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Concrete is a heterogeneous material with a wide variety of usage in structural design. Concrete

under tension exhibits strain softening, i.e., a negative slope in the stress{deformation diagrams.

Di�erent softening curves have been proposed in the literature to interpret this phenomenon.

In current research, a new softening curve for concrete has been proposed by using the newly

introduced concept of fractal geometry. This new softening curve is denominated a `Quasi-fractal'

softening curve and consists of two parts, a linear portion at the beginning and an exponential

portion in the rest of the curve. A comparison of a \Quasi-fractal" softening curve with a set of

proposed experimental softening curves has been performed, which reveals good agreement.

INTRODUCTION

Since its �rst presentation by Mandelbrot [1], fractal
geometry has found many applications in science and
technology. The main merit of this new mathematical
tool is in its ability to model natural irregularities.
Owing to this, fractal geometry has found many ap-
plications, such as in electromagnetic, biology, uid
mechanics and many branches of solid and fracture
mechanics.

The �rst step in using this new concept in fracture
mechanics is the veri�cation of the fact that fracture
surfaces have fractal patterns. Several experiments
and theory outcomes con�rm that fracture surfaces
in many engineering materials are fractal. The �rst
investigation into this �eld concerned the fractal char-
acter of fracture surfaces in metals, which was carried
out by Mandelbrot et al. [2]. Subsequently, some
e�orts were made to characterize the fracture surfaces
of concrete. Among those researchers, one should
mention Winslow [3], Saouma et al. [4], Brandt and
Prokopski [5], Saouma and Barton [6], Carpinteri et
al. [7] and Issa et al. [8]. In addition to the afore-
mentioned experimental evidence of the hypothesis
of the fractality of the fracture surfaces of concrete,
theoretical proof also exists, such as in Carpinteri et
al. [9].

Fracture in heterogeneous materials, e.g. con-
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crete, is one of the most active branches in fracture
mechanics. Resulting from inhomogeneities inside the
structure of such materials, one of the best ways to
analyze the behavior of these kinds of material is by
the use of fractal geometry.

It is known that classes of material, such as
concrete, rock, brick and ceramics, exhibit what is
termed `strain-softening' behavior. Thus, in a direct
tensile test, there is a linear stress-strain relationship
until, approximately, the ultimate strength, �u, is
reached and further straining beyond this point results
in stress relaxation, which depends on the strain-
softening characteristics of the material. The ultimate
behavior of such materials is characterized by the
localization of a non-linear zone within a narrow band
of the material, while the rest of the material outside
this softening zone retains its linear behavior. In the
cohesive model, this band is treated as the softening
zone, where the material, though cracked, can still
transfer stress. The tensile stress, �, in the softening
zone is described as the decreasing function of the
relative displacement, w, of the opposite surfaces of the
cohesive crack. The process zone starts forming after
the tensile stress reaches its ultimate value, �u. The
point where the displacement, w, reaches its critical
value, wc, beyond which no stress can be transferred,
is called the real crack tip, while the point along the
cohesive crack, at which the stress reaches �u, is called
the cohesive crack tip. There are no stress singularities
present in this model.

The \cohesive crack model" was described by
Barenblatt [10,11] and Dugdale [12]. Many researchers
have used cohesive cracks to describe the near-tip non-
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Interpretation of Tensile Softening in Concrete 9

linear zone for cracks in most materials, e.g., metals,
concrete, polymers, ceramics and geo-materials. In
the late seventies, cohesive cracks were extended by
proposing that the cohesive crack may be assumed to
develop anywhere, even if no pre-existing macrocrack
is actually present [13]. This extended cohesive crack
is called a \�ctitious crack model". In this model, the
strain-softening behavior is expressed by an appropri-
ate, � � w, relationship.

Extensive investigations have been carried out
to determine the form of the softening curve for
concrete mixes. According to the numerous performed
experiments, several forms have been proposed for the
softening curve; among them, the bilinear curve, men-
tioned by Petersson [14], the exponential, mentioned by
Cornelissen et al. [15,16], Gopalaratnam and Shah [17],
Planas and Elices [18,19] and Slowik et al. [20] and
the power-law, mentioned by Reinhardt [21,22]. These
softening curves are useful in the analyses of the be-
havior of concrete structures, with or without notches.

This paper has the following structure: First, the
generalized form of a Sierpinski carpet is presented for
use as a exible fractal set in the modeling of fractal
surfaces. Second, the energy consumption, during
the softening procedure in concrete-like materials, is
interpreted, by the use of fractal geometry and, then, a
new softening curve is presented, accordingly. Finally,
a comparison of the results with several common ex-
perimental softening curves is successfully performed,
which reveals good agreement.

FRACTAL GEOMETRY ASPECTS OF THE

PROBLEM

Fractal geometry is a mathematical tool, which de-
scribes objects of irregular shape, as long as the
requirement of self-similarity is satis�ed. A fractal
set is a geometrical pattern that deviates from its
Euclidean dimension; if deviation is a positive value,
the fractal set is \invasive" and, if it is negative, the
fractal set is \lacunar" [1].

The measure of a fractal set is a function of the
length of the used yardstick. The length (or area
for 2D fractal sets) of a fractal set, according to the
used yardstick in measuring, is determined from the
following relation:

L" = Lp"
(d�Df ); (1)

where Lp is the projected length (area) of the object,
" is the fractional measuring unit, which, for practical
purposes, will be associated either with the magni�ca-
tion and resolution used in the microscope or to the
relative length of a typical constructional segment of
that line. The parameter, d, represents the Euclidean
dimension of the object (d is equal to 1 for a line

or 2 for a surface) and Df is denominated as the
fractal dimension. A general de�nition of the fractal
dimension of an arti�cial fractal object is, as follows:

Df =
Ln N

Ln m
; (2)

where N is the number of elements in the basic picture
(n = 1) and m is the applied reduction factor to the
segments.

As mentioned in [3-8], the fracture surfaces of
concrete are fractal sets. It has been proven that the
area of the matrix in granular composites, such as
concrete, is also a fractal set [9]. In the next section, it
is important to have a exible fractal set for modeling
surfaces with di�erent fractal dimensions. The used
fractal set is a generalization on the Sierpinski carpet
fractal set. A generalized Sierpinski carpet is similar
to a Sierpinski carpet, with this di�erence, that a
generalized to a Sierpinski set makes it useful when
modeling surfaces with any fractal dimension. The
structure of a generalized Sierpinski carpet consists
of a rectangle that consists of p2 similar rectangles,
from which, at each iteration, the total number of
q, q

p2
� 1, rectangles of the remaining area will be

omitted. The fractal dimension of this fractal set,
according to Equation 2, is equal to:

Df =
1n(p2 � q)

1n(p)
: (3)

The remaining area of this fractal set, after n iterations,
is calculated from the following relation:

An = Ap

�
1

pn

�2�Df

: (4)

The eliminated area, in iteration of number n, is equal
to:

�An = Ap

q

p2

�
1�

q

p2

�n�1

: (5)

This new fractal set is denoted by S
[a;b]
p;q , where a and

b are the side lengths of the rectangle. An example of

a generalized Sierpinski carpet, S
[1;1]
5;5 , in its �rst three

iterations, is drawn in Figure 1.

The fractal dimension of S
[1;1]
5;5 , according to Equa-

tion 3, is equal to Df = Ln(52�5)=Ln(5) = 1:861. For
the sake of simplicity, one can assume q = 1, therefore,
parameter p is the only essential parameter throughout
this investigation.

INTERPRETATION OF THE SOFTENING

PHENOMENON IN CONCRETE UNDER

TENSILE STRESSES BY USING FRACTAL

GEOMETRY

In this section, it will be shown that the use of fractal
patterns in the modeling of tensile fracture surfaces will
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10 H. Khezrzadeh and M. Mo�d

Figure 1. First three iterations of formation of
generalized Sierpinski carpet set, S

[1;1]
5;5 .

guide one to a new softening curve, which will be useful
in cohesive crack models. Before starting the new
approach, it is required to review some characteristics
of the cohesive crack model.

The cohesive crack model, called a �ctitious crack
model by Hillerborg and co-workers [13], has been
one of the most essential tools in the analysis of the
fracture of concrete and cement-based materials since
its �rst application to structural analysis in the mid
seventies. The characteristics of the �ctitious crack
are contained in its stress-crack opening relationship
(the softening curve shown in Figure 2), which, in the
simplest approximation, is assumed to be unique, so,
one can write:

� = f(w): (6)

Various forms have been proposed for the softening
curve, some of which have been reviewed in the next
section. All these curves have common essential
features, as follows:

1. It is non-negative and non-increasing;

2. For zero crack openings, its value equals tensile
strength;

3. It tends to zero for large crack openings (complete
failure, zero strength);

4. It can be integrated over (0;1).

This integral is the work of the fracture per unit
surface of the complete crack, which is equal to the area
under the softening curve. Figure 2 is denominated by

Figure 2. Schematic form of softening curve.

Gf , which is as follows:

Gf =

Z
1

0

�dw: (7)

It is intended to interpret the softening behavior of
concrete-like materials by using the aforementioned
principles and fractal geometry. As mentioned in the
literature, it is possible to model the cross section of
such materials by the use of fractal patterns [9]. In
this fractal pattern-based model, the omitted areas are
exhibitors of the aggregates and the remaining parts are
exhibitors of the adhesive matrix. By using this model,
the softening behavior of concrete-like materials under
tension is interpretable. According to Equation 7, the
total required breakage energy, per unit of the cross
section area, is equal to Gf .

The bond zones around aggregates are the weak-
est link in the structure of concrete-like materials
and tensile failure begins from shaping cracks around
particles in the bond zones. The process of softening
in quasi-brittle materials could be depicted in this way
that, at the peak load, ft, a set of macrocracks start
to grow through the bar cross section. A continuation
of applying elongation to the specimen causes smeared
cracking behavior inside the cross section, which leads
to a gradually decreasing cross section for stress trans-
fer and, thus, to a gradually decreasing external stress
(Figure 3). At the beginning, smeared cracks start
at the weak phase, around larger aggregates and, by
continuation of applying strain to the specimen, the
cracking extends around smaller particles, consecu-
tively. This process will continue until the increase
of the total area of the macrocrack becomes less than
a certain value, which is denominated by the \last
resistant ligament".

On the other hand, it is known that the �nal
tensile fracture surface in concrete is a fractal set.
Now, it is possible to use a fractal set for modeling

Figure 3. a) Formation of cohesive crack in a specimen
under uniaxial tension test; b)Decrease of resistant cross
section after peak load, due to increase of subjected
elongation.
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Interpretation of Tensile Softening in Concrete 11

the total area of the macrocracks. In this fractal set,
the eliminated surfaces, at each iteration, represent an
increase in the total macrocrack area. The generalized
Sierpinski carpet is a useful tool, so, from Equation 5,
the increase in the area of macrocracks in the nth
iteration is equal to:

�an = Ap

q

p2

�
p2 � q

p2

�n�1

; (8)

where Ap is the nominal area of the cross section. It is
obvious that:

1X
n=1

�an = Ap: (9)

If it is assumed that the consumed energy at each level
is proportional to an increase in the total area of the
macrocrack, the amount of consumed energy at each
step is equal to:

�Un = Gf :
�an
Ap

: (10)

On the other hand, the required energy for forming new
cracks in the cross section is equal to the area under the
stress-elongation curve, in an interval with the length
of �w, which reads, as follows:

�Un = �n�w: (11)

The condition of crack growth dictates that the value
of Equation 10 should be equal to Equation 11 at each
point, which yields:

Gf

�an
Ap

= �n�w: (12)

According to previous discussions, the resistance of
the specimen against elongation continues until the
area added to the macrocrack, in a critical iteration
`nc', becomes smaller than a certain value, which is
denominated the \last resistant ligament". The value
of nc may be calculated from the following relation:

�anc
Ap

<
1

m
)

�
1

p2

��
p2 � 1

p2

�nc�1

<
1

m
: (13)

For example, if m is equal to 1000, nc is equal to the
iteration number at which the eliminated area from the
fractal set becomes less than 0.001 of the cross sectional
area. For the sake of simpli�cation, q is equated with 1.

Now, by having the critical elongation of the
specimen, wc, it is possible to calculate the length of
the intervals from the following relation:

�w =
wc

nc
: (14)

Before applying Equation 14 to Equation 12, it is
noticed that, by using fractal patterns, a discrete
distribution of the stress values will be gained. Some
modi�cations on this model are required to make it
applicable. The required modi�cations are, as follows:

1. The value of the softening function in (w = 0) is
equal to the tensile strength of the specimen and the
softening curve is linear at the interval of [0;�w],
point A to point B, in Figure 4;

2. An energy modi�cation factor, �, is de�ned to
consider the consumption of energy at the interval
of [0;�w=2], shown in Figure 4. This modi�cation
factor makes the area under the softening curve
equal to GF . The energy modi�cation factor can
be calculated from the following relation:

(1� �)GF =

�
ft �

�
ft �

�
p2�w

4

��
�

�w

2
: (15)

Now, it is possible to calculate the value of the stress
at every point of the stress-elongation curve, by using
the following relation:

� =

8>>>>>><
>>>>>>:

nc
wc

�
Gf

h
p2(8GF�3ft�w)

8p2GF+1

i
1
p2

�
1� 1

p2

� nc
wc

w�1
�

wc
nc
� w � wc

ft
�
1� w

�w

�
+
h
p2(8GF�3ft�w)

8p2GF+1

i
GFw
p2�w2

w < wc
nc
:

(16)

This softening curve is called \Quasi-fractal", because,
not only is it a function of the fractal dimension of the
fracture surface, it also depends on another parameter,
m. A `Quasi-fractal' softening curve consists of a linear
part and an exponential part, which makes it very

Figure 4. Schematic diagram of `Quasi-fractal' softening
curve.
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12 H. Khezrzadeh and M. Mo�d

adaptive to any kind of common softening curve. This
will be shown in the next section.

It is more convenient to convert the softening
curve to a dimensionless form. With this normalization
procedure, the total area under the softening curve
and the appropriate tensile strength will become equal
to one. The dimensionless form of the `Quasi-fractal'
softening curve is, as follows:

�̂=

8><
>:

nc
ŵc

�h
p2(8�3�ŵ)

8p2+1

i
1
p2

�
1� 1

p2

� nc
ŵc

ŵ�1
�

ŵc
nc
� ŵ� ŵc�

1� ŵ
�ŵ

�
+
h
p2(8�3�ŵ)

8p2+1

i
ŵ

p2�ŵ2 ŵ < ŵc
nc

(17)

where the dimensionless parameters in Equation 17 are
de�ned by the following relations:

�̂ =
�

ft
; ŵ =

w

wch

; wch =
Gf

ft
: (18)

In the next section, the presented dimensionless form
of the `Quasi-fractal' softening curve will be compared
to a set of experimental softening curves.

COMPARISON OF `QUASI-FRACTAL'

SOFTENING CURVE WITH COMMON

SOFTENING CURVES

Introduction of Some Famous Experimental

Softening Curves of Concrete

As stated above, several forms of the softening curve
have been proposed for concrete. Five experimental
softening curves have been chosen for comparison with
a `Quasi-fractal' softening curve. All the presented
softening curves are in their dimensionless form, in
order to have a single measurement criterion.

The �rst of these is Petersson's bilinear
model [14]. He proposed the �rst experimental soft-
ening curve for concrete. This curve is a bilinear curve
with a kink point at (0.8,1/3) and a dimensionless
critical opening, i.e., ŵc =

wc
wch

, equal to 3.6.
The second model is a power law softening, which

has been proposed by Reinhardt [22]. This model has
the following relation:

� = �u

�
1�

�
w

wc

�n�
; 0 < n < 1: (19)

After conducting a series of experiments on concrete,
Reinhardt [22] suggested values of 0.29-0.40 for n and
0.12-0.20 mm for wc. Some typical values for concrete,
suggested by Reinhardt [22], for n, wc and �u, are
0.31, 0.175 mm and 3.2 N/mm2, respectively. The
corresponding value of Gf is 133 N/m. By using the
suggested values of Reinhardt [22], the dimensionless
form of Equation 19 is, as follows:

�̂ =

"
1�

�
ŵ

4:226

�0:31
#
; 0 < w < 4:226: (20)

The third model is the \CHR" curve. Cornelissen et
al. [15,16] proposed this model, which has the following
relation:

�̂ = (1 + 0:199ŵ3)e�1:35ŵ � 0:00533ŵ;

0 < ŵ � 5:14: (21)

Hordijk [23] analyzed the experimental results from 12
di�erent sources and concluded that this equation can
yield a reasonable approximation for them all.

On the other hand, some experimental data
indicate that the tail of the softening curve can be
extremely long, with wc as large as 12Gf=ft. The
fourth model, called ELT, has been proposed for these
kinds of softening behavior by Planas and Elices [24],
which has the following relation:

�̂ = 0:0750� 0:00652ŵ+ 0:9250e�1:614ŵ;

ŵ � 11:5: (22)

The �fth model is resultant of edge splitting ex-
periments, which have recently been carried out by
Slowik et al. [20]. They used a new optimization
method to �t a softening curve to the results of edge
splitting experiments. The proposed softening curve
for concrete, by this new method, has the following
mathematical form:

�=c1

"(
1+

�
c3
w

c2

�3
)
:e
�c4

w
c2 �

w

c2
(1+c33):e

�c4

#
:
(23)

They suggested a range for each of the parameters in
the above equation. By using the proposed `master
parameter set' and converting the outcome equation
into a dimensionless form, the following relation was
obtained:

�̂ = (1 + 0:1908ŵ3):e�1:343ŵ � 0:0049ŵ;

ŵ < 5:211: (24)

An interesting point concerning the above equation,
which will be called \SVBV" for the length of this
paper, is in its deep similarity with the CHR softening
curve (Equation 21).

All of the curves, shown in Figure 5, have been
sketched simultaneously in a coordinate system. It will
be shown, in the next part of this section, that all of the
presented curves have a \Quasi-fractal" counterpart.

Comparison of `Quasi-Fractal' Softening Curve

with Existing Softening Curves

A `Quasi-fractal' softening curve, as the direct outcome
of an energy consumption theory during the softening
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Interpretation of Tensile Softening in Concrete 13

Figure 5. Di�erent proposed softening curves for
concrete.

procedure, is a function of two variables, p and m.
For comparison of a `Quasi-fractal' softening curve
with other softening curves, a computer program was
written to calculate the best adaptive pairs of p and
m. After �nding the best ranges for the previously
mentioned parameters, because of the indistinct values
of p and m, calculations were performed by a set of
assumed values of m, which were 50, 100, 200 and 400.

The best value of parameter p is obtained from
a simple algorithm. This algorithm is based on the
criterion that, among a wide range for the parameter,
the selected value has the least di�erence with the
objective softening model. The outcomes for the above
algorithm have been collected in Table 1.

After �nding the p values for selected values of m
by the above method, one more criterion is required
for determining the best pair of parameters, m and p.
This criterion is in concordance with the center of the

area of the curves. The importance of this criterion is
in the application of the softening curve. In fact, the
location of the center of the area of a softening curve
is the expositor of the inuence point of the cohesive
forces in an existing cohesive zone ahead of a crack, or,
mathematically, the exerted moment by the cohesive
zone forces can be calculated, simply by the following
relation:Z wc

0

�(w) � wdw = Gf :w; (25)

where, in the above equation, w, which, in its dimen-
sionless notation is ŵ, is the coordinate of the center
of the area of the softening curve on the crack opening
axis. Therefore, w is useful in the prediction of the
behavior of notched concrete members or structures.

The results of the calculation of the center of the
area for di�erent values of p and m, from Table 1, have
been gathered in Table 2. The presented values in
Table 2 help the process of choosing an appropriate
value of m.

The selected value, from Table 2, for the param-
eter, m, of an adaptive `Quasi-fractal' softening curve,
which is obtained by a comparison of the `Quasi-fractal'
model with other models, is equal to 100 for Petersson,
CHR and SVBV curves and 400 for Reinhardt. For the
`Quasi-fractal' counterpart of an ELT curve, because
of the negligible di�erence between the ŵ values for
m = 50 and m = 100 and the good accordance of other
curves with m = 100, the selected value for m is equal
to 100. Each pair of selected softening curves and its
`Quasi-fractal' counterpart have been drawn through
Figures 6 to 10.

From all the above, it is evident that `Quasi-
fractal' softening curves are in very good agreement

Table 1. The best values of parameter p for selected value of m of acquired adaptive `Quasi-fractal' softening curve in
comparison to other softening curves.

Comparison Model m = 50 m = 100 m = 200 m = 400

Petersson [14] 1.74 2.19 2.82 3.72

Reinhardt [22] 2.04 2.62 3.52 4.79

CHR [15,16] 1.79 1.87 2.19 2.81

ELT [24] 2.04 1.98 1.95 1.93

SVBV [20] 1.78 1.87 2.11 2.75

Table 2. Calculated values of ŵ for the `Quasi-fractal' softening curves of Table 1.

Comparison Model m = 50 m = 100 m = 200 m = 400

Petersson (ŵ = 0:987) [14] 0.944 0.946 0.937 0.924

Reinhardt (ŵ = 1:198) [22] 1.115 1.149 1.177 1.193

CHR (ŵ = 1:178) [15,16] 1.208 1.173 1.153 1.154

ELT (ŵ = 2:009) [24] 2.07 2.075 1.91 1.787

SVBV (ŵ = 1:185) [20] 1.057 1.186 1.146 1.157
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Figure 6. Petersson's bilinear softening curve vs. its
`Quasi-fractal' counterpart.

Figure 7. Reinhardt's softening curve vs. its
`Quasi-fractal' counterpart.

Figure 8. CHR softening curve vs. its `Quasi-fractal'
counterpart.

Figure 9. ELT softening curve vs. its `Quasi-fractal'
counterpart.

Figure 10. SVBV softening curve vs. its `Quasi-fractal'
counterpart.

with all presented softening curves. In other words,
every softening curve has a counterpart in a `Quasi-
fractal' form. An interesting point about the acquired
result is that the `Quasi-fractal' counterpart of the
advanced softening curves, i.e., CHR, ELT and SVBV,
is in very close concordance with them. All of the
presented softening curves are resultant of experiments,
so, it can be stated that the `Quasi-fractal' softening
curve is close to the true materials softening behav-
ior. In fact, the main merit of the `Quasi-fractal'
softening curve is that it is based on a theory for
a softening procedure, which, itself, is based on the
microstructure of the concrete. On this basis, because
of the negligible di�erence in the value of parameter
m in all of the studied curves, the di�erence between
the existing softening curves arises from their di�erent
fractal dimensions, which is a direct result of the sieve
curve of the aggregates. In addition, the impact of
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Interpretation of Tensile Softening in Concrete 15

parameter m could be studied in future research.

SUMMARY AND CONCLUSION

In this paper, a new softening curve for concrete has
been proposed. This model is based on a presented the-
ory for a softening procedure that is a direct outcome
of the microstructure of concrete. Studies into the so-
called `Quasi-fractal' softening curve have shown that
it adapts itself well to existing softening curves. These
adaptations to common softening curves may indicate
that this new model is a good approximation of the
actual softening procedure of concrete-like materials.
This linear-exponential softening curve adapts well to
other kinds of softening behavior, because many of the
gained softening curves have a similar form.
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