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In this paper, the seminal work of Eshragh and Modarres has been discussed in a statistical
estimation problem called the Decision on Belief (DoB). The proposed approach has been
thoroughly investigated and presented in a novel way, called the 3-phase approach. New
instructive examples and detailed calculations are presented to illustrate the logic behind the
algorithm in a clear way. The original work has further been developed into new directions,
leading to new results.

INTRODUCTION

Ali Eshragh Jahromi and Mohammad Modarres
Yazdi [1-3] have developed a new approach for sta-
tistical estimation problems called Decision on Beliefs
(DoB). In this paper, it is preferred calling the new
approach the Eshragh-Modarres algorithm or, simply,
the E-M algorithm.

The problem of statistical estimation can be
stated in the following way [4]. The random variable,
X , with an unknown Probability Distribution Function
(PDF), fX , is given. In order to identify fX from a set
of candidate PDFs, S = ff1; f2; � � � ; fmg, an algorithm
was developed using a special case of an Optimal
Stopping Problem [5-8]. At any stage, an experiment is
conducted from the presently unknown fX to generate
a new observation and then a decision is made, either to
select one of the candidate functions in S, or, to move
forward to conduct another experiment. It is assumed
that a cost, C, is incurred in obtaining each observation
and the total number of possible observations cannot
exceed N .

Vector Ok = (x1; x2; � � � ; xk) illustrates the past
k observations at stage i = k for i = 1; 2; � � � ; k; � � � ; N .
Since making a decision is done in a stochastic en-
vironment, a probability on the event ffX � fig is
introduced, i.e., PrffX � fig, the belief on PDF
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fi, which is denoted as Bi(xk; Ok�1). By obtaining
a new observation, Bi(xk ; Ok�1) is updated using a
formula derived from the Bayes theorem. This formula
is used to calculate the posterior beliefs and it is proved
that the algorithm is convergent, i.e., after getting
enough observations and updating the beliefs with
probability one, the belief from which the observations
came converges to one and the other beliefs converge
to zero.

At any stage, the decision space is con�ned to
Esm;gr, representing the subspace containing fsm and
fgr, where sm denotes the second best �t candidate
for fx and gr denotes the �rst best �t candidate for
fx. Note that Bgr(xk ; Ok�1) = maxifBi(xk ; Ok�1); i =
1; 2; � � �mg. Within the subspace of Esm;gr and at
any stage like k, the strategy for making a decision is:
fx � fgr, if Bgr(xk ; Ok�1) � dsm;gr(n) and, otherwise,
k = k+1, i.e., a new observation should be taken. The
dsm;gr(n), as a real value, de�nes the expectation of the
probability of correct selection and is a threshold for
decision making. The value for dsm;gr(n) is calculated
using a stochastic dynamic programming approach, in
which the expectation of the probability of correct
selection is maximized.

In [3], the E-M algorithm has been considered
to be much more powerful than the Goodness of Fit
techniques, including the Kolmogrov-Smirnov method
and the Chi square method. However, it seems that
the true strengths of the algorithm lie in the fact that it
works in a sequential order and, hence, observations are
only generated when needed. This feature is important
in applications incurring high cost and risk, such as
testing new drugs, prototyping industrial products,
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experimenting with nuclear material and launching
missiles.

Despite the originality of the work, it has been
shown in a recent work [2] that the presentation of the
E-M algorithm in its current form is very complicated.
In this paper, the algorithm has been presented by a
new approach and further developed in new directions.
Note that, for proofs and further mathematical analy-
sis, interested readers are referred to [1-3].

The paper is organized as follows. In the following
section, the algorithm is systematically presented by a
novel 3-phase approach and illustrated using numerical
examples. Then, the algorithm is further developed
in new directions and the new results are presented.
Finally, the paper is concluded and topics for further
researches are presented.

E-M ALGORITHM

The primary presentation of the E-M algorithm is
very complicated [1-2], where one can hardly follow
the logic behind it. In this section, a systematic
approach is developed illustrating the working logic
of the E-M algorithm in a novel way. The steps
required to solve a problem have been broken into a
3-phase procedure emphasizing working logic rather
than mathematical proof. Note that the algorithm
becomes more sophisticated and more e�ective as it
moves from Phase 1 to Phase 3. However, in the
authors' presentation, one may stop at the end of Phase
1 (or Phase 2) and completely have a solution, which
is presently a formidable task. In this case, however, a
larger number of observations may be needed. Also,
numerical examples and graphical illustrations have
been presented, enhancing the understanding of the
algorithm.

Phase One (Preliminaries)

Step i

De�ne S = ff1; f2; � � � fmg, i.e., the set of candidate
probability functions, where all m functions have been
considered appropriate, primarily for fx, the unknown
best �t probability function.

Step ii

Initialize Bi() =
1
m
, as the prior belief value for the ith

candidate, considering the maximum entropy principle.
Also, set � as the discount rate, V (N) as the maximum
probability of correct selection and N as the maximum
number of observations which can be generated in the
experiment.

Step iii

Set k = 0.

Step iv

Conduct an experiment to generate xk from fx.

Step v

Estimate the posterior belief values, Bi() (for i =
1; 2; � � �m), by using the following:

Bi(Ok) = Bi(xk; Ok�1) =
Bi(Ok�1):fi(xk)

mP
j=1

Bj(Ok�1):fj(xk)
:

Step vi

Build order statistics on posterior beliefs, Bi() as
B(1) < B(2) < � � � < B(m�1) < B(m), where (m)
denotes the greatest belief and (1) the least belief
obtained, respectively. In other words, B(m)() =
maxfB1(); B2(); � � � ; Bm()g. For the sake of brevity,
B(m�1)() and B(m)() are denoted as Bsm() and Bgr(),
respectively.

Step vii

Normalize Bsm() and Bgr() using the following:

Bsm;gr(sm;Ok) =
Bsm(Ok)

Bsm(Ok) +Bgr(Ok)
;

and:

Bsm;gr(gr;Ok) =
Bgr(Ok)

Bsm(Ok) +Bgr(Ok)
:

Note that Bsm;gr(sm;Ok)+Bsm;gr(gr;Ok) = 1. These
steps are further illustrated in the following example.

Example 1

Consider S = ff1; f2; f3; f4g, where f1 =
Gamma (3; 4), f2 = Gamma (12; 2), f3 =
Gamma (16;

p
3), f4 = Gamma (4; 2

p
3) and Bi() =

1
4

= 0:25. Random numbers have been generated for f2
using Minitab and Steps i to v have been implemented.
Results are shown in Figure 1. As seen from Figure 1,
B2 approaches 1 around k = 40 illustrating that f2 is
the winner function.

Figure 1. Converging trends of four di�erent belief
functions (Example 1).
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Phase Two (Correct Selection)

Step viii

If Bsm;gr(sm;Ok) > �:V �
sm;gr(k + 1), then, fx = fgr

is the best �t function and one should terminate.
Note that Bsm;gr(sm;Ok) can be denoted in a simpler
form of either B(sm;Ok) or Bsm(Ok). Similarly,
Bsm;gr(gr;Ok) can be denoted as either B(gr;Ok) or
Bgr(Ok). Also, note that �:V �

sm;gr(k + 1) can be
denoted as �:V (k + 1) for the sake of brevity and is
determined by �:V (k + 1) = �N�k � V (N).

Step ix

If Bsm;gr(gr;Ok) < �:V �
sm;gr(k + 1), then, fx 6= fgr,

so that taking a new observation is required, i.e., if
K � N set k = k + 1, then, go to Step iv; otherwise
(i.e., if k > N) stop, then, fx � fgr is the best �t
function and one should terminate.

Step x

If Bsm;gr(sm;Ok) < �:V �
sm;gr(k + 1) < Bsm;gr(gr;Ok)

and Bsm;gr(gr;Ok) � d�(k), then, fx = fgr, else,
generate a new observation, i.e., ifK � N set k = k+1,
then, go to Step iv; otherwise (i.e., if k > N) stop,
then, fx = fgr is the best �t function. Note that
d�(k) is estimated according to a procedure developed
in the following section. The complete decision making
procedure is also shown in Figure 2.

Phase Three (Estimating d�(k))

Consider d�(k) as a decision making criteria or a
threshold by which the best �t function can be deter-
mined e�ciently. The procedure to determine d�(k) is
considered in the following steps.

Step xi

De�ne yxk+1 as the most plausible belief on fgr as:

Figure 2. Decision making procedure.

yxk+1 = Bsm;gr(gr;xk+1; Ok) =

Bsm;gr(gr;Ok):fgr(xk+1)

Bsm;gr(gr;Ok):fgr(xk+1)+Bsm;gr(sm;Ok):fsm(xk+1)
:

Note that xk+1 has not been generated yet and it is
assumed that it is the best possible observation one can
expect to have at the present stage to select fgr as fx.
Under this assumption, one considers estimating the
highest plausible belief one can get on the present best
�t function, fgr. The underlying idea here is that, if
the next forthcoming observation were considered to be
the best possible one, would it be possible to terminate
the process and make a decision on a best �t function
or not? This idea, as illustrated in the following, will
help to minimize the need for additional experiments.

Example 2

Suppose that Bsm;gr(sm;O8) = 0:471,
Bsm;gr(gr;O8) = 0:529, fsm(x) = 1

�(1+x2) ,

fgr(x) =
1p
2�
e�

x2

2 and, hence:

y(xk+1)

=
Bsm;gr(gr;Ok):fgr(x9)

Bsm;gr(gr;Ok):fgr(x9)+Bsm;gr(sm;Ok):fsm(x9)
;

or:

y(x9) =
0:529 � 1p

2�
e�

x2
9
2

0:529 � 1p
2�
e�

x2
9
2 + 0:471 � 1

�(1+x2
9
)

;

as illustrated in Figure 3. Note that x9 has not yet
been realized by experimentation, but it is known that
its value could only change to the extent shown in
Figure 3.

Step xii

Find a derivative of yxk+1 , with respect to xk+1,
and set this equal to 0, i.e., f 0sm(xk+1):fgr(xk+1) =
fsm(xk+1):f

0
gr(xk+1), to obtain the roots of the equa-

tion, i.e., xk+1;t, for t = 0; 1; : : : l.

Figure 3. y(x9) versus x9 (Example 2).
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Step xiii

Find yxk+1 's for corresponding xk+1;t which are de-
noted as y0; y1; � � � ; yl (or yt for t = 0; 1; � � � l).
Step xiv

De�ne the re
ect lines, yRet , with respect to y = 0:5,
as yRet = 1�yt for t = 0; 1; � � � l. Here, at most, 2(l+1)
distinct lines can be drawn.

Step xv

Cross yt and yRet lines with a yxk+1 curve and �nd
the corresponding points on xk+1;t; Hence, the xk+1;t
line is divided into segments which are denoted as
I1; I2; � � � I�+1. Also, the yxk+1 line is divided into
segments which are denoted as J1; J2; � � � Js. Also, Js
is denoted as JRes , if Js < 0:5. Note that, for any
Js segment, there could be more than one It segment,
where t = 1; 2; � � � ; � + 1. In the following example,
these steps are further illustrated.

Example 3

By setting y0(x9) = 0, one has x9;1 = 0; x9;2 =
�1; x9;3 = 1 and the corresponding values for yx9 will
be y0 = 0, y1 = 0:585, y2 = 0:631 and y3 = 0:631.
The associated re
ect lines, with respect to yt's, are
illustrated in Table 1. The values for Jss and JRess are
also illustrated in Table 2.

Note that, for both y = 0 and y = 1, there are 7
lines, which, when crossed by y(x9) = B1;3(3;x9; O8),

Table 1. Re
ect lines yt and its associated lines yRet .

yt yRet

y0 = 0 yRe0 = 1

y1 = 0:585 yRe1 = 0:415

y2 = 0:631 yRe2 = 0:369

y3 = 0:631 yRe3 = 0:369

Table 2. Values for Jss and JRes .

s Js JRes

1 J1 � [0:5; 0:585] JRe1 � [0:415; 0:5]

2 J2 � [0:585; 0:631] JRe2 � [0:369; 0:415]

3 J3 � [0:631; 1] JRe3 � [0; 0:369]

will have the following 11 points (� = 11):

xc9;1 = �2:350; xc9;2 = �2:225;

xc9;3 = �1:963; xc9;4 = �1:586;

xc9;5 = �1; xc9;6 = 0;

xc9;7 = 1; xc9;8 = 1:586;

xc9;9 = 1:963; xc9;10 = 2:225;

xc9;11 = 2:350:

Since y(x9) = B1;3(3;x9; O8) is an even function, then,
one has the symmetric roots of �xc9;t = xc9;12�t; t =
1; � � � ; �+12 = 6. Now, due to the fact that � + 1 = 12,
one needs to divide the xk+1- axis into 12 segments, as
illustrated in Table 3 and shown, also, in Figure 4.

Table 3. Values of segments at ions.

I1 � (�1;�2:350] I2 � (�2:350;�2:225]
I3 � (�2:225;�1:963] I4 � (�1:963;�1:586]
I5 � [�1:586;�1] I6 � [�1; 0]
I7 � [0; 1] I8 � [1; 1:586]

I9 � [1:586; 1:963] I10 � [1:963; 2:225]

I11 � [2:225; 2:350] I�+1=12 � [2:350;+1]

Figure 4. It segments versus JCt segments (Example 3).
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Step xvi

For any It segment on the xk+1- axis, de�ne a cor-
responding JCt segment on the y(xk+1)-axis. This
produces � + 1 sub functions, i.e., for any xk+1 2 It
and y(xk+1) 2 JCt.

Step xvii

Collect the monotonically increasing segments in one
set, SIn, and the monotonically decreasing segments in
another set, SDe.

Step xviii

Calculate  t for t = 1; 2; � � � ; � + 1, using:

	t = Prfxk+1 2 Itg

=

Z
It

(Bsm;gr(sm;Ok):fsm(x)

+Bsm;gr(gr;Ok):fgr(x))dx

= Bsm;gr(sm;Ok):

Z
It

fsm(x)dx

+Bsm;gr(gr;Ok):

Z
It

fgr(x)dx:

Note that the function t = 1; 2; � � � ; �+12 , if yxk+1 is
an even function. This is further illustrated in the
following example.

Example 4

Since, for any It segment in the x9- axis, one has a
corresponding JCt segment on the y(x9)-axis, it can
be seen from Figure 4 that:

JC1 � JRe3 ; JC2 � JRe2 ; JC3 � JRe1 ;

JC4 � J1; JC5 � J2; JC6 � J2

JC7 � J2; JC8 � J2; JC9 � J1;

JC10 � JRe1 ; JC11 � JRe2 ; JC12 � JRe3 :

Now, it is clear that I1, I2, I3, I4, I5 and I7
form the monotonically increasing set, SIn = fIt; 8t =
1; 2; 3; 4; 5; 7g and that I6, I8, I9, I10, I11 and I12 form
the monotonically decreasing set, SDe = fIt; 8t =
6; 8; 9; 10; 11; 12g.

Now, one has to calculate the probabilities,  t, as
follows:

 t=B1;3(1;O8):

Z
It

f1(x)dx +B1;3(3;O8):

Z
It

f3(x)dx

= 0:471

Z
It

1

�(1 + x29)
dx+ 0:529

Z
It

1p
2�
e�

x2
9
2 dx:

Hence:

	1 = 	12 = 0:0652; 	2 = 	11 = 0:0049;

	3 = 	10 = 0:0269; 	4 = 	9 = 0:0168;

	5 = 	8 = 0:2476; 	6 = 	7 = 0:1386:

Note that y = B1;3(3;x9; O8) is an even function,
so that only six sub functions (i.e., �+1

2 ) need to be
considered.

Step xix

Draw two lines of y = dt(k) and y = 1�dt(k) and cross
these two lines with y(xk+1) = Bsm;gr(gr;xk+1; Ok) to
produce the following two corresponding points on the
x-axis, at and bt. Repeat this for t = 1; 2; � � � ; � + 1.
See the following example for better illustrations.

Example 5

To estimate d�s=1(k) for t = 1, for example, two
lines of y = d1(k) and y = 1 � d1(k) should be
drawn, as illustrated in Figure 5. Cross these lines
with y(xk+1) = Bsm;gr(gr;xk+1; Ok) and produce two
points on the x-axis, denoted as a1 and b1.

Step xx

Construct the following dynamic programming model
to maximize the probability of correct selection in
the sth segment with k observations (simpler no-
tations have been adopted by setting d�(Js; k + 1)
and maxd(Js;n)2Js by d

�
s(k) and maxds(k), respectively.

Also, Vsm and Vgr have been introduced to simplify the
presentation of the equation. The dynamic model is,

V �
s (k) = max

dt(k)
fVgr + Vsm + �:V �(k + 1)g;

Figure 5. Illustrating an example for y = d1(k) and
y = 1� d1(k) (Example 5).
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where:

Vgr = [Bsm;gr(gr;Ok)� �:Vsm;gr(d
�
t (k + 1))]

�
"X

t

Pr(Bsm;gr(gr;xk+1; Ok)�dt(k)jxk+12It):	t

#
;

Vsm = [Bsm;gr(sm;Ok)� �:Vsm;gr(d
�
t (k + 1)]

�
"X

t

Pr(Bsm;gr(gr;xk+1; Ok)�1�dt(k)jxk+12It):	t

#
:

Step xxi

Calculate the ingredient probabilities, Pr(::) of Vgr and
Vsm, as follows:

Pr(Bsm;gr(gr;xk+1; Ok) � dt(k)jxk+1 2 It)

=

8>>>>>>>><
>>>>>>>>:

0; If JCt < Js

Prfxk+1 � atjxk+1 2 Itg; If JCt � Js

and t 2 SIn
Prfxk+1 � atjxk+1 2 Itg; If JCt � Js

and t 2 SDe

1; If JCt > Js

and:

Pr(Bsm;gr(gr;xk+1; Ok) � 1� dt(k)jxk+1 2 It)

=

8>>>>>>>><
>>>>>>>>:

1; If JCt < JRes
Prfxk+1 � btjxk+1 2 Itg; If JCt � JRes

and t 2 SIn
Prfxk+1 � btjxk+1 2 Itg; If JCt � JRes

and t 2 SDe

0; If JCt > JRes

Note that:(
Pr fxk+1�xjxk+12Itg= Fxk+1 (x)�Fxk+1 (xck+1;t�1)

	t

Pr fxk+1�xjxk+12Itg= FXk+1
(xck+1;t)�Fxk+1 (x)

	t

:

where,

FXk+1
(x) = Bsm;gr(sm;Ok):Fsm(x)

+Bsm;gr(gr;Ok):Fgr(x);

where F denotes cummulative distribution function.

Step xxii

Formulate the following nonlinear dynamic program-
ming model to solve d�s(k) for each sub problem, Js,

V �
s (k) = max

dt(k)
fVgr + Vsm + �:V �(k + 1)g:

Subject to:

Bsm;gr(gr; a1; Ok) = Bsm;gr(gr; a2; Ok) = � � �

= Bsm;gr(gr; a�; Ok);

Bsm;gr(gr; b1; Ok) = Bsm;gr(gr; b2; Ok) = � � �

= Bsm;gr(gr; b� ; Ok);

Bsm;gr(gr; a1; Ok) + Bsm;gr(gr; b1; Ok) = 1;

al 2 Il; for l = 1; 2; � � � ; �;

bl 2 Il; for l = 1; 2; � � � ; �:

Here, again, both Vgr and Vsm are de�ned as in Step xx.
Also, the last two constraints can be associated with
ds(k) 2 Js. Both � and � de�ne the number of intervals
that y(xk+1) changes within Js and JRes , respectively.
Note that the �rst three constraints can also be stated
in the following forms,

yxk+1(a1) = yxk+1(a2) = � � � = yxk+1(a�);

yxk+1(b1) = yxk+1(b2) = � � � = yxk+1(b�);

yxk+1(a1) + yxk+1(b1) = 1:

Example 6

To estimate V �(5), one needs to model and solve V �
1 (5),

V �
2 (5) and V

�
3 (5), each for an interval shown in Table 4.

Let one now solve V �
1 (5) as:

s = 1; k = 5; �:V �(k + 1) = 0:51;

Bsm;gr(sm;x9; O8) = B1;3(1;x9; O8) = 0:4705;

Bsm;gr(gr;x9; O8) = B1;3(3;x9; O8) = 0:5294;

then,

V �
1 (5) = max

J1

(
(0:470588236� 0:51)(1:	1 + 1:	2

+Pr

(
B1;3(3;x9; O8) � 1�d1(5)jx9 2 I3

)
:	3

+ 0:	4 + 0:	5 + 0:	6 + 0:	7 + 0:	8 + 0:	9

Table 4. Division of domains for V �(5).

V �

1 (5) J1 � [0:5; 0:585058521]

V �

2 (5) J2 � [0:585058521; 0:631049441]

V �

3 (5) J3 � [0:631049441; 1]
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+ Pr

(
B1;3(3;x9; O8) � 1� d1(5)jx9 2 I10

)

:	10 + 1:	11 + 1:	12

+ (0:529411764� 0:51)(0:	1 + 0:	2 + 0:	3

+Pr

(
B1;3(3;x9; O8) � d1(5)

�����x9 2 I4
)
:	4

+ 1:	5 + 1:	60 + :	7 + 1:	8 + 0:	8

+Pr

(
B1;3(3;x9; O8) � 1� d1(5)jx9 2 I9

)

:	9 + 0:	10 + 0:	11 + 0:	12) + 0:51

)
;

or:

V �
1 (5) = max

J1

(
(�0:039411764):

 
2X

t=1

	t

+PrfB1;3(3;x9; O8) � 1� d1(5)jx9 2 I3g:	3

+PrfB1;3(3;x9; O8) � 1� d1(5)jx9 2 I10g:	10

+
12X

t=11

	t

!
+(0:019411764):(PrfB1;3(3;x9; O8)

�d1(5)
�����x92I4g:	4+

8X
t=5

	t+PrfB1;3(3;x9; O8)

� d1(5)

�����x9 2 I9g:	9) + 0:51:

Since, y = B1;3(3;x9; O8) is an even function, one will
have:8>>><
>>>:
Pr fB1;3(3;x9; O8) � 1� d(1; 5)jx9 2 I3g
= Pr fB1;3(3;x9; O8) � 1� d1(5)jx9 2 I10g

Pr fB1;3(3;x9; O8) � d1(5)jx9 2 I4g
= Pr fB1;3(3;x9; O8) � d1(5)jx9 2 I9g

;

so that, V �
1 (5) can be rewritten as:

V �
1 (5) = max

J1

(
(�0:078823528):(PrfB1;3(3;x9; O8)

� 1� d1(5)jx9 2 I3g:	3) + (0:038823528)

:(PrfB1;3(3;x9; O8) � d1(5)jx9 2 I4g

:	4) + 0:519468117

)
:

The nonlinear programming model to solve is then,

V �
1 (5)=maxf(�0:078823528):(FX9

(b)�FX9
(�2:225))

+ (0:038823528):(FX9
(�1:586)� FX9

(a))

+ 0:519468117g:

Subject to:

(0:8):

�
f1(a)

f3(a)

�
= (1:125):

�
f3(b)

f1(b)

�
;

�1:963 � a � �1:586; �2:225 � b � �1:963:

Now, this problem is solved by writing the program in
Lingo [9], as shown in Figure 6.

In writing the Lingo program, shown in Figure 6,
the following notes can be helpful:

1. Since the standard normal probability function in
Lingo, denoted as @psn(x), can only accept positive
values, the negative values have been transformed
into positive ones by using �(�x) = 1 � �(x).
This is correct, due to the symmetric nature of the
normal distribution function;

2. Also, since the Cauchy probability function has not
been de�ned in Lingo, the t-student probability
function is used, with one degree of freedom, de-
noted as @ptd(n; x) in Lingo, to produce almost the
same results. In this case, the t1(�x) = 1 � t1(x)
transformation is used to produce positive values
from negative ones, as the t-student function is also
a symmetric function;

Figure 6. Lingo program.
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Table 5. Finding the optimal decision value.

s Js V �

s (k) d�s(k)

1 J1 V �

1 (5) = 0:5197342 d�1(5) = 0:5402861

2 J2 V �

2 (5) = 0:5194529 d�2(5) = 0:5850582

3 J3 V �

3 (5) = 0:51 d�3(5) = 1:0

The solutions to the non-linear program are:

a = �1:806395;

b = �2:091559) V �
1 (5) = 0:5197342;

d�1(5) = B1;3(3; a
�; O8) = 1�B1;3(3; b

�; O8)

= 0:5404193:

Repeating the above procedure for V �
2 (5) and V �

3 (5)
leads to the results illustrated in Table 5 (see [2,3] for
details).

Hence, V �(k) = maxs=1;2;3fV �
s (k)g = 0:5197342,

then d�(k) = d�1(5) = 0:5402861. This completes the
numerical illustrations.

FURTHER DEVELOPMENTS

In this section, reports are made on further devel-
opments of the E-M algorithm. First, parameter
optimization of N is considered and, then, a case is
considered where both continuous and discrete func-
tions can be evaluated in a mixed format.

Parameter Optimization, N

Parameter optimization is an important element for
any e�cient algorithm [10] including the E-M algo-
rithm. Currently, in the E-M algorithm, the parameter
N , i.e. the number of observations, has not received
adequate attention and it is not clear how it could be
estimated. If N is not large enough, then it will not be
possible to guarantee the convergence of the algorithm.
In other words, smallN may lead to the wrong selection
of the candidate function. The question is: How can
the value of N be estimated? This is the subject of
this Section. Let one start with the following two cases,
illustrated in Examples 2 and 3.

Example 7

Consider the following case, where f4 is the true
candidate function,

f1 = Normal (25; 100); f2 = Normal (21; 100);

f3 = Normal (23; 100); �f4 = Normal (22; 100);

f5 = Normal (24; 100); f6 = Normal (20; 100):

To simulate this case, 10,000 random numbers have
been used, generated by Minitab. The result as
illustrated in Figure 7, shows that at least 7000
observations are needed to enable f4 to converge.
Hence, in this case, the parameter, N , should be set
around 7000, which is an extremely large number.
Intuitively, it can be seen that the large variance,
associated with the candidate function, could be a
reason.

Example 8

Consider, again, the following case, where f4 is the true
candidate function,

f1 = Normal (25; 4); f2 = Normal (21; 4);

f3 = Normal (23; 14); �f4 = Normal (22; 4);

f5 = Normal (24; 4); f6 = Normal (20; 4):

The di�erence here, with respect to Example 7, is
the smaller variance of the corresponding functions.
Figure 8 illustrates the converging process. Here,
the proper N is about 60 observations, which are
drastically smaller than the 7000 observations required
in the previous case.

Now that the importance of the right selection
of N has been shown, a new procedure is proposed

Figure 7. Simulation of f4 (Example 7).

Figure 8. Converging process of f4 (Example 8).
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for determining N . Realizing the fact that the set of
candidate functions, i.e., S = f1; f2; � � � fm, are known
before, it will be possible to propose the following 3-
step procedure for estimating N :

1. Generate random numbers for ff1; f2; � � � fmg
and compute their corresponding belief values
fB1(); B2(); � � � ; Bm()g;

2. Compute Nmax = maxfNmax
i ; for i = 1; 2; � � �mg

whenNmax
i is the maximum number of observations

needed for convergence of fi;

3. Set N = Nmax.

Now, the working of the above procedure is illustrated
in Example 9.

Example 9

Consider the following,

f1 = Gamma (3; 4); f2 = Gamma (12; 2);

f3 = Gamma (16;
p
3); f4 = Gamma (4; 2

p
3):

The functions are simulated and their associated belief
values are calculated, as shown in Figure 9.

From the curves denoted as L1, L2, L3 and L4 in
Figure 9 and, in accordance with Step 2 in the proposed
procedure, one has Nmax

1 � 50, Nmax
2 � 30, Nmax

3 � 25
and Nmax

4 � 50. Hence, according to Step 3 in the
proposed procedure, Nmax = maxf50; 30; 25; 50g= 50.
Therefore, one can safely start the E-M algorithm by
setting N = 50.

The above 3-step procedure for estimating N is
only taken in a simulated environment and does not
e�ect real experimentation, which may incur cost. It is
considered that the proposed procedure should be used
as a preprocessing step before application of the E-M
algorithm.

It is also noticeable that the Nmax, as considered
above, is an upper bound for Nmax

i , ensuring the
convergence of all fi's. In reality, however, the number
of stages required for the unknown function may be

Figure 9. Simulation of converging process (Example 9).

shorter than Nmax, so that it is possible to update
Nmax adaptively. This means that, by collecting
any new observation, Nmax should be reestimated.
This may lead, eventually, to Nmax

min = Ni=gr i.e.,
minimizing the total number of observations. In this
case, however, the procedure can no longer be applied
as a preprocessor but as an integral part of the E-M
algorithm. The full development of such an adaptive
algorithm is a subject for further research.

Distribution Fit with Mixed Functions

Theoretically speaking, candidate functions in an E-
M algorithm must be of a continuous type. This
is naturally a limiting factor in application of the
algorithm. In this section, an experiment is per-
formed by implementing the method on a problem with
both a continuous and a discrete nature, to see if it
could work properly. Consider, S = ff1; f2; � � � f4g,
f1 = Exponential (1=8), f2 = Poisson (10), f2 =
Poisson (8), f2 = Poisson (6), N = 12, V (N) = 0:95
and � = 0:95 where f4 is the best �t function. Results
are illustrated in Table 6.

As seen from the results illustrated in Table 6, it is
clear that the algorithm still selects the best �t function
correctly. However, theoretical di�culties may arise,
which demand further investigation. (In a personal
discussion with A. Eshragh Jahromi, he warranted the
case that belief values, at any stage, may become equal,
hence, stalling the process from further advancing.
This is avoided in dealing with continuous functions.)

CONCLUSIONS AND FURTHER
RESEARCH

Eshragh and Modarres [1-3] have developed a novel
algorithm for a statistical estimation problem, called
in this paper, the E-M algorithm. The algorithm uses
a new sequential Bayesian method and a stochastic
dynamical programming approach to determine when
a process of obtaining observations can be stopped.
Despite the originality and excellent mathematical
analysis developed in the work, the presentation of the
algorithm has been very di�cult. The E-M algorithm
has been presented by a new 3-phase method that
illustrates the logical line of the algorithm and its
implementation procedures. Finally, the results of our
further developments have been resported.

Still, the algorithm can further be developed
in some new directions. In order to predict the
right candidate function at the present time, the only
information being used is the value of xk . However, it
is quite plausible to introduce further information that
can be deriven from a stream of xk's, including mode,
median, standard deviations and other distribution
moments to accelerate the convergence of the algorithm
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Table 6. Results for the mixed case.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 9 K = 10 K = 11

xk 6 11 4 8 7 6 11 9

B1(x;Ok�1) 0.145 0.086 0.111 0.045 0.018 0.006 0.003 0.001

B2(x;Ok�1) 0.155 0.333 0.107 0.107 0.074 0.019 0.039 0.042

B3(x;Ok�1) 0.396 0.168 0.382 0.351 0.373 0.323 0.128 0.075

B4(x;Ok�1) 0.301 0.410 0.398 0.495 0.533 0.650 0.828 0.880

sm; gr 4,3 2,4 3,4 3,4 4,3 3,4 3,4 3,4

Bgr;sm(gr; xk; Ok�1) 0.568 0.551 0.510 0.584 0.588 0.668 0.865 0.920

d�(n) 1 1 1 1 1 1 1 0.810

V �(n) 0.659 0.679 0.700 0.722 0.744 0.841 0.867 0.893

Decision - - - - - - - f4

by using fuzzy logic and neural networks [11,12]. This
requires further investigations leading to development
of a new parallel algorithm for distribution �tting
problems [13].
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