sequence.
Such points form an interval that belongs to Lx. The
set, Lx;y, is de�ned similarly (Figure 6).

To compute the set, Lx, a subdivision presented
in [5] is used, which decomposes the surface to a
number of regions such that a shortest path from x

to a point inside one region has a �xed combinatorial
structure (i.e., connects the same edge-sequence). This
subdivision plays a role similar to that of a shortest
path map in two dimensions. To obtain the subdivi-
sion, the surface of P is cut along the shortest paths
from x to all the vertices of P . The resulting surface can
be laid out on a common plane. The layout obtained in
this manner is called the inward layout of P (also called
star unfolding [23]). The vertices of this polygon are
the vertices of P , together with the images of the source
point, x, under di�erent unfoldings and the edges are
the shortest paths from the source to the vertices of P .
A subdivision of the inward layout can be obtained by
constructing the Voronoi diagram on the layout, with
respect to the images of the source point (Figure 7).
This subdivision has the property where the points in
the same region are closer to the corresponding image
of the source than to other images and their shortest
paths from the source pass through the same edge
sequence. The set, Lx, is obtained by intersecting
Bp with the edges of the subdivision mentioned above,
considering x as the source point.

To bound the number of intervals in Lx, observe
that the subdivision has two kinds of edge that are to
be intersected with Bp: The shortest paths to vertices
(cuts) and the edges of the Voronoi diagram(ridges).
The number of these edges is O(n). In the convex case,
the edges of Bp are the edges of P too and may have
O(n2) intersections with cuts and ridges in the worst

Figure 6. ab is an interval in Lx and cb is an interval in
Lx;y.

Figure 7. The inward layout of a box. Solid lines are the
edges of the subdivision that are part of polyhedron edges.
Dashed lines are edges of the Voronoi diagram (ridges)
and dotted lines are shortest paths from images of the
source to vertices (cuts).

Figure 8. Constructing a convex polyhedron wiht O(n2)
intervals.

case. In contrast, for the non-convex polyhedra, Bp has
O(n) components, each with O(n) edges, which are not
necessarily parts of the edges of P . In this case, each
component may have O(n2) intersections with cuts and
ridges, resulting in O(n3) intersections in general. So,
the size of Lx will be O(n2) in convex and O(n3) in
non-convex cases. Note that it can be shown that these
bounds are tight (Figure 8 shows a convex case).

For the non-convex case, the inward layout may
overlap itself. The algorithm for computing the Voronoi
diagram, in this case, is slightly di�erent and is given
in [5]. In this case, an interval in Lx has the property
where there is a vertex, v, of the polyhedron, such
that every shortest path from x to a point on the

www.SID.ir



Arc
hi

ve
 o

f S
ID

Shortest Paths with Single-Point Visibility Constraint 31

interval passes through v as the last vertex and the
edge sequence from v to points on the interval is the
same. As the �rst part of the path is �xed among the
points on the interval, given an interval, I 2 Ls;t, one
can still �nd the point, q(I), whose total distance from
s and t is minimum in constant time, provided that,
when computing the intervals, the distance is stored to
the pseudo-source associated with the interval.

Following the general approach stated before,
these steps are to be taken to compute a shortest p-
visible path between s and t:

1. If p is visible from either s or t, report a shortest
Euclidean path between s and t;

2. Run a shortest path algorithm on the surface P
twice, assuming s and t as the source point each
time, to �nd the shortest distance from both s and
t to every vertex of P . As a result of this step, two
subdivisions of the surface are built, with respect
to s and t;

3. Compute the set Ls;t;

4. For each interval, I 2 Ls;t, �nd the point, q(I),
which has the minimum total distance from s and
t. Let q be the point among all q(I) that has the
minimum total distance;

5. Report a shortest path from s to q, appended by a
shortest path from q to t.

To analyze the running time of the algorithm, observe
that the check in step 1 of the above algorithm can be
done in time proportional to the size of the visibility
region, which is less than the time bounds stated for
the whole algorithm. Computing the subdivisions, with
respect to s and t, takes O(n2) time for both cases
(step 2). Analyzing step 3 (computing Ls;t) should be
done separately for the cases of convex and non-convex
polyhedra.

For the convex case, Vp consists of one or more
faces of the polyhedron, so its boundary consists of
polyhedron edges. Hence, for an arbitrary x, the size
of Lx will be O(n2). Using the algorithm of Chen and
Han, one can �nd these intervals in O(n2) time, since
the algorithm keeps track of the intersection of shortest
paths to vertices with the edges of the polyhedron.
Furthermore, the intervals obtained in this way are
in sorted order, since the algorithm keeps the shortest
paths to the vertices sorted in angular order around
the source point, x. Hence, the total time to �nd Ls

and Lt is O(n
2), in this case. Computing Ls;t is done

by merging the endpoints of the intervals in Ls and Lt,
which also needs O(n2) time.

For the non-convex case, Vp may be disconnected,
with a total complexity of O(n2) edges (not necessarily
parts of the edges of P). In this case, one cannot
use the information about the intersections between

the edges of Bp with those of P obtained by the
shortest path algorithm. To compute Lx, one needs to
intersect the edges of Bp with cuts and ridges, yielding
to a maximum of O(n3) intervals. This takes O(n3)
time using the same method as the case of polygonal
domains. Thus, �nding Ls;t can be done in O(n3) time.

Finally, the minimum point, q, can be computed
in O(n2) (resp. O(n3)) time for the convex (resp. non-
convex) case. It can be easily veri�ed that the space
complexity of the algorithm is O(n2) (resp. O(n3)).
Thus, the following result is obtained for the case of
polyhedral surfaces:

Theorem 3

Given a pair of points, s and t, a viewpoint, p, and the
visibility region of the viewpoint, Vp, on the surface of
a polyhedron, a shortest p-visible path from s to t can
be computed in O(n2) time for the convex case and
O(n3) time for the non-convex case.

CONCLUSION

The problem of �nding a shortest path between two
points with single-point visibility constraint is studied
in various domains summarized in Table 1. The
time bound for the �rst case is the same as the
bound for the standard shortest path problem (without
constraint), so this bound cannot be improved any
further. However, the case of polygonal domains and
polyhedral surfaces may be improved. The case for
polygonal domains can be studied further to see if it
is not necessary to construct the entire set of intervals
of optimality. Also, it is possible to improve the case
for the polyhedral surfaces, due to the existence of the
subquadratic algorithm of Kapoor [6] for �nding the
shortest paths on polyhedral surfaces, which uses the
wavefront propagation method.

There may be several extensions that can be
considered. One extension is to use other metrics for
distance computations (e.g., link-distance or weighted
region) while having the visibility constraints. For
some cases, it is possible to use the same framework
as used in the current paper, i.e. constructing shortest
path maps according to the metric used and �nding
the set of intervals of optimality on the boundary.
However, it is possible that for some metric, there may
be more speci�c and more e�cient algorithms.

Table 1. Summary of time and space complexity of the
algorithm in various domains.

Domain Time Space

Simple polygons O(n) O(n)

Polygonal domains O(n2) O(n2)

Convex polyhedral surfaces O(n2) O(n2)

Non-convex polyhedral surfaces O(n3) O(n3)

www.SID.ir



Arc
hi

ve
 o

f S
ID

32 R. Khosravi and M. Ghodsi

Another extension is to constrain the path to meet
an arbitrary general region, not necessarily a visibility
region. A generalization of the authors' algorithm to
this case is straightforward for some domains (e.g.,
polygonal domains), since special properties about
visibility regions in those domains were not used.
Other domains (e.g. simple polygons) require more
study.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referee
for his/her valuable comments. Furthermore, this work
has been supported by a grant from IPM School of
Computer Science (No. CS 1382-2-02).

REFERENCES

1. Guibas, L.J. et al. \Linear-time algorithms for visi-
bility and shortest path problems inside triangulated
simple polygons", Algorithmica, 2, pp 209-233 (1987).

2. Mitchell, J.S.B. \Shortest paths among obstacles in
the plane", Internat. J. Comput. Geom. Appl., 6, pp
309-332 (1996).

3. Hershberger, J. and Suri, S. \An optimal algorithm
for Euclidean shortest paths in the plane", SIAM J.
Comput., 28(6), pp 2215-2256 (1999).

4. Mitchell, J.S.B. et al. \The discrete geodesic problem",
SIAM J. Comput., 16, pp 647-668 (1987).

5. Chen, J. and Han, Y. \Shortest paths on a polyhe-
dron", Internat. J. Comput. Geom. Appl., 6, pp 127-
144 (1996).

6. Kapoor, S. \E�cient computation of geodesic shortest
paths", Proc. 32th Annu. ACM Sympos. Theory Com-
put., Atlanta, Georgia, USA, pp 770-779 (1999).

7. Boissonnat, J.D. et al. \Shortest paths of bounded
curvature in the plane", Internat. J. Intell. Syst., 10,
pp 1-16 (1994).

8. De Berg, M. and Van Kreveld, M. \Trekking in the
alps without freezing or getting tired", Algorithmica,
18, pp 306-323 (1997).

9. Efrat, A. et al. \Sweeping simple polygons with a chain
of guards", Proc. 11th ACM-SIAM Sympos. Discrete
Algorithms, San Francisco, California, USA, pp 927-
936 (2000).

10. Khosravi, R. et al. \Shortest point-visible paths
on polyhedral surfaces", Proc. of the 10th Inter-
national Conference on Computing and Information
(ICC1'2000), Kuwait (2000).

11. Gudmundsson, J. and Levcopoulos, C. \Hardness
result for TSP with neighborhoods", Technical Report

LU-CS-TR:2000-216, Department of Computer Sci-
ence, Lund University, Sweden (2000).

12. Mata, C. and Mitchell, J.S.B. \Approximation algo-
rithms for geometric tour and network design prob-
lems", Proc. 11th Annu. ACM Sympos. Comput.
Geom., Vancouver, BC, Canada, pp 360-369 (1995).

13. Gudmundsson, J. and Levcopoulos, C. \A fast ap-
proximation algorithm for TSP with neighborhoods",
Nordic J. of Computing, 6(4), pp 469-488 (1999).

14. Dumitrescu, A. and Mitchell, J.S.B. \Approximation
algorithms for TSP with neighborhoods in the plane",
Proc. 12th A CM-SIAM Sympos. Discrete Algorithms,
Washington, DC, USA, pp 38-46 (2001).

15. Dror, M. et al. \Touring a sequence of polygons", Proc.
35th ACM Sympos. Theory Comput., San Diego, CA,
USA, pp 473-482 (2003).

16. Lee, D.T. \Visibility of a simple polygon", Comput.
Vision Graph. Image Process., 22, pp 207-221 (1983).

17. Joe, B. and Simpson, R.B. \Correction to Lee's visibil-
ity polygon algorithm", BIT, 27, pp 458-473 (1987).

18. Guibas, L.J. et al. \A new representation for linear
lists", Proc. 9th Annu. ACM Sympos. Theory Comput.,
Boulder, Colorado, USA, pp 49-60 (1977).

19. Finke, U. and Hinrichs, K. \Overlaying simply con-
nected planar subdivisions in linear time", Proc. 11th
Annu. ACM Sympos. Comput. Geom., Vancouver, BC,
Canada, pp 119-126 (1995).

20. Finke, U. and Hinrichs, K. \The quad view data struc-
ture: a representation for planar subdivisions", Proc.
4th Sympos. Advances in Spatial Databases, Portland,
Maine, USA, pp 29-469 (1995).

21. He�ernan, P.J. and Mitchell, J.S.B. \An optimal
algorithm for computing visibility in the plane", SIAM
J. Comput., 24(1), pp 184-201 (1995).

22. O'Rourke, J. \Visibility", In Handbook of Discrete
and Computational Geometry, J.E. Goodman and J.
O'Rourke, Eds., pp 467-480, CRC Press LLC (1997).

23. Agarwal, P.K. et al. \Star unfolding of a polytope with
applications", SIAJ J. Comput., 26(6), pp 1689-1713
(1997).

www.SID.ir


