Scientia Iranica, Vol. 13, No. 4, pp 387-394
(© Sharif University of Technology, October 2006

Drawing Free Trees on 2D Grids Which
are Bounded by Simple Polygons

A. Bagheri* and M. Razzazi'

In this paper, a polyline grid drawing of free trees on two dimensional grids, bounded by simple
polygons, is investigated. To the authors' knowledge, this is the first attempt made to develop
algorithms for drawing graphs on two dimensional grids bounded by simple polygons.

INTRODUCTION

Graphs are known structures with many applications.
Hence, drawing graphs “nicely” has been investigated
by many researchers (see [1] for an overview). There
are some aesthetics for the nice drawing of graphs
that are mentioned in the literature. Some of the
most important aesthetics are: Minimizing the number
of edge crossings and bends per edge, increasing the
symmetry of drawings, maximizing the amount of angle
between two incident edges, and distributing vertices
uniformly on the drawing regions [1].

While graph drawing on restricted 2D surfaces has
many applications, little research has been done on this
interesting problem [2]. The existing graph drawing
algorithms almost always draw graphs on. unbounded
planes and a few of them simply.draw graphs in regions
bounded by rectangles. However, there are applications
in which it is desirable or required to.draw graphs in
regions which are bounded by general polygons. For
example, consider a graphical user interface where one
would like to show a graph inside a prescribed polygon,
or designing PCB of.an electronic device which should
be T-shaped.

Drawing graphs on a 2D grid with a prescribed
size is NP-Hard [3]. "In this paper, a polyline grid
drawing of free trees on 2D grids bounded by simple
polygons is investigated. The straight skeletons of
the given polygons and the Simulated Annealing (SA)
method is used in the heuristic algorithm, and it
is attempted to achieve nice drawings, with respect

*. Corresponding Author, Department of Computer Engi-
neering and IT, Amirkabir University of Technology,
Tehran, I.R. Iran.

1. Department of Computer FEngineering, Institute for
Studies in Theoretical Physics and Mathematics
(I.P.M.), Tehran, I.R. Iran.

to the number of edge crossings and uniform node
distribution aesthetics. The edges of the given trees
may ‘have some bends in the drawings, where the
given bounding polygons are non-convex. Davidson
and Harel introduced an algorithm for drawing graphs
inside given rectangles using the SA method [4], thus
called throughout this paper. In order to make possible
a comparison of their results with the authors’, their
algorithm was extended in order to give it the ability of
drawing graphs inside simple polygons, which is called
the extended SA algorithm throughout this paper.

The experimental results show that the authors’
algorithm produces more symmetry, less edge crossings
and much more uniform node distribution than the
extended SA algorithm. It is believed that this is
because of using the geometric properties of the given
drawing regions using the authors’ algorithm. This
paper is an extension of the authors’ previous paper [5],
which investigates the drawing of free trees on 2D sur-
faces bounded by rectilinear polygons. The algorithm
introduced in [5] also works for simple polygons, but,
to make this paper self-contained, it is mentioned here
with some minor changes. The simulated annealing
method is briefly explained in the following section.
Then, the straight skeleton is briefly described and
the authors’ algorithm is stated. After that, some
drawing results of the algorithm inside simple polygons
are illustrated and compared to the drawing results of
the extended SA algorithm; the experimental results
are also analyzed. Finally, a conclusion is stated.

SIMULATED ANNEALING METHOD

The Simulated Annealing (SA) method is a flexible
optimization method, suitable for large scale combina-
torial optimization problems. The simulated annealing
method was originated in statistical mechanics by
Metropolis et al. [6], and was formulated in general

388

terms by Kirkpatrick et al. [7]. It has been applied
successfully to classical combinatorial optimization
problems, such as the traveling salesman problem and
problems concerning the design of VLSI. The SA
method differs from standard iterative improvement
methods by allowing “uphill” moves - moves that spoil,
rather than improve, the temporary solution [4].

The problems for which the SA method is useful
are characterized by a very large discrete configuration
space, too large for an exhaustive search, over which
an objective cost function is to be minimized (or
maximized). After picking an initial configuration,
most iterative methods continue by choosing a new
configuration at each step, evaluating it and possibly
replacing the previous one with it. This action is
repeated until some termination condition is satisfied
(e.g., no move reduces the objective function). The
procedure ends in a minimum configuration, but, gen-
erally, it is a local minimum rather than the desired
global minimum. The SA method tries to escape these
local minima by using rules that are derived from an
analogy to the process in which liquids are cooled to a
crystalline form; a process called annealing [4].

It is well known that when a liquid is cooled
slowly, it reaches a totally ordered form, called crystal,
which represents the minimum energy state of the
system. In contrast, rapid cooling results in amorphous
structures that have higher energy, representing local
minima. The difference lies in the fact that whena
liquid is cooled slowly, the atoms have time to reach a,
thermal equilibrium at each and every temperature. In
this state, the system obeys the Boltzman distribution:

P(E) ~ e~ F/FT,

Here, P(E) specifies the probability distribution of
the energy values of the states, &, as a function of
temperature T and the Boltzman constant, k. On the
one hand, for every temperature, each energy F has
nonzero probability and, thus, the system can change
its state to one with higher energy. On the other
hand, at a low temperature; the system tends to be in
states with very low energy, with the global minimum
achieved at temperature zero. Metropolis et al. [6]
devised an algorithm for simulating this annealing
procedure by a series of sequential moves. The basic
rule for when the probability with which the system
changes its state from one with energy E; to one with
energy Ej is:

o—(E2—E1)/kT

This rule implies that whenever the energy, Eo, of the
new candidate state is smaller than the current energy,

E, the system will take the move and if it is larger, the
state change is probabilistic. Kirkpatrick et al. [7] were

A. Bagheri and M. Razzazi

apparently the first to realize that the above proce-
dure could be used for general optimization problems.
Several entries must be determined whenever the SA
method is applied. These include the following:

e The set of configuration or state of the system,
including an initial configuration (which is often
chosen at random);

e A generation rule for new configurations, which is
usually obtained by defining the neighborhood of
each configuration and choosing the next configura-
tion randomly from the neighborhood of the current
one;

e The target or cost function, to be minimized over
the configuration space (this is an analogue of the

energy);

e The cooling schedule of the control parameter, in-
cluding initial values.and rules for when and how to
change ite(This is the analogue of the temperature
and it8 decrease.)

e The termination condition, which is usually based
on the time and values of the cost function and/or
the control parameter.

Having defined all of these, the schematic form of
the SA method is as follows. In clause 2(b), random
stands for a real number between 0 and 1, selected
randomly [4].

1. Choose an initial configuration, S;, and an initial
temperature, T';

2. Repeat the following (usually some fixed number of
times):
a. Choose a new configuration, So, from the neigh-
borhood of Sy;
b. Let E; and E» be the values of the cost function
at S1 and So, respectively. If E> < E; or random
< elBEr—E2)/T then, set S; «— Ss.

3. Decrease the temperature, T

4. If the termination rule is satisfied, stop; otherwise,
go back to step 2.

STRAIGHT SKELETONS

There are two types of skeleton for simple polygons,
the medial axis and the straight skeleton. The medial
axis of a given simple polygon, P, consists of all interior
points whose closest point on the boundary of P is not
unique [8]. While the medial axis is a Voronoi-diagram-
like concept, the straight skeleton is not defined using
a distance function, but, rather, by an appropriate
shrinking process. The straight skeleton is defined as
the union of the pieces of angular bisectors traced out
by the polygon vertices during the shrinking process.

Drawing Free Trees on 2D Grids

Imagine that the boundary of P is contracted towards
P’s interior, in a self-parallel manner and at the same
speed for all edges. Lengths of edges might decrease
or increase in this process. Each vertex of P moves
along the angular bisector of its incident edges. This
situation continues as long as the boundary does not
change topologically. There are two possible types of
change:

1. Edge Event: An edge shrinks to zero, making its
neighboring edges adjacent.

2. Split Event: An edge is split, i.e. a reflex vertex
runs into this edge, thus, splitting the whole poly-
gon. New adjacencies occur between the split edge
and each of the two edges incident to the reflex
vertex.

After either type of event, one is left with one or
two new polygons which are shrunk recursively if they
have a non-zero area. The straight skeleton, in general,
differs from the medial axis. If P is convex, then,
both structures are identical; otherwise, the medial
axis contains parabolically curved segments around the
reflex vertices of P, which are avoided by the straight
skeleton. In this paper, the drawing of free trees
on 2D grids bounded by general simple polygons is
considered and to avoid parabolically curved segments,
the straight skeletons are used as the skeletons of
polygons. In the sequel, the skeleton means-the
straight skeleton. The skeleton of a given n-gon P
partitions the interior of P into n connected regions,
which are called faces. Each face is related to just
one edge of P. Bisector pieces are called ‘arcs (or
sometimes edges), and their endpoints are called nodes
of the skeleton. When P is simple, the structure is a
tree [9,10]. Figure 1 shows the straight skeleton of a

Figure 1. The straight skeleton of a simple polygon.

389

simple polygon. In this figure, the 4-gon abcd is a face;
a, b, ¢ and d are the nodes; and (b, ¢), (¢,d) and (d, a)
are the arcs of the skeleton.

DRAWING ALGORITHM

In this section, the authors’ algorithm is explained
and some new definitions used in the algorithm are
introduced. (From now on, for simplicity, trees are
used for free trees and polygons for simple polygons.)
The algorithm produces a polyline grid drawing of the
given tree, which is bounded by the given polygon. All
the vertices and bends are put on the grid points, but
the edge crossings are not restricted to being on the
grid points.

Definition 1

For a Tree, T', and.its node, 7, let Neighbor Nodes (7; T')
be the setof all the nodes of T" which are adjacent to
1.

Considering the tree structure of skeletons, the
above definition is also applicable to skeletons.

Definition 2

For a skeleton, S, and its node i, let Neighbor Faces
(¢; S).be the set of all the faces which have node i as a
vertex on their boundary.

Definition 3

For a skeleton, S, and its arc, (7, j), let Neighbor Faces
Area (i,7) be the sum of the areas of the faces which
lie on the sides of arc (i, 7).

Definition 4

For a skeleton, S, and its node, ¢, Wxr(7; S) is defined
as follows:

WNF(i;S): Z

fENeighbor Faces(z;5)

Area(f),

Area (f) denotes the area of face f.

Definition 5
For a skeleton, S, and its arc, (i,7), Weon(i|j; S) is
defined as follows:

Wen(ilj; S) = >

mENeighbor Nodes(4;S),m#j
— Neighbor Faces Area(i, 7).

Definition 6
For a Tree, T, and its edge, (i,7), Wen(ilj;T) is
defined as follows:

Won(ilj; T)= > Won(mli; T) + 1.
meéENeighbor Nodes(4;T),m#j

WCN(m|i; S) + WNF(i; S)

390

Definition 7

For a skeleton, S, and its arc, (i,7), Wa((i,7);S), the
weight of arc (i, 7), is defined as follows:

Wa((i,7); S) = [Wen(ilj; S) — Wen (45)]

The above definition is also applicable to the edges
of trees. In the following, the drawing algorithm is
described. The pseudo-code of the algorithm is given
in Figure 2. First, the straight skeleton of the given
polygon and the areas of its faces are computed. Let
the boundary of a face be called Pface. The straight
skeleton, S, of the given polygon, P, is obtained
using [10]. Since all the Pfaces are simple polygons, one
can use the formula given in [11] to compute the areas
of the faces. Then, for each arc (7,) of the skeleton,
Wa((i,7); S) is computed as the weight of arc (i,7)
of S, and, for each edge (i,7) of the given tree, T,
Wa((i,7); T) is computed as the weight of edge (4, j) of
T.

Definition 8

The middle edge of a skeleton, S, (a tree T') means an
edge of the skeleton (the tree) that has the minimum
weight of all the other edges of the skeleton (the tree).

Definition 9

A skeleton (a tree) may have more than one middle
edge. It can be shown that, in this case, these edges
share an endpoint, which is called the middle node,

Definition 10

The middle-connected node means a node.that is
connected to the middle node by an edge.

The tree is mapped onto the skeleton using the
recursive mapping procedure. The pseudo-code of
the recursive mapping procedure is given in Figure 3.
Using this, the vertices of the tree will be distributed
all over the given region. The recursive mapping
procedure maps the middle edge or the middle node
of the tree onto a proper point of the skeleton in
each recursion. This' mapping procedure provides a
mapping list of the nodes of the tree, which are mapped
onto the corresponding points of the skeleton. This
mapping list is used by the SA method to spread the

Input: A free tree, T, and a simple polygon, P.

Output: A polyline grid drawing of tree T" bounded by

polygon P.

Begin

. Compute the polygon skeleton and the area of the faces.

. Compute the weights of the arcs of the skeleton.

. Compute the weights of the edges of the tree.

. Call the mapping procedure for the tree and the skeleton.

. Remove the possible crossings between the edges of the
tree and the sides of the polygon.

6. Draw the tree using the SA method.

L bD =

=1}

End.

Figure 2. The authors’ drawing algorithm.

A. Bagheri and M. Razzazi

Input: A weighted free tree, T, and a weighted skeleton, S.
Output: A mapping list.
Begin

1. Find the middle edges and the middle nodes of T and S.
2. Add to the mapping list the middle edges and the middle
nodes.
3. If Both T and S have just middle edges, then, do the
following:
38.1. Omit these edges from T and S. This divides T
into two sub-trees, 77 and T3, and S into
two sub-skeletons, S; and Ss.
3.2. Update the weights of the sub-trees and the
sub-skeletons.
3.3. Call the mapping procedure for T1 and S;.
3.4. Call the mapping procedure for T> and Ss.
4. If Both T and S have middle nodes, then, do the
following:
4.1. Omit the middle node and its incident edges from T
and, for S, just disconnect the arcs which are connected at
the middle node. This divides T and S into two or more
sub-trees and sub-skeletons.
4.2, Update the weights of the sub-trees and the
sub-skeletons.
4.3. Divide the sub-trees and the sub-skeletons into the
same number of balanced groups.
4.4. Call the mapping procedure for each group of
sub-skeletons and its related group of sub-trees.
5. If T has a middle node and S has just a middle edge, then,
do the following:
5.1. Omit the middle node and its incident edges from T
and the middle edge from S. This divides T into two or
more sub-trees and S into two sub-skeletons.
5.2. Update the weights of the sub-trees and the
sub-skeletons.
5.3. Divide the sub-trees into two balanced groups.
5.4. Call the mapping procedure for each group of
sub-trees and its related sub-skeleton.
6. If S has a middle node and T has just a middle edge, then,
do the following:
6.1. Disconnect the arcs connected to the middle node of
S and omit the middle edge from T. This divides S into
two or more sub-skeletons and T into two sub-trees.
6.2. Update the weights of the sub-trees and the
sub-skeletons.
6.3. Divide the sub-skeletons into two balanced groups.
6.4. Call the mapping procedure for each group of
sub-skeletons and its related sub-tree.

End.

Figure 3. The recursive mapping procedure.

vertices of the tree all over the given region. The
termination condition of the procedure is satisfied when
the number of the nodes of the given tree or the number
of the edges of the skeleton becomes less than one.
Considering the weighted skeleton and the weighted
tree, four cases are possible at each call of the mapping
procedure.

Case 1

In this case, both the tree and the skeleton have middle
edges but no middle nodes. The middle edge of the
skeleton is mapped onto the middle edge of the tree and
these two middle edges are omitted from the skeleton
and the tree. This divides the tree and the skeleton,
respectively, into two sub-trees and two sub-skeletons.

A record should be added to the mapping list
to show that the middle edge of the tree is mapped
onto the middle edge of the skeleton. First, the middle

Drawing Free Trees on 2D Grids

edge of the tree is substituted with a path of length
two, whose extreme vertices are the endpoints of the
middle edge and whose internal vertex is a dummy
vertex. It is recorded in the mapping list that this
newly added dummy vertex of the tree is mapped onto
the middle point of the related middle edge of the
skeleton. After termination of the algorithm, these
dummy vertices may appear as bends of the edges of
the tree.

The weights of the edges of the two sub-skeletons
and the two sub-trees are updated. To do this,
consider each sub-skeleton (sub-tree) as a directed tree
whose root is the endpoint of the omitted middle edge
that is attached to this sub-skeleton (sub-tree) and
the edges are directed from the root toward the leaves.
Suppose edge (v,u) is the omitted middle edge of
skeleton S (tree T'). The following pseudo code shows
how the weights of the edges of each sub-skeleton of
skeleton S are updated. This pseudo-code can be used
to update the weights of the edges of each sub-tree of
tree T', by replacing S with T':

for each directed edge (4,) of each sub-skeleton rooted
at u, do:

{ Wenl(ily; S) = Wen(ilj; S) — Wen (v]u; S)
Wa((i, 5); S) = [Wen(ils; S) — Wen(jli; S)|

for each directed edge (i,) of each sub-skeleton rooted
at v, do:

{ Wenlily; S) = Wen(ilj; S) — Wen(ulv; S
Wa((i,5);) = [Wen(ilj; S) — Wen (5li; S)|

The mapping procedure is applied recursively for
each sub-skeleton and its related sub-tree.

Case 2

In this case, both the tree.and the skeleton have a
middle node. The(middle node and its incident edges
are omitted from the tree. But, for the skeleton, one
just disconnects the ‘edges that are connected at the
middle node. So, the skeleton and the tree are divided,
respectively, into two or more sub-skeletons and sub-
trees. It is recorded in the mapping list that the middle
node of the tree is mapped onto the related middle node
of the skeleton.

The weights of the edges of the sub-skeletons and
the sub-trees are updated. To do this, consider each
sub-skeleton as a directed tree whose root is the middle
node and each sub-tree as a directed tree whose root
is a middle-connected node and the edges are directed
from the root toward the leaves. Suppose node u is
the middle node of skeleton S (tree T'). The following
pseudo code shows how the weights of the edges of the

391

sub-trees and the sub-skeletons are updated.

SUMr = Y Wen(ilu;T),
(u,i)eT

for each directed edge (i,7) of each sub-tree rooted at
middle-connected node v, do:

{ Wonl(ilj; T)=Wen(ilj; T)=SUMpr+Wen (v|u; T)-1
Wa((i,7);T) = [Wen(ilj; T) = Weon (jli;T)|

SUMs = E(u,i)es WCN(”“’? S)

for each directed edge (i,7) of each sub-skeleton,
which is rooted at middle node u and includes
middle-connected -node v, do:

{ Wenl(ili; S)= Weonl(ilj; S)—SUMs+Wen (v|u; S)
} Wa((isg); S) =Wen (ilj; S) = Wen (j1i; 5)]

In this case, one may have more than two sub-
trees and two sub-skeletons. The sub-skeletons and the
sub-trees are divided into the same number of groups
of sub-skeletons and sub-trees, which are balanced, as
much as possible, with respect to Weon(v|u; S) and
Wen(plg; T), where w is the middle node and v is a
middle-connected node of the skeleton, ¢ is the middle
node and p is a middle-connected node of the tree. For

each group of sub-skeletons and its related group of
sub-trees, the mapping procedure is applied recursively.

Case 3

In this case, the tree has a middle node but the skeleton
doesn’t. The skeleton is divided into two sub-skeletons
and the weights of the edges of the sub-skeletons are
updated, as in Case 1. The tree is divided into two
or more sub-trees and the weights of the edges of the
sub-trees are updated, as in Case 2. It is recorded in
the mapping list that the middle node of the tree is
mapped onto the middle point of the related middle
edge of the skeleton. If there are more than two sub-
trees, the sub-trees are divided into two groups of sub-
trees, which are balanced, as much as possible, with
respect to Wen (v|u; T'), where u is the middle node of
the tree and v is a middle-connected node of the tree.
The mapping procedure is applied, recursively, for each
group of sub-trees and the related sub-skeleton.

Case 4

In this case, the skeleton has a middle node but the
tree doesn’t. The tree is divided into two sub-trees and
the weights of the edges of the sub-trees are updated,
as in Case 1. The skeleton is divided into two or
more sub-skeletons and the weights of the edges of the
sub-skeletons are updated, as in Case 2. The middle
edge of the tree is substituted with a path of length
two, whose extreme vertices are the endpoints of the

392

middle edge and whose internal vertex is a dummy
vertex. It is recorded in the mapping list that this
newly added dummy vertex of the tree is mapped onto
the middle point of the related middle edge of the
skeleton. If there are more than two sub-skeletons,
the sub-skeletons are divided into two groups of sub-
skeletons, which are balanced, as much as possible,
with respect to Weon(v]u;S), where w is the middle
node of the skeleton and v is a middle-connected node
of the skeleton. The mapping procedure is applied,
recursively, for each group of sub-skeletons and the
related sub-tree.

After mapping of the tree onto the skeleton, the
possible crossings between the edges of the tree and the
sides of the polygon are removed. Before applying the
SA method, all the nodes of the tree that are included
in the mapping list, are placed at the related points of
the skeleton. Assuming the closest located node of a
tree node is an already located node of the tree with the
shortest graph-theoretic distance from the given node
among all the previously located nodes of the tree, the
remaining nodes of the tree are placed at the location
of their closest located node. When all the nodes of
the tree are initially located, if the given polygon is
non-convex, then, there is the possibility of crossing
between the edges of the tree and the border of the
polygon. If this is the case, these crossings are removed
by introducing some dummy nodes and bending the
crossing edges of the tree. All the coordinates are made
integral by truncating or rounding the coordinates.
The resulting configuration is the starting configuration
of the SA method.

At the end, the SA method is used to draw the
tree inside the given polygon. It is attempted .to keep
the nodes of the tree close to their corresponding points
of the skeleton by adding some new virtual nodes and
edges to the given tree. The authors” algorithm guides
the SA method, so, the drawing results have fewer edge
crossings and show more symmetries:than the results
of the extension of the algorithm introduced in [4], the
extended SA algorithm.

DRAWING RESULTS

In this section, the results obtained from the experi-
ments are presented and to provide an intuitive sample,
an example of the drawing results of the algorithm
and the extension of the SA algorithm are illustrated.
The same parameters and factors are used for the
cost function of the SA method as the extended SA
algorithm, which is also used by [4].

Figures 4 and 5, respectively, illustrate the draw-
ings of a 31-node complete binary tree inside a W-
shaped polygon by the extended SA algorithm and
by the authors’ algorithm. The size of the bounding
rectangle, which includes the W-shaped polygon, is

A. Bagheri and M. Razzazi

Figure 4. Drawing of a 31-node complete binary tree by
the extended algorithm inside a W-shaped polygon.

Figure 5. Drawing of a 31-node complete binary tree by
the authors’ algorithm inside a W-shaped polygon.

200 x 400. The experimental results show that the
algorithm produces much more symmetry and less
edge crossings than the extended SA algorithm. The
algorithm divides the given tree into some clusters of
nodes by means of the recursive mapping procedure
and distributes the nodes on the different parts of the
given polygon. Because of this, the authors’ algorithm
produces fewer edge crossings than the extended SA
algorithm.

Let the experimental results about the number of
edge crossings and the quality of node distribution of
the authors’ algorithm and the extended SA algorithm
be presented. The tests were performed on a PC
with a 500 MHZ Intel MMX processor with 64 MB
of RAM, running Windows 98. 10 groups of random
free trees were generated, each group consisting of 10
trees, 100 trees in total. The trees belonging to group
4, ¢ = 1,---,10, had 10 x ¢ nodes. The maximum
node degree of the trees was bounded by 10. The
five different simple polygons were also considered as
the bounding polygons of the drawing regions. The
authors’ algorithm and the extended SA algorithm
were applied to draw these 100 free trees inside these
5 polygons. The tests were repeated 10 times and
the average number of edge crossings and the average
quality of node distribution were computed. For

Drawing Free Trees on 2D Grids

evaluating the quality of the node distribution, the
reverse of Y, 1/D?; was used, where D;; is the
Euclidean distance between the vertices ¢ and 7. This
term has been used as the node distribution term in
the cost function of the SA method in [4].

Since the results of the experiments on different
polygons were similar, for brevity, only one sample is
presented here. As an example of the experimental
results, one can see Figures 6 and 7, which compare
the average number of edge crossings and the average
quality of the node distribution of the two algorithms
for drawing of a 31-node complete binary tree inside
a C-shaped polygon (see Figure 8). Figure 6 presents
the ratio of the average number of edge crossings of the
extended SA algorithm to the average number of edge
crossings of the authors’ algorithm. Figure 7 presents
the ratio of the average quality of the node distribution
of the authors’ algorithm to the average quality of the
node distribution of the extended SA algorithm. As
can be seen from the diagrams, the authors’ algorithm
produces fewer edge crossings and much more uniform
node distribution than the extended SA algorithm.

Number of edge crossings inside P

" 144 »
=0 ;
E 124)
z ’
S 104]
% ’
g 8 ‘
w '
s o J
— s
- 14 -
(7] ,.,

2 Y

¢ -+-9

Number of tree nodes

Figure 6. The average number of edge crossings inside

polygon P1.
Naode distribution quality inside Py

2 7

E 6

S -

2 59 e

= \

o 4 “

-E Ly

;o

g 24 .

= Te - e

w1 *---9-9

T T
10 20 30 40 50 60 TFO 80 90 100
Number of tree nodes

Figure 7. The average quality of node distribution inside
polygon P1.

393

Figure 8. Polygon P1.

This is due to utilizing the geometrical properties of
the bounding polygons using the authors’ algorithm.

Figure 6 shows that by increasing the number
of nodes of given trees while the drawing region is
fixed, the ratio of the number of edge crossings of the
extended SA algorithm to the number of edge crossings
of the authors” algorithm increases. This behavior is
expected because the authors’ algorithm distributes the
nodes of the given trees more intelligently than the
extended SA algorithm. In fact, the authors’ algorithm
clusters the nodes of the tree and draws each cluster
on a different part of the given drawing region, which
helps to reduce the number of edge crossings. Also,
it is obvious that the work will be more difficult for
the extended SA algorithm when the congestion of the
nodes increases.

Figure 7 shows that by increasing the number
of nodes of given trees while the drawing region is
fixed, the ratio of the quality of the node distribution
of the authors’ algorithm to the quality of the node
distribution of the extended SA algorithm approaches
one. This behavior is also expected, because it is ob-
vious that when the congestion of the nodes increases,
the choices for the node placements decrease and both
algorithms produce a more similar node distribution.

CONCLUSION

In this paper, the polyline grid drawing of free trees on
2D grids bounded by simple polygons is investigated.
The authors’ algorithm uses the straight skeletons of
the bounding polygons and the simulated annealing
method. The drawing results show that the algorithm
draws trees nicer than previous known algorithms [4],
with respect to the number of edge crossings, symmetry
and uniform node distribution. This result is due
to utilizing the geometrical properties of the bonding
polygons using the authors’ algorithm. To the au-
thors’ knowledge, these works are the first attempts
to develop algorithms for drawing graphs on two
dimensional grids bounded by simple polygons [5,12].

394

ACKNOWLEDGMENT

This research was in part supported by a grant from
LP.M. (No. CS1384-4-05).

REFERENCES

1.

Battista, G.D., Eades, P., Tamassia, R. and Tollis,
I.G. “Algorithms for drawing graphs: An annotated
bibliography”, Comput. Geom. Theory Appl., 4, pp
235-282 (1994).

Felsner, S., Liotta, G. and Wismath, S. “Straight-line
drawings on restricted integer grids in two and three
dimensions”, P. Mutzel, M. Junger and S. Leipert,
Eds., Proc. 9th Int. Symp. on Graph Drawing (GD’01),
Lecture Notes in Computer Science, 2265, Springer,
pp 328-342 (2002).

Formann, M. and Wagner, F. “The VLSI layout prob-
lem in various embedding models”, in Proc. Internat.
Workshop on Graph-Theoretic Concepts in Computer
Science (WG), Lecture Notes in Computer Science,
484, pp 130-139 (1991).

Davidson, R. and Harel, D. “Drawing graphs nicely
using simulated annealing”, ACM Transactions on
Graphics, 15(4), pp 301-331 (Oct. 1996).

Bagheri, A. and Razzazi, M. “How to draw free trees
inside bounded rectilinear polygons”, International
Journal of Computer Mathematics, 81(11), pp 1329-
1339 (Nov. 2004).

10.

11.

12.

A. Bagheri and M. Razzazi

Metropolis,, N., Rosenbluth, A., Rosenbluth, M.,
Teller, A. and Teller, E. “Equation of state calculations
by fast computing machines”, J. Chem. Phys., 21(6),
pp 1087-1091 (1953).

Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P.
“Optimization by simulated annealing”, Science,
220(4598), pp 671-680 (1983).

Chin, F., Snoeyink, J. and Wang, C.A. “Finding the
medial axis of a simple polygon in linear time”, Proc.
6th Ann. Int. Symp. Algorithms and Computation
(ISAAC 95), Lecture Notes in Computer Science 1004,
pp 383-391 (1995).

Aichholzer, O.; Aurenhammer, F.; Alberts, D. and
Gartner, B. “A novel type of skeleton for polygons”,
Journal of Universal Computer Science, 1(12), pp 752-
761 (1995).

Felkel, P. and Obdrzalek, S. “Straight Skeleton im-
plementation”, Proceedings of Spring Conference on
Computer Graphics, ISBN 80-223-0837-4, pp 210-218
(1998).

Bourke, <P. “Calculating the area and centroid
of a polygon”; http://www.swin.edu.au/astronomy/
pbourke/geometry/polyarea/ (1988).

Bagheri, A. and Razzazi, M. “Drawing free trees in-
side. convex regions using polygon skeleton”, Pakistan
Journal of Applied Sciences, 2(1), pp 17-23 (2002).

