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Performance Evaluations and Comparisons of

Several LDPC Coded MC-FH-CDMA Systems

H. Behroozi�, J. Haghighat1, M. Nasiri-Kenari2 and S.H. Jamali3

In this paper, the application of regular Low-Density Parity-Check (LDPC) codes in Multi-
Carrier Frequency-Hopping (MC-FH) CDMA systems is studied. To this end, di�erent well-
known constructions of regular LDPC codes are considered and the performance of LDPC
coded MC-FH-CDMA systems, based on these constructions, are evaluated and compared in
a frequency-selective slowly Rayleigh fading channel. These results are compared with those
previously reported for super-orthogonal convolutionally coded MC-FH-CDMA systems. The
simulation results indicate that the LDPC coded MC-FH-CDMA system signi�cantly outperforms
the uncoded and super-orthogonal convolutionally coded schemes. To alleviate the restrictions
imposed by well known LDPC construction methods when applied to the coded MC-FH-CDMA
system considered, a new semi-random construction is proposed and its performance is evaluated
in the coded scheme. The simulation results indicate that this new construction substantially
outperforms other well-known construction methods in the application considered.

INTRODUCTION

Recently, a multicarrier frequency-hopping CDMA
(MC-FH-CDMA) system, using the concept of fre-
quency diversity on a phase-coherent Frequency-
Hopping Spread Spectrum (FHSS) system [1], was pro-
posed [2] as a candidate for future high-rate multimedia
wireless multiple access communication systems [3,4].
In this system, the total given bandwidth is equally
divided into Ns subbands, each containing Nh di�erent
orthogonal carrier frequencies. At each bit interval, i,
for each user, k, Ns carriers are chosen fromNs distinct
subbands. These Ns carriers are modulated with the
ith data bit of the user, using binary phase shift-
keying (BPSK) modulation. These modulated carriers
are then added together and transmitted through the
channel. For the next signaling interval, each of these
Ns carriers independently hops in its subband and
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another frequency in the subband is chosen. The
frequency-hopping pattern, which is determined by the
dedicated signature sequence of the user, is assumed
to be known in the receiver. After dehopping at
the receiver side, Ns subband correlators separate the
signal transmitted in di�erent subbands. These Ns

detected signals are used to make a decision on the
transmitted data bit. To this end, the correlators'
weighted outputs are simply combined and the result is
compared to threshold zero to make a decision on the
transmitted data bit. Note that the modulating and
demodulating of the Ns carriers simultaneously can be
implemented easily by using the Inverse Fast Fourier
Transform (IFFT) and the Fast Fourier Transform
(FFT), respectively.

In the MC-FH-CDMA system described above,
the diversity is obtained via both multicarrier trans-
mission and frequency-hopping. The conventional Fast
Frequency-Hopping (FFH) systems, which transmit
one carrier at a time and change it in a fraction of
a bit duration, make coherent demodulation relatively
di�cult. However, the MC-FH-CDMA system allows
slower carrier frequency hopping and imposes each
carrier to hop solely in a fraction of the total given
bandwidth. This system is thoroughly studied and
analyzed in [5]. Thus, with slow frequency-hopping,
with a period at least equal to the bit duration, a
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coherent reception will be feasible in a slowly fading
channel [2]. (Note that in some applications, FFH
systems are more plausible and desirable, such as
military applications. With fast hopping, it is much
more di�cult for the transmission to be intercepted
by an undesired user.) To visualize the di�erence, the
traditional slow and fast frequency hopping schemes
are depicted in Figure 1.

Even though coherent detection gives a somewhat
superior performance compared to the non-coherent
case, in a case of fast fading, a non-coherent reception
is inevitable. Single user performance of MC-FH and
FFH systems using non-coherent detection has been
evaluated in [6], in which it has been shown that
the non-coherent MC-FH system outperforms the FFH
system when the channel delay spread is severe, while
the FFH system is superior to the MC-FH system
for a fast fading channel. The multiuser performance
of a MC-FH system, with coherent and non-coherent
detections in additive white Gaussian noise (AWGN)
and a frequency-selective slowly Rayleigh fading chan-
nel, is evaluated in [7]. The results in [7] have shown
that the coherent detection substantially outperforms
the non-coherent detection. In addition, it has been
shown that [8] the multiuser performance of MC-FH
and FFH systems is almost identical, when utilizing
non-coherent detection. In this paper, it is assumed
that the coherent reception is feasible and the focus is
on coherent detection.

To exploit the given bandwidth more e�ciently,
in [5], the authors have proposed to use a practi-
cal low rate error correcting code in the MC-FH-
CDMA system, which does not require any additional
bandwidth to that needed in an uncoded MC-FH-
CDMA system. The idea is as follows: Instead of
sending the Ns carriers at each bit interval with an
identical phase (0� or 180�), which is determined by
the corresponding input data bit, these carriers can

Figure 1. Slow and fast frequency hopping schemes.

be sent with di�erent phases, the values of which are
determined with output symbols of an encoder. In
fact, with the above insight, the uncoded scheme is
considered as a coded scheme with a repetition block
code of rate 1=Ns. Since a repetition code is not
a good code, it is expected that applying a more
powerful code with the same rate, 1=Ns, substantially
improves the system performance without requiring
any bandwidth expansion in addition to that needed
by the uncoded scheme. The error correcting code
considered in [5] is a super orthogonal convolutional
code [9], as its path generating function is available for
performance evaluation. The authors have shown [5]
that the super orthogonal convolutionally coded MC-
FH-CDMA system substantially outperforms the un-
coded scheme.

On the other hand, LDPC codes, originally intro-
duced by Gallager [10] and rediscovered by MacKay
and Neal [11], have received considerable attention
recently and their applications in various communica-
tion systems, including OFDMA, Mobile Satellite and
CDMA systems, have been considered. The interest in
these codes is due to their near Shannon limit perfor-
mance and their simple descriptions, implementations
and decoding algorithms.

In this paper, the application of a LDPC code
in a MC-FH-CDMA system is considered and the
performance of the LDPC coded system is evaluated,
using the coded scheme introduced in [5] and de-
scribed above, in a Rayleigh fading channel. Di�er-
ent constructions of regular LDPC codes, are exam-
ined, namely Gallager [10], MacKay [11] and semi-
random [12] constructions. It will be shown that for the
application considered, these constructions have some
practical limitations. To alleviate those limitations, a
modi�ed semi-random construction is proposed. The
simulation results indicate that the LDPC coded sys-
tems in the cases considered perform better than the
super orthogonal coded systems. Furthermore, the
results show that the proposed modi�ed semi-random
construction displays a better performance than the
other well-known regular construction methods for the
application considered, despite its very low encoding
complexity.

The outline of the paper is as follows. In the
following section, the LDPC coded MC-FH-CDMA sys-
tem and its conventional single user receiver structure
are described. Then, a brief description of LDPC
codes and their di�erent constructions are presented.
After that, the performance of a LDPC coded MC-FH-
CDMA system in Rayleigh fading channels is evaluated
and some simulation results are provided. Then, the
proposed modi�ed semi-random construction of LDPC
codes is described and its performance in the MC-
FH-CDMA system is evaluated. Finally, the paper is
concluded.
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SYSTEM DESCRIPTION

In this section, �rst, a brief description of the MC-
FH-CDMA system is provided, as introduced in [1,5].
In this system, every transmitter sends Ns carriers for
each data bit using BPSK modulation. The carriers are
spaced apart in sequential subbands. The total given
frequency bandwidth is equally partitioned into Ns

subbands, where each subband contains Nh di�erent
frequency carriers spaced apart by fd. fd is chosen
such that every pair of carriers is orthogonal, i.e.,
fd = 1=Ts, where Ts denotes a bit time duration. Thus,
the total frequency carriers available for multiple-
access communications are NsNh. In this system, the
equivalent baseband signal transmitted by user k can
be written as follows:

s(k)(t) =
X
i

Ns�1X
l=0

p
2Pwd

(k)
l;i e

j2�(fl+c
(k)
l;i

fd)(t�iTs)

PTs(t� iTs); (1)

where index l indicates the subband number, Pw is

the transmit power of each carrier and fd(k)l;i g is the
transmitted binary sequence of user k. This sequence

modulates the dedicated carriers. fc(k)l;i g is the pseu-
dorandom sequence of user k, which determines the
carrier frequency selected from each subband, l, during
the ith bit interval. The elements of this sequence are
independent and identically distributed (i.i.d) random
variables, which take on integer values in the interval
[0; Nh � 1]. P�(t) is a rectangular pulse over the
interval [0; �] with amplitude equal to 1. fl is the �rst
carrier frequency in subband l and is equal to lNhfd,
l = 0; 1; 2; � � � ; Ns � 1.

In an uncoded scheme, sequence d
(k)
l;i is Ns repeti-

tions of the user information data sequence, i.e., d
(k)
l;i =

D
(k)
i , for l = 0; 1; � � � ; Ns � 1, where D(k) is the ith

information bit of user k. Thus, the uncoded scheme
can be considered as a coded scheme with a simple
repetition block code of rate 1=Ns. Since the repetition
code is not a good code, a more powerful code can be
used to improve system performance. Use of a LDPC
code is suggested with rate 1=Ns. In the coded scheme

considered, d
(k)
l;i in Equation 1 is the lth code bit of

user k at information bit interval i. Thus, in this coded
scheme, the phase of each carrier is determined by the
corresponding coded symbol. Figure 2 presents a block
diagram of the transmitter structure. In this �gure,
the LDPC encoder is implemented in the same way
as any linear block code, by knowing its generator or
parity-check matrix.

The channel is considered as a frequency-selective
slowly Rayleigh fading channel with an AWGN. How-
ever, each carrier is assumed to experience a frequency-
non selective fading channel, i.e., fd << (�f)c, where
(�f)c is the coherence bandwidth of the channel.
Since, with very high probability, the distance among
adjacent carriers is large as they are located in di�erent
subbands, note that the average frequency distance
between adjacent carriers is Nhfd.) it can well be
assumed that the dedicated carriers experience inde-
pendent at fading. In addition, the Doppler shift is
assumed to be small enough to have a slow fading. The
above assumptions are reasonable for most practical
applications. Propagation measurements in wireless
environments, including indoor, open rural, suburban
and urban areas, show that the delay spread is typically
distributed over the range of [0.1 �s, 3 �s] [13]. So,
for instance, at a bit rate equal to 1Mbps for indoor

Figure 2. Transmitter block diagram of user k.
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environments, which has the delay spread of 0.1 �s,
the coherence bandwidth is larger than the symbol
rate. As a result, each carrier experiences a at
fading. Furthermore, for Nh greater than 20, the
average frequency distance between adjacent carriers
(i.e., Nhfd) is greater than the coherence bandwidth
and, as a result, each carrier experiences independent
fading. Note that for future very high rate wireless
communication networks, to make the carriers experi-
ence independent fading, a serial-to-parallel converter
(like in OFDMA and MC-CDMA systems) might be
required before MC-FH-CDMAmodulation, in order to
reduce the symbol rate in each parallel branch to much
less than the coherence bandwidth of the channel.

Due to the random construction and very sparse
property of the parity-check matrix of a LDPC code,
the decoder of a LDPC code has a built-in \in-
terleaver" [14]. So, one can well assume that the
successive symbols transmitted by the same carrier in
a subband also experience independent fading. Let

g
(k)
l;i = �

(k)
l;i e

j�
(k)
l;i be the channel complex gain observed

by the lth carrier of user k at bit interval i. Then,

g
(k)
l;i s for di�erent values of k, l and i are independent.
Furthermore, since the channel is assumed to be slowly-
fading, i.e., the complex channel gain corresponding to
each carrier does not change signi�cantly during several
bit intervals, the channel gain can be well estimated
at the receiver. However, in the current work, it
is assumed that perfect estimations of the channel
parameters are available and the e�ects of parameter
estimation errors are not considered in the performance
evaluations. Also, the e�ects of the synchronization
errors are not considered. For some recent work on
channel estimations and synchronization problems in a
MC-FH CDMA system and their error e�ects on the
system performance, please see [4,15].

As the channel is assumed to have Rayleigh

distribution, �
(k)
l;i 's are independent from �

(k)
l;i 's, with

�
(k)2

l;i , 
. Also, �
(k)
l;i 's will have a uniform distribution

over the interval [0; 2�]. The received signal, due to
user k, is equal to:

s(k)rec(t) =
X
i

Ns�1X
l=0

g
(k)
l;i

p
2Pwd

(k)
l;i e

j2�(fl+c
(k)
l;i

fd)(t�iTs)

PTs(t� iTs); (2)

For simplicity of presentation, a synchronous system
with perfect power control is assumed. Then, the total
received signal can be written as:

r(t) =

NuX
k=1

s(k)rec(t) + �(t); (3)

where Nu is the number of active users and �(t) is
AWGN with a two sided power spectral density of

N0=2. By substituting Equation 2 in Equation 3, one
has:

r(t) =

NsX
k=1

X
i

Ns�1X
l=0

p
2Pwg

(k)
l;i d

(k)
l;i e

j2�(fl+c
(k)
l;i

fd)(t�iTs)

PTs(t� iTs) + �(t): (4)

In the following, the receiver structures for uncoded
and coded schemes are described. Without any loss of
generality, it is assumed that the desired user is user 1.

Uncoded Scheme

For this system, a single user Maximal Ratio Com-
bining (MRC) receiver is considered. Let the desired
user be user 1. The well-known MRC receiver makes
a decision at each bit interval, i, according to the
following rule:

Re

(
Ns�1X
m=0

Zm;iz }| {
g
(1)�
m;i

Subband correlator outputz }| {
1

Ts

Z (i+1)Ts

iTs

r(t)e�j2�(fm+c
(1)
m;i

fd)tdt

)
| {z }

Decision variable,Zi

1
?
0
0:
(5)

Coded Scheme

The block diagram of the receiver for user 1 is shown
in Figure 3. In this receiver, at each information bit
interval, i, theNs received coded symbol signals carried
by the Ns carriers of that interval are �rst demodulated
and, then, are given to the dehopper followed by a
subband correlator. The subband correlator outputs,
as de�ned in Relation 5, are multiplied by the conjugate

of the channel gains g
1)
m;i's. The real part of these

results, i.e., Re(Zm;i)'s in Relation 5, are given to
the parallel to serial converter and then passed to the
LDPC decoder. In fact, Re(Zm;i) denotes the received
sample (the decoder soft input) corresponding to the
mth transmitted code bit at the ith information bit
interval.

LDPC CODES

LDPC codes, originally invented and investigated by
Gallager [10] in 1962, are linear block error-correcting
codes based on very sparse parity check matrices.
A(N; dv ; dc)-regular LDPC code is a linear binary
code determined by the condition that each code bit
participates in exactly dv parity-check equations and
that each such check equation consists of exactly dc
code bits. In other words, the corresponding parity-
check matrix, H , has dv ones in each column and
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Figure 3. Receiver block diagram (coded scheme) of user 1.

dc ones in each row. Thus, the number of parity
bits and information bits are, respectively, equal to
M = N:dv=dc and K =M �N , where N is the length
of the code. In other words, as both N:dv and M:dc
represent the number of edges in the corresponding
bipartite graph of the parity check matrix, they are
equal. Therefore, the rate, R, of the code is given by
R = 1� (M=N) = 1� (dv=dc).

LDPC Encoding

In the following, the three well-known construction
methods of regular LDPC codes are briey described,
namely, Gallager, MacKay and semi-random construc-
tions, which are applied to the coded MC-FH-CDMA
systems in the next sections.

Gallager Construction

In this construction, the parity-check matrix is divided
horizontally into dv equal size submatrices, each con-
taining a single `1' in each column. The �rst submatrix
is constructed as follows: the ith row contains 1's
in columns (i � 1)dc + 1 to idc. The subsequent
submatrices are merely random column permutations
of the �rst one.

MacKay Construction

MacKay has presented [11] several construction meth-
ods for regular LDPC codes. The best one is used,
for which the parity-check matrix, H , is generated
randomly, with column Hamming weight dv , row
Hamming weight as uniform as possible, and overlap
between any two columns is no greater than one.

Semi-Random Construction

The major problem with regular LDPC codes is their
very high encoding complexity. Since the parity-check

matrix of the code is sparse, the associated generator
matrix will be dense and, as a result, the encoding
process requires a high number of computations. To
overcome this problem, the concept of semi-random
LDPC codes has been introduced [12]. In semi-random
construction, to produce a (N;K) code, the following
parity check matrix, HMN = [hij ], is used:

HM�N =

2
666666666664

1 0 0 � � � 0 �1M 0�K

1 1 0 � � � 0
...

0 1 1 � � � ...
...

...
...

. . .
. . . 0

...

0 � � � 0 1 1 �d�M 0�K| {z }
M

3
777777777775
;

where M = N � K and M 0 = M=dv. Each
component matrix, �iM 0�K , has a random construction
with column weight equal to one and row weight equal
to d0c, where d0c = Kd�=M . As can be observed, in
this construction, the parity check matrix, H , consists
of two parts, only one part of which is generated
randomly. For the systematic codeword, i.e., V =
(p1; � � � ; pM ; u1; � � � ; uk), parity bits are computed as:8><
>:
p1 =

PK
j=1 ujh1;M+j (mod 2)

pm = pm�1 +
PK

j=1 ujhm;M+j (mod 2)

2 � m �M

(6)

where hij is the element in the ith row and jth
column of the parity-check matrix and u1; � � � ; uk are
information bits. E�cient encoding is achieved by di-
rectly computing the parity-check bits from Equation 6
without any requirement to compute the generator
matrix.
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One of the advantages of the semi-random con-
struction is its Unequal Error Protection (UEP).
In [16], Davey has shown that in an irregular LDPC
code, in which symbols do not all participate in the
same number of parity-checks, those symbols partici-
pating in the highest number of parity-check equations
receive the most information during the decoding
process. As a result, the value of those symbols is
determined more quickly and more accurately than the
\less privileged" symbols. This property is called as
Unequal Error Protection (UEP). In the semi-random
construction, information bits have a degree of dv(dv >
2) and parity bits have a degree of 2, except the
parity bit, pM , which is of degree one. Therefore,
the information bits participate in the highest number
of parity-check equations and will be decoded more
quickly with higher reliability. Because of this property,
as seen later, the semi-random code gives a better
performance in comparison with the other two regular
LDPC codes when applied to MC-FH-CDMA systems,
despite its lower encoding complexity.

LDPC Decoding

Iterative soft decoding of LDPC codes can be im-
plemented using the Belief Propagation (BP) algo-
rithm [11]. In this algorithm, information is exchanged
between neighboring nodes in the graph by passing
messages along the edges. At the initial stage, this
algorithm requires the knowledge of the a priori prob-

ability of the transmitted code bit. Let P (dn = z) be
the a priori probability of code bit dn. The value of
this probability is fully related to the modulation used
and the channel characteristics. In the following, in
the Binary Phase Shift Keying (BPSK) modulation, it
is assumed that 0 is mapped to -1 and 1 is mapped
to 1. Let yn be the nth received sample at the LDPC
decoder input, i.e., the real part of Zm;i, as de�ned
in Relation 5, corresponding to code bit dn. Then,
the Log Likelihood Ratio (LLR) of yn is computed as
follows:

LLR = log
p(yn=dn = 0)

p(yn=dn = 1)
: (7)

Then, from Equation 7, the a priori probability of the
corresponding code bit, dn, is easily obtained as:

P (dn = z) = 1=(1 + exp((2z � 1)�LLR)): (8)

In the following section, for performance evaluation,
the a priori probability of the code bit is �rst computed.
Then, by using these values at the initial stage of the
BP algorithm, the performance of the coded system is
evaluated by simulation.

PERFORMANCE EVALUATION
(RAYLEIGH FADING CHANNEL)

A Priori Probability Evaluation for the LDPC
Decoder

As mentioned before, a priori probabilities of the code
bits are required by the LDPC decoder implemented
by the BP algorithm. To this end, one must �rst
compute the distribution of the interference term in the
received samples at the LDPC decoder input. Through
this section and subsequent sections, similar to [5], the
discrete moment generating function (mgf) approach is
used for computing the distribution. Without any loss
of generality, the received signal at the information bit
interval is considered to be zero. So, the subindex zero
is dropped from Zm;0, de�ned in Relation 5. From
Equation 4, the received signal at bit interval zero is
equal to:

r(t) =

NuX
k=1

Ns�1X
l=0

g
(k)
l d

(k)
l

p
2Pwe

j2�(fl+c
(k)
l

fd)t + �(t);
(9)

where, for the sake of simplicity, g
(k)
l;0 , d

(k)
l;0 and c

(k)
l;0 have

been replaced with g
(k)
l , d

(k)
l and c

(k)
l , respectively. For

the desired user (user 1), from Equations 4 and 5, the
subband correlator output, i.e., Zm, is simply obtained
as follows:

Zm =
g
(1)�

m

Ts

Z Ts

0

r(t)e�j2�(fm+c(1)m fd)tdt

=
g
(1)�

m

Ts

Z Ts

0

(
NuX
k=1

Ns�1X
l=0

g
(k)
l d

(k)
l

p
2Pw

ej2�(fl�fm+(c
(k)
l
�c(1)m )fd)t+�(t)e�j2�(fm+c

(1)
m fd)t

)
dt:
(10)

As the carriers are orthogonal, the integral in Equa-
tion 10 is nonzero only for l = m. Consequently, one
has:

Zm = jg(1)m j2d(1)m

p
2Pw

+

NuX
k=2

g
(k)
m g

(1)�

m d
(k)
m
p
2Pw

Ts

TsZ
0

ej2�(c
(k)
m �c(1)m )fdtdt+�m;

(11)

where �m is the complex noise component. In Equa-
tion 11, the �rst term is due to the desired user signal
and the second and third terms are the multiple-access
interference and white Gaussian noise components,
respectively. The real part of the subband correlator's
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output, i.e., Re(Zm), is simply obtained as:

ym = Re(Zm) = d(1)m (�(1)m )2
p
2Pw

+

I(k)m

NuX
k=2

z }| {
�
(1)
m �

(k)
m d

(k)
m

p
2Pwcos(�

(k)
m ��(1)m )

Ts

TsZ
0

ej2�(c
(k)
m �c(1)m )fdtdt

| {z }
Im

+ �m; (12)

where g
(k)
m = �

(k)
m ej�

(k)
m , I

(k)
m is the interference caused

by interfering user k at mth subband correlator's
output, and Im is the total interference due to all
interfering users at the mth subband correlator output
of user 1. In Equation 12, �m, the noise component, is a
Gaussian random variable with zero mean and variance
�2� equal to N0(�

(1)
m )2=Ts (or, equivalently, equal to

NsPw(�
(1)
m )2=b), where b is the received signal to

noise ratio per bit.
It is necessary to obtain the mgf of Im conditioned

on g
(1)
m . To this end, the mgf of the interference caused

by each interfering user k must be determined. Then,
as the interfering user components are independent, the
mgf of the total interference is computed by multiplying
the mgfs of di�erent interfering users' components.
Under the assumption of full power control, the mgfs
of the interference, due to di�erent users, are identical.
Therefore, it is su�cient to determine the mgf of the
interference caused by only one user.

Since random variable �
(k)
m � �

(1)
m has uniform

distribution on interval [��(1)m ; 2� � �
(1)
m ] and �

(k)
m has

a Rayleigh distribution with �
(k)2
m = 
 = 1 and, also,

�
(k)
m and �

(k)
m ��(1)m are independent, it can be concluded

that �
(k)
m cos(�

(k)
m � �

(1)
m ) has a Gaussian distribution

with zero mean and variance equal to 1/2 [17]. As
a result, it can easily be shown that random variable

�
(1)
m d

(k)
m

p
2Pw�

(k)
m cos(�

(k)
m � �

(1)
m ) has also a Gaussian

distribution with zero mean and variance equal to

Pw(�
(1)
m )2. On the other hand, the integral in Equa-

tion 12 is equal to Ts for c
(k)
m = c

(1)
m and zero for

other values of c
(k)
m . Considering the distribution of

fc(k)m g's, the probability that c
(k)
m is equal to c

(1)
m is

� = 1=Nh and the probability that c
(k)
m is not equal

to c
(1)
m is � = 1 � � = 1 � 1=Nh. Consequently, the

moment generating function of I
(k)
m , conditioned on

�
(1)
m = Re(g

(1)
m ), is computed as:

�
I
(k)
m j�m

(s) = � + � exp

�
s2Pw�

2
m

2

�
; (13)

where �
(1)
m has been replaced with �m. Then, from

Equations 12 and 13, the mgf of Im is simply obtained

as:

�Imj�m(s) =

NuY
k=2

�
I
(k)
m j�m

(s)

=

�
� + � exp

�
s2Pw�

2
m

2

��Nu�1

: (14)

Now, from Equation 12, one can easily compute the
conditional mgfs of the soft received samples, i.e., ym,
conditioned on �m and the corresponding transmitted

code symbol, i.e., d
(1)
m , as follows:

�
ymj�m;d

(1)
m
(s) = �ymj�m;�1(s) = exp(�s�2m

p
2Pw)

:

�
� + � exp

�
s2Pw�

2
m

2

��Nu�1

: exp

�
s2Pw
2

:
Ns

b
:�2m

�

=

Nu�1X
i=0

�
Nu � 1

i

�
�Nu�1�i�i exp

 
�s
p
2Pw

+ (iPw + Pw:
Ns

b
)
s2

2

!
(�2m); (15)

where the second equality simply follows from poly-
nomial expansion of the second multiplication term.
Without loss of generality,

p
2Pw = 1 is set. Since

�m has a Rayleigh distribution, �2m have a chi-square
distribution of order 2. Taking the expectation on �m's
and using some algebraic manipulations lead to:

�ymj�1(s) =

Nu�1X
i=0

�
Nu � 1

i

�
�Nu�1�i�i

1� s�
�
i+ Ns

b

�
s2

4

=

Nu�1X
i=0

�
Nu � 1

i

�
�Nu�1�i�iq

1 + i+ Ns

b�
1

s� pi;1
+

1

pi;2 � s

�
; (16)

where pi;1 and pi;2 are given, as follows:

pi;1 =
2

�1�
q
1 + i+ Ns

b

;

pi;2 =
2

�1 +
q
1 + i+ Ns

b

: (17)

pi;1s are all negative and pi;2s are all positive. Also,
the Region Of Convergence (ROC) of an mgf always
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includes the axis, s = j!. Therefore, from Equation 16,
the conditioned probability density function (pdf) of
soft received samples, i.e., yms, can easily be obtained
using an inverse Laplace transform, as follows:

fym=�1 =

Nu�1X
i=0

�
Nu � 1

i

�
�Nu�1�i�iq

1 + i+ Ns

b

: exp

 
2

i+Ns

b

 
�ym�jymj:

s
1+i+

Ns

b

!!
:
(18)

Now, one can easily use Equations 7, 8 and 18 to
compute the a priori probability of a transmitted code
bit, which is required by the LDPC decoder.

Computation of a Priori Probabilities Under
the Gaussian Assumption

If one assumes that the distribution of interference
at the output of the subband correlator is Gaussian,
the mean and variance of this random variable should
be determined, in order to compute the a priori
probabilities. In terms of mgf, the mean and variance
of an arbitrary random variable, X , can be expressed
as:

X = EfXg = d�X (s)

ds
jS=0;

and:

�2X = EfX2g � (EfXg)2

=
d2�X(s)

ds2
jS=0 �

�
d�X (s)

ds
jS=0

�2

:

Using Equation 16, it can be shown that:

d�Imj�m(s)

ds
jS=0 = 0;

and:

d2�Imj�m(s)

ds2
jS=0 = �PW (Nu � 1)�2m:

So, at the weighted output of each subband correlator,
m, one has a Gaussian signal, with the following mean
and variance:(

ym = ��2m
p
2Pw

�2ym =
�
�(Nu � 1) + Ns

b

�
Pw�

2
m:

(19)

Therefore:

�
Imj�m;d

(1)
m
(s)=exp

��
�s+ s2

4

�
�(Nu�1)+Ns

b

��
�2m

�
;

where
p
2Pw = 1. After taking expectation on �ms

and doing some manipulations, the conditional pdf of
ym can be obtained, as follows:

fym=�1 =
1q

1 + Nu�1
Nh

+ Ns

b

:exp

 
2

Nu�1
Nh

+Ns

b

 
�ym�jymj:

s
1+

Nu�1
Nh

+
Ns

b

!!
:
(20)

This formula simpli�es the computational complexity
of the a priori probability formula in Equation 18. In
the next subsection, the performance of LDPC codes in
a MC-FH-CDMA system is evaluated, based on both
exact and Gaussian approximated evaluations of the a
priori probabilities.

Simulation Results

In this section, some simulation results are presented
to evaluate the performance of LDPC coded MC-FH-
CDMA systems. MacKay, Gallager and semi-random
constructions of the LDPC codes are considered. The
belief propagation algorithm is used for decoding of
the LDPC codes, in which Equations 7, 8 and 18 are
�rst used to compute the a priori probability of the
transmitted code bit. Under Gaussian assumption, the
a priori probability is calculated, using Equation 20
instead of Equation 18. Then, the BP algorithm uses
this a priori probability for its initial stage, to decode
the transmitted code bits.

A processing gain of NhNs = 320 and signal
to noise ratio per bit (b) of 12 dB are assumed.
Figures 4a and 4b present the plots of the Bit Error
Rate (BER) versus the number of users for uncoded
and coded schemes in a Rayleigh fading channel at
a number of subbands, i.e., Ns, equal to 2 and 4,
respectively. The Rayleigh parameter, 
, is set to one
and the maximum number of decoding iterations (im)
for LDPC codes is set to 1000. To evaluate the bit
error probability, 100000 blocks are transmitted. In
these �gures, the performance of LDPC coded schemes,
with a data block length of 500 and dv = 3, is
compared with the lower bound of BER of the super-
orthogonal convolutional coded schemes, as reported
in [5]. (Note that the performance evaluation of the
super-orthogonal coded schemes in [3] is based on
the analytical results in which only the lower and
upper bound of BER can be computed using the
path generating function of the super-orthogonal code.)
Even though the super-orthogonal codes show a good
performance at BER=10�3, which is suitable for voices
at lower BER, required for high-quality services such
as data, LDPC codes perform substantially better. For
instance, at BER=10�5, the number of users supported
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Figure 4. Bit error rate versus the number of users in
MC-FH-CDMA system. b is set to 12dB. The average
number of decoding iterations is 214.407 for (a) and
339.518 for (b).

by the semi-random code is about 25 (for Ns = 2)
and 60 (for Ns = 4), whereas, by the super-orthogonal
codes, it is, at most, 2 (forNs = 2) and 30 (forNs = 4).
From these �gures, it can also be realized that the semi-
random code, despite its encoding simplicity, performs
better than the more complex Gallager and MacKay
codes.

The performance of the Gaussian distribution
assumption for multiuser interference at the output
of the subband correlator is illustrated in Figure 5,
where the bit error rate versus the number of users
for Ns = 4 under MacKay construction is evaluated.
As can be realized, the Gaussian assumption, while
simplifying the computation of a priori probabilities,

Figure 5. Bit error rate versus the number of users in
LDPC coded MC-FH-CDMA system (MacKay
construction).

Figure 6. BER versus the number of users in LDPC
coded MC-FH-CDMA system (MacKay construction)
parameterized by the maximum number of iterations (im).
The average numbers of decoding iterations for im = 1000,
200 and 50 are 214.407, 25.673, and 18.965, respectively.

performs well in the LDPC coded MC-FH-CDMA
system.

To consider the e�ect of a maximum number of
decoding iterations in the performance of a LDPC
decoder, the BER versus the number of users parame-
terized by the maximum number of iterations is shown
in Figure 6. It can be realized that the performance
of a LDPC decoder with im = 200 is close to the
performance of the LDPC decoder with im = 1000.
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MODIFIED SEMI-RANDOM
CONSTRUCTION

The well-known constructions of regular LDPC codes,
briey described in the previous section, impose some
restrictions. That is that M (the number of parity
bits) must be divisible by dv. The semi-random
construction also requires the divisibility of K � dv by
M . Furthermore, in the application considered (MC-
FH-CDMA), the code rate must be equal to 1=Ns, in
order not to have any bandwidth expansion, due to the
coding applied. Thus,

K � dv
M

=
R� dv
1�R

=
dv

Ns � 1
; (21)

where the �rst equality follows from de�nition of the
code rate, R = K

N = K
K+M , and the second equality

follows from the requirement of the coded MC-FH-
CDMA, i.e., R = 1

Ns
. As a result, this requirement

imposes the limitation of the divisibility of dv byNs�1.
To overcome these restrictions for the applica-

tion considered, a new construction will be presented,
based on the semi-random code, which will be called
\modi�ed semi-random" construction. In this method,
an appropriate value is chosen for dv (without any
restriction) and d0v is computed as follows:

d0v =

�
K � dv
M

�
: (22)

The deterministic part of the parity check matrix, H ,
is similar to that of the semi-random construction and
the random part is generated by matrix H 0

K�M with
weight d0v per column, using the MacKay construction.
So, the matrix, H , for this construction is given as
follows:

HM�N =

2
6666664

1 0 0 � � � 0 j
1 1 0 � � � 0 j
0 1 1 � � � ... j H 0T

M�K
...

...
. . .

. . . 0 j
0 � � � 0 1 1 j

3
7777775 :

Note that, in this construction, the value of dv does
not depend on the value of Ns. As a result, for the
application considered, its value can be selected small
enough for good performance [10], even for high values
of Ns.

The performance of the LDPC coded MC-FH-
CDMA system has been evaluated using the proposed
construction by simulation. Figures 7a and 7b present
the plots of BER versus the number of users for
di�erent constructions of LDPC codes. As can be
realized, the simple modi�ed semi-random construction
outperforms the other constructions, especially at high
values of Ns. For instance, at Ns = 4 and BER

Figure 7. Performance of di�erent construction methods
of regular LDPC codes for MC-FH-CDMA system.

equal to 10�5, the number of users supported by
MacKay, Gallager, semi-random and modi�ed semi-
random constructions are about 46, 47, 57 and 65,
respectively.

CONCLUSION

In this paper, a LDPC coded multi-carrier frequency-
hopping CDMA scheme was �rst considered, which
does not require any additional bandwidth to that
needed by an uncoded spread spectrum MC-FH-
CDMA system. Then, the performance of the coded
system was evaluated, using di�erent constructions of
LDPC codes in a Rayleigh fading channel. The simu-
lation results have indicated that the coded schemes
substantially outperform the uncoded scheme. Fur-
thermore, it has been realized that the LDPC coded
scheme performs substantially better than the super-
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orthogonal convolutionally coded scheme (previously

reported in [5]) at low BERs. It has also been observed
that the semi-random LDPC codes perform very well,
despite their simple encoding structures. Then, to
overcome the restrictions imposed by the well-known
constructions of LDPC codes for the application con-
sidered, a modi�ed semi-random construction has been
proposed. Despite its encoding simplicity, which is
the same as that of the semi-random construction, the
proposed modi�ed construction outperforms previous
construction methods.
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