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Contribution of the Solar Magnetic

Field on Gravitational Moments

A. Ajabshirizadeh�1, J.P. Rozelot2 and Z. Fazel1;2

Studies of the solar magnetic �eld is one of the key method of explaining important phenomena
found in the Sun. In order to determine the contribution of the magnetic �eld on the solar
outer shape, here, the dynamo model of the Babcock-Leighton type [1] is considered. This
model explains that the surface eruptions of the toroidal magnetic �eld, such as the eruptions
of the ux tubes, are the source of the poloidal �eld, whereas, generation of the toroidal �eld
takes place in a thin, deep seated layer, called the Generating Layer (GL), at the bottom of
the Solar Convection Zone (SCZ). To calculate the indicating quantity of the solar shape, i.e.
the gravitational moments, Jn, several methods can be used: Stellar equations combined with
a di�erential rotation model, inversion techniques applied to helioseismology and based on the
Von Zeipel theorem, the theory of �gures of the Sun [2]. In this paper, this last theory was used,
but adding the magnetic �eld contribution. Di�erent estimates were obtained for the successive
Jn (n = 2, 4, 6, 8), in terms of di�erent values of Bcr (the critical �eld), where the maximum
value of the toroidal magnetic �eld in the GL is 1:5�Bcr.

INTRODUCTION

The nature of sunspots and of the 22-year cycle has
been a subject of speculation during the six decades
since the discovery of magnetism in sunspots and of
the polarity rules governing successive cycles [3]. An
early idea held that sunspots are vortex tubes similar
to terrestrial tornadoes, and that the magnetic �eld
is somehow produced by this vortex motion. Now,
it is obvious that the magnetic �eld is the primary
quantity, and that most of the properties normally
associated with sunspots result from the presence of
strong magnetic �elds in the Sun's outer layers. Ideas
about the cause of the solar cycle have also undergone
considerable changes. The periodicity has been im-
puted to the circulation of meridional mass currents in
the Sun's outer convective layers, to the propagation of
hydro magnetic waves through the Sun, or to torsional
oscillations of the outer layers. In this paper, the
authors have been interested to study the e�ect of
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such a magnetic �eld on the parameters explaining
perturbation of the solar gravitational potential due
to rotation. In three �rst sections, the relationship
between solar outer shape and gravitational moments
of the Sun considering the gravitational and rotational
potentials will be explained. Then, separately, in
the fourth section, components of the magnetic �eld
inside the Sun will be presented in order to add
its contribution on the gravitational moments and,
�nally, in the �fth section, calculations and results are
presented.

SOLAR OUTER SHAPE

If the Sun is described as a sphere, then, the gravita-
tional and pressure gradient forces are in hydrodynamic
equilibrium. But due to the non-homogeneous mass
distribution and di�erential rotation inside the Sun,
its outer shape turns out to be distorted in latitude.
However, in order to determine the solar outer shape,
one needs to de�ne an apparent physical surface at a
given wavelength. On the other hand, the Sun has
an extended atmosphere and it is not so simple to
consider the upper limit of its photosphere. Rozelot
and Lefebvre [4] have de�ned the free surface of the
Sun as a level, where a given physical parameter,
like the temperature, the density and the pressure,
etc. is constant. This free surface does not coincide
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with an ellipsoid of revolution: The true �gure is far
more complex and shows \asphericities" (measured by
\shape coe�cients"). To the �rst order, this shape
lies between the spherical and ellipsoidal shape, which
is a �gure called \spheroid"; this could be recognized
by the oblateness parameter, ". Since determination
of the above mentioned parameters are di�cult, the
most simple approach is to de�ne the solar shape as
an equipotential surface, with respect to the total po-
tential (gravitational, rotational and magnetic). This
last potential is concluded from the magnetic �eld
inside the Sun, between solar radiation and convection
zones, as explained in the following sections. Using
the Chandrasekhar approach [5] for the slowly rotating
stars, one can obtain, in principle, the gravitational
moments of the Sun.

GRAVITATIONAL AND ROTATIONAL

POTENTIALS

A mass distribution in space is considered to calculate
the gravitational potential. The integration is taken at
a point, (x; y; z), over a mass element, dm:

V (x; y; z) = G

Z Z Z
dm=l; (1)

where G is the gravitation constant and l=((x �
x0)2 + (y � y0)2 + (z � z0)2) 12 (the \prime" designs
target points). Following Rozelot and Lefebvre [4],
the Laplace equation of the potential in the spherical
coordinates gives the following solution:

V (r; �; �)=�
1X
n=0

1

rn+1

1X
m=0

"
AnmPnm(cos(�)cos(m�)

+BnmPnm(cos(�))sin(m�)

#
; (2)

where r is the vector radius and Pnm are the associated
Legendre functions of degree n for a given order,m. For
n = 0, the potential reduces to GM=r, so Equation 2
becomes:

V (r; �; �) = �GM=r

"
1

+

1X
n=1

1X
m=0

�a
r

�n
[Pnm(cos(�))[Cnm cos(m�)

+ Snm sin(m�)]

#
; (3)

where a is the equatorial radius of the body and
Cnm and Snm are related to the coe�cients Anm and

Bnm. The rotational symmetry of the Sun implies that
Cnm = 0 and Snm = 0, if m 6= 0. De�ning Cn0 = �Jn
as the zonal harmonic coe�cients of degree n of the
potential, the expansion of Equation 3 reduces to:

V (r; �; �)=�GM=r

"
1�

1X
n=1

�a
r

�n
JnPn(cos(�))

#
; (4)

where Jn are the gravitational moments and Pn(cos �)
are the Legendre polynomials of degree n. In ascending
order, Jn measure the distortions that a�ect the shape
of the body under rotation.

The centrifugal potential related to the above
mentioned mass distribution with angular velocity, !,
is as follows:

Vrot = �
Z R

0

R!2dR; R = r sin(�): (5)

The magnetic �eld of the Sun and its potential will be
explained in the following sections.

GRAVITATIONAL MOMENT

As mentioned above, if one considers the pressure
equilibrium at the solar surface, the shape of the Sun
will be determined as the shape of a surface where its
gravitational potential is constant. Bearing in mind the
Von Zeipel law, it turns out that the other parameters,
such as density, temperature, pressure and the e�ective
potential (the sum of all potentials), are also constant.

In order to obtain the gravitational moments,
one needs to compute the total e�ective potential
containing the gravitational, rotational and magnetic
ones. To order n = 2, the gravity potential is as follows:

�1 = �GM=r

�
1�

�a
r

�2
J2P2(cos(�))

�
: (6)

If the Sun is considered an ellipsoid of equatorial
(Req) and polar (Rpol) radii, by using the ellipsoidal
equations, the solar radius is written as follows:

r = Req

�
1� 1

3
f � 2

3
fP2

�
; (7)

where f =
Req�Rpol

Rsp
is the attening after some

reductions and bearing in mind that Rsp = (R2
eqRpol)

1

3

(which is the radius of the best sphere passing through
the equatorial and polar radii determined by P2 = 0 in
Equation 7). Thus, for Rsp = Req(1� 1=3f), one gets:

1

r
=

1

Rsp
(1 +

2

3
fP2) +O(f2): (8)

where O(f2) are the higher orders of f . From these
considerations, now, for the gravity potential, one has:

�1 = �GM=Rsp

�
1 + (

2

3
f � J2)P2)

�
: (9)
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To the same order, the rotational potential is as follows:

�2 = �1=3!2R2
sp(1� P2): (10)

So,

�tot = �1 +�2 = �GM=Rsp

"�
1 +

1

3
m

�

+

�
2

3
f � J2 � 1

3
m

�
P2

#
; (11)

where m =
!2R3

sp

GM . If the solar ellipsoid is a surface
limit, �tot must be constant on it, i.e., the e�ective
potential becomes independent of the � (polar angle).
Thus:

�tot = �GM=Rsp

�
1 +

1

3
m

�
= �0 = Const.; (12)

therefore,
�
2
3f � J2 � 1

3m
�
= 0 and:

J2 =
2

3
f � 1

3
m: (13)

The values of m, ! and f being known, one can �nd
to �rst order the gravitational moment, J2. However,
one can see that, in the solar case, (2=3)f is of the
order of (1=3)m and, so J2 is nearly equal to 0. In
spite of the fact that this theory could be invalidate,
as m is taken as a constant both in latitudes and in
depth, it is straightforward to see that J2 will remain
of the order of 10�7. All other theories lead to the same
result. Nevertheless, an accurate value of J2 is useful
to compute dynamical e�ects, like light deection in
the vicinity of the Sun or in planetary ephemeris.
Conversely, a precise dynamical estimate of J2 might be
crucial to constrain solar density and rotation models.
Accordingly, the authors wished to see if the magnetic
�eld could inuence Equation 13.

SOLAR MAGNETIC FIELD

It is straightforward that the origin of solar surface
magnetic �elds is the occurrence of magnetic ux
tubes inside the Sun. However, these ux tubes are
produced in a thin layer at the bottom of the Solar
Convection Zone (SCZ), which is called the Generat-
ing Layer (GL) [6]. The interior magnetic structure
from the GL to the surface is relevant, because it
is responsible for the appearance of solar magnetic
features, such as sunspots and the faculae. In order
to verify the contribution of the solar magnetic �eld
on the gravitational moments, the same model used by
Durney [7] has been applied. This dynamo model is
of the Babcock-Leighton type [8,9]. If one considers

the spherical symmetric coordinate system for the
Sun and the magnetic �eld, ~B = (Br; Bp; B�), the
toroidal �eld, B�, is generated in GL, by a shear in
the angular velocity acting on the poloidal �eld, Bp(=
r � [0; 0; A�]). Axial symmetry is assumed and r

in the GL is such that, within this layer, a transition
to uniform rotation takes place. The choice of angular
velocity 
 in the GL was based on this assumption
that, within this layer, all thin shells with thickness dr
have the same angular momentum, regardless of their
radius, r. This assumption leads to an angular velocity
that [1]:

� Increases inwards for � < 63:4�,

� Is constant with r for � = 63:4�,

� Decreases inwards for � > 63:4�,

in agreement with helioseismic observations [10]. Note
that such an estimate for � is obtained when sorting the
observed diameters of the Sun by heliographic latitude
bins [11]. If for GL and for a certain value of the
polar angle, �, jB�j exceeds a critical �eld, Bcr, then,
the eruption of a ux tube occurs [12]. This ux
tube (assuming radial rise) generates, when reaching
the surface, a Bipolar Magnetic Region (BMR) with
uxes �p and �f for the preceding and following spots,
respectively. The ensemble of individual successive
eruptions acts as the source term for the poloidal
�eld (no mean �eld equation is used to approximate
the source term). This �eld (with opposite polarity),
generated in the surface layers, is mainly transported
by the meridional motions (and by di�usion) to the GL,
reversing the poloidal �eld. The shear in ! acts on a
reversed poloidal �eld, then, generates the new toroidal
�eld resulting in the oscillatory behavior of the large
scale solar magnetic �eld.

The meridional motions, U , are the superpositions
of a one-cell velocity �eld, which rises at the equator
and sinks at the poles and of a two-cell circulation,
which rises at the equator and poles and sinks at mid
latitudes. The toroidal �eld and its potential, A�,
were expanded in terms of Legendre polynomials and
the coupled partial di�erential equations (in time and
radial coordinates), represented by the coe�cients in
these expansions, were solved by a �nite di�erence
method.

Now, the theory of the model is considered as
mentioned above. The useful equation, which should be
solved in the Dynamo model, is the induction equation:

@ ~B

@t
=r�

n
~U� ~B��r� ~B

o
+r�

�
0; 0;

@S

@t

�
;
(14)

where � is the di�usivity; S the source term, due to the
ux eruption and U the meridional motions. Therefore,
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one can obtain the following equations [7,12]:

@A�

@t
=UrB��BrU�+�

�
r2� 1

(r sin �)2

�
A�+

@S

@t
;
(15)

@B�

@t
=

��(r)

�(r)
UrB� � r sin � ~B:r


� ~U:r
�

B�

r sin �

�
+ �

�
r2 � 1

(r sin �)2

�
B�;

(16)

Br =
1

r sin �

@

@�
(A� sin �); B� = �1

r

@

@r
(rA�);

(17)

where ��(r) is originated from r�(~U� ~B) = � ~Br:~U+

( ~B:r)~U � (~U:r) ~B and from the continuity equation,

r:~U = � 1
�

�
d�
dr

�
Ur. Temporal integration of the above

partial di�erential equations gives the following:

A� = a�
sin �

r
; B� = b�

sin � cos(�)

r
;

S = s
sin �

r
: (18)

CALCULATION

Toroidal Magnetic Field and its Contribution

on Jn

In this section, the toroidal magnetic potential will be
calculated, using the same model inferred above, i.e.
the Babcock-Leighton type of the dynamo model. In
the numerical calculations, the BMR (in the previous
section) is replaced by its equivalent axisymmetrical
magnetic ring doublet and the following initial condi-
tions [1] are considered:

- A weak polar magnetic �eld,

- jB�jmax = 1:5�Bcr (in the GL).

In Leighton's model, there exists a relationship
between the time derivative of the radial component
and the latitudinal derivative of the toroidal one, which
means:

@ ~Br

@t
=

(
Ha

2�R2�
@(B� sin )

@� jB�j > Bcr

0 jB�j < Bcr

; (19)

where H � R is the thickness of a thin shear layer
in the outer part of the Sun; � is a time constant, for
which the amount of �eld erupted within time dt is
proportional to jB�jdt=� ;  is the tilt angle formed by
the magnetic axis of a bipolar magnetic region with the
east-west line; a is a free parameter, which enters in the

angular velocity equation: 
 = 
s+(a+� sinn �)R�rH ,
where � and n are also free parameters; r is the
variable radius and 
s is the observed angular velocity
of the di�erential rotation at the solar surface, which
is, approximately, 
s = 18 sin2 � rad/yr with respect to
the polar regions [13]. Hence and considering the above
initial conditions, the radial or toroidal magnetic �eld
can be written as follows:

Br =
X
l

cl(2l+ 1)1=2Pl(cos �); (20)

where Pl are normalized to unity, when � = 0 and cl
are the expansion coe�cients given by:

cl = 1=2

Z �

0

Br(2l + 1)1=2Pl(cos �) sin �d�: (21)

Using Equation 20, the derived magnetic potential is
~A = (0; 0; A�). Considering ~B = r � ~A and Br =
1

r sin �
@
@� (sin �A�), after integration of this relationship

and by replacing the result in Equation 20, one gets:

A� =
r

sin �

X
l

cl(2l + 1)1=2
Z

Pl(cos �)d(cos �): (22)

In order to apply this equation in calculating Jn, the
expansion coe�cients should be found as follows:

cl = 3=4Bcr(2l + 1)1=2
Z �

0

Pl(cos �) sin �d�: (23)

However, the interval [0; �] related to the poles is the
boundary condition for which, for � = 0, or �, one
has a zero value for vector potential A and magnetic
�eld B (meaning that, at the poles, the mean �eld and
the mean current density have �nite values). Now,
the boundary conditions are discussed. To avoid a
null value of cl in this interval, one may use the royal
belt latitudes, where magnetic features occur and are
con�ned during the activity cycle. The \buttery"
pattern shows a typical, [��=3; �=3], latitude interval.
Checking by computation, subsequently, the validity of
this shortening integration on the results, no signi�cant
departure from the �nal result was found. The plot on
the left shows the latitude of sunspot occurrence versus
time (in years). Sunspots are typically con�ned to an
equatorial belt between altitude of -35 degrees south
and +35 degrees north. At the beginning of a new
solar cycle, sunspots tend to form at high latitudes,
but as the cycle reaches a maximum (large numbers of
sunspots), the spots form at lower latitudes. Near the
minimum of the cycle, sunspots appear even closer to
the equator and, as a new cycle starts again, sunspots
again appear at high latitudes. This recurrent behav-
ior of sunspots gives rise to the \buttery" pattern
shown and was �rst discovered by Edward Maunder
in 1904. The reason for this sunspot migration pattern
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is unknown. Understanding this pattern would tell us
something about how the Sun's internal magnetic �eld
is generated. To investigate the contribution of A� in
Jn, �rst, the n = 2 order of Jn may be considered.
Let us denote by � = sin �er the colatitude, where
the maximum magnetic �eld, jB�j, reaches its critical
value, Bcr. Putting Equation 8 into Equation 22, one
gets:

A� =

 
9
p
3

16
Bcr=�

!
Rsp

�
1� 2

3
fP2

�
; (24)

by �~�: ~B, where � is the magnetic moment and B
the magnetic �eld. Numerical calculations will be
performed in IS, so that � is in Amp.m2 and B in Tesla.
According to Durney [7], a layer of thickness, H =
1:9�107 m (at the bottom of the solar convection zone
where the toroidal �eld is ampli�ed), is considered.
The mesh consists of 101� 101 points in the r- and �-
directions. Therefore, �r = (R0�Rc)=100 = 1:9� 106

m (R0 = 6:9 � 108 m is the upper boundary of the
SCZ and Rc = 5 � 108 m is the lower boundary,
i.e. the GL) and �� = �=200 rad. However,
detailed computations are carried out for the Bipolar
Magnetic Region (BMR) replaced by a magnetic ring
doublet (say, the sunspot) at the surface with angular
separation � = 4 cos �er�� (�er = 45�, considered the
latitude for the eruption) and thickness h = 0:2� 106

m below the surface.
Bearing in mind the de�nition of the magnetic

potential energy, �mag = �3 = �~� � ~B, where �
is the magnetic moment (per unit mass) and B the
magnetic �eld and by considering a Bipolar Magnetic
Region (BMR) on the surface of the Sun (as mentioned
before and according to Durney [7]), it turns out that
�mag = ��A�=Rsp. Hence:

�3 = ��
 
9
p
3

16
Bcr=�

!�
1� 2

3
fP2

�
; (25)

is the magnetic �eld (that is the radial component of
the magnetic �eld times the distance, which here is
considered equal to Rsp). Now, using Equations 9, 10
and 25, �tot is written as follows:

�tot =�GM=Rsp

"�
1 +

1

3
m+ �m

�

+

�
2

3
f � J2 � 1

3
m� 2

3
�mf

�
P2

#
; (26)

where m demonstrates the magnetic potential contri-

bution; �m = �=MBMR(
9
p
3

16 )Bcr=�(
Rsp

GM ) (MBMR is the
mass contained in the fractional part of the region BMR
and is directly obtained from the known density for

h). A constant equipotential level is de�ned in the
following:

�tot = �GM=Rsp

��
1 +

1

3
m+ �m

��
= �0 = Const.;

(27)

which implies that the coe�cients of P2 must vanish as
follows:

J2 =
2

3
f(1� �m)� 1

3
m: (28)

This (�rst order) determination of the gravitational
moment in the presence of the magnetic �eld can be,
thus, (for the �rst time) compared with Equation 13.
Values of the parameters being known, J2, can be
deduced. In the next section, the upper orders of Jn
for n = 4, 6 and 8, have been calculated.

RESULTS

The numerical calculations are performed in IS while
m and �m are dimensionless. The following values of
the parameters were used to compute Jn:

M� = 1:9891� 1030 kg;

G = 6:67259� 10�11m3 kg�1s�2;

Rsp = 6:95989299� 108 m;

f = 1:06� 10�5:

�� = 5 � 1029 Am2 was taken for the total solar
magnetic moment. Following the same procedure as
in [7], a thin layer, under the surface of thickness
h = 2 � 105 m at a colatitude �er can be considered,
where a Bipolar Magnetic Field (BMR) occurred. The
magnetic moment per unit mass can be estimated
as � = 1:4 � 1026 Am2/Kg. The critical value of
the magnetic �eld, Bcr, is 0.1 T (in Table 1 runs
were also made with Bcr = 0 and 0.3 T ). In the
integration process of Equation 23, one can estimate
the cl for di�erent values of the boundaries and, then,
to extrapolate to the [0; �] interval. As seen before,
changing these boundaries a�ects the coe�cients in
Equation 22, but on physical grounds, the latitude
interval of appearance and the storage of magnetic fea-
tures is the most likely [��=3; �=3]. [��=2; �=2]. Then,
one can check the inuence of di�erent �er (�=6; �=4
and �=3) in computing the magnetic potential. Results
show that the order of magnitude of the Jn (10�7) is
una�ected as the estimates ranges from 2.55 to 2.74
only. Therefore, �=4 is kept in the computations.

Results are listed in Table 1. One can see that
for the critical value of magnetic �eld, Bcr = 10�1 T,
J2 is equal to �2:613:10�7, instead of J2 being equal
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Table 1. Calculated values of Jn for n = 2, 4, 6 and 8 and taking into account the magnetic �eld.

Bcr = 0 J2 = �2:300 � 10�7, J4=6:2924�10�7 , J6=�1:416 � 10�8, J8 = 5:049 � 10�13

Bcr = 0:1 Tesla J2 = �2:613 � 10�7, J4 = 6:2922 � 10�7, J6 = �1:4164 � 10�8, J8 = 5:049 � 10�13

Bcr = 0:3 Tesla J2 = �3:24� 10�7, J4 = 6:2911 � 10�7, J6 = �1:4164 � 10�8, J8 = 5:049 � 10�13

to �2:300:10�7 without the magnetic �eld ( �m = 0). If
both of them have the same order of magnitude, the
presence of the magnetic �eld increases the absolute
value of 13%.

CONCLUSION

In this study, the contribution of the solar mag-
netic �eld to solar gravitational moments has been
estimated, using the dynamo model of the Babcock-
Leighton type. The gravitational moments (Jn) sorted
in ascending order (n = 2, 4, 6 and 8) show a measure of
the successive deviations that a�ect the outer shape of
the rotating Sun, i.e., determine the departure of the
solar material contents from a spherical distribution.
Comparing the Jn's results for di�erent Bcr and by
introducing the concept of \magnetic potential" in the
total e�ective potential (�tot = �gravity + �rotation) it
has been shown that the magnetic �eld increases J2
and slightly decreases J4 and the other gravitational
moments remain constant. It is worthy to note that J2
remains of the same order of magnitude as J4. The
magnetic phenomena, which occur at the surface of
the Sun, such as sunspots and faculae, are the relevant
candidates for a�ecting the solar shape. These features,
indeed, originate from far inside the Sun, where the
ux tubes are formed in the lower layers of the solar
convection zone and may explain the phenomena.
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