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Investigation of the E�ect of Pad Geometry
on Flat and Rounded Fretting Fatigue

A. Mohajerani1 and G.H. Farrahi�

In this paper, the e�ect of geometrical parameters on the fretting fatigue of a half-plane in contact
with a 
at and rounded pad is studied. This is accomplished by calculating and comparing the
stress states and stress intensity factors of fretting cracks for a number of pad geometries. The
pad geometry is represented by the radius of its rounded corners and the width of its central 
at
part. The distribution of dislocation method is employed to calculate the stress intensity factors
of fretting induced cracks of di�erent lengths for di�erent values of geometrical parameters. The
results of this study can be insightful for improving the geometrical design of an aero-engine
compressor disk, as similar contact and damage are prone to occur in its dovetail region.

INTRODUCTION

Fretting fatigue is damage caused by a reduction of fa-
tigue strength, due to low-amplitude oscillatory sliding
motions occurring between contacting surfaces. This
damage is responsible for much premature failure of
disks and blades in turbine engines and, therefore, has
been the focus of many studies [1-10]. The assemblage
of these components is normally undertaken by using
dovetail or �r-tree shaped attachments. The dovetail
region of aeroengine compressor disks experiences fret-
ting in a 
at-on-
at contact with a relatively large
radius at the edge of the contact [11]. Some studies
have been conducted to directly investigate cracks and
stress states in the dovetail region [1,12-14]. Since
experimental setups are costly and stress states are
mostly unknown, simpli�ed models of the dovetail
region are widely used for analysis purposes. One such
model is that of a 
at and rounded pad in contact
with a half-plane placed under the fretting loading.
This model is favorable because of its similarity to the
mechanism of contact in the dovetail region and also
its analytical tractability [11,15-20].

In the present work, the e�ect of pad geometry
on the fretting fatigue of a half-plane, in the afore-
mentioned model, is studied. This is accomplished
by calculating and comparing stress states and Stress
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Intensity Factors (SIF) of fretting cracks for a number
of pad geometries. The geometry of the pad is
represented by the radius of its rounded corners and the
width of its central 
at part. Knowledge of the e�ect of
these geometrical parameters on the stress states and
the SIFs of the fretting cracks will help improve the
dovetail attachment geometry designs.

To calculate the SIFs of fretting fatigue cracks,
the distribution of dislocations method is used, which
is based on the numerical solution of integral equa-
tions [21]. First, the stress states in the half-plane are
calculated for each of the pad geometries. Next, cracks
with a variety of lengths at the contact boundary are
considered and their SIFs are calculated in respect to
each of the pad geometries. A sample model is analyzed
using the Finite Element Method (FEM) to verify the
results.

STRESS STATE IN THE HALF-PLANE

Normal and Shear Traction Calculation

In this section, the method used to calculate stress
states are described, in respect to a typical geometry
of the pad. Figure 1 shows the con�guration of the
contact model. The contact area has a width of 2a and
the stick zone width is 2c. The pad has a 
at central
part of width 2b and two rounded corners of radius R.
These corners are approximated by parabolic curves.
As shown, the half-plane is subjected to, not only the
normal force, P , and the tangential force, Q, but also a
bulk stress, �b. Due to the exertion of bulk stress to the
half-plane, the stick zone shifts by the value of e and
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Figure 1. A schematics illustration of a 
at and rounded
contact con�guration.

the shear traction distribution becomes asymmetric.
Although the presence of bulk stress results in more
complications in analytical solutions, it should be taken
into account, as the fretting fatigue normally takes
place in the presence of bulk stresses within one or
both of the contacting bodies, due to loadings other
than the contact itself.

When the 
at rounded pad and half-plane have
the same modulus of elasticity, E, and Poisson ratio,
v, the equation used to calculate the normal traction,
p(x), can be written as [16]:

�ARp(x) = x ln
�
b
p
a2 � x2 + x

p
a2 � b2�2

a2 jx2 � b2j

� b ln
�p
a2 � b2 +

p
a2 � x2

�2
jx2 � b2j

+ 2
p
a2 � x2 arccos

b
a
; (1)

where A is given by:

A =
�+ 1
2G

;

� =

(
3� 4v for plane strain
3�v
1+v for plane stress

(2)

As G is the modulus of rigidity. In this paper, only
cases of moderate bulk stresses are considered, for
which tangential traction has the same sign over the
entire contact area. Using the relation between shear
traction, q(x), and the tangential relative slip of surface
points, g(x), the unknown q(x) is calculated:

1
A
@g
@x

=
1
�

Z a

�a
q(�)
� � xd� �

�b
4
: (3)

The shear traction can be de�ned as:

q(x) = q�(x) + f jp(x)j; jx� ej � c;

q(x)=f jp(x)j; a�x��c+e [ c+e�x�a; (4)

where f is the coe�cient of friction. In the stick zone,
there should be no relative movement (@g=@x = 0).
Thus, by substituting Equation 4 into Equation 3 in
the stick zone, one obtains:

�b
4
� 1
�

Z a

�a
f jp(x)j
� � x d� =

Z e+c

e�c
q�(�)
� � xd�: (5)

The Gauss-Chebyshev quadrature method can be used
to solve Equation 5 [22]. The same procedure that is
used in [23] is applied here to �nd the shear traction
at certain points. The stick zone shift and �b are
related variables and only one of them can be chosen
arbitrarily. The relation between these variables can
be found by invoking the consistency condition [24].
Through the calculation of normal and shear tractions
on the contact surface, the values of normal and
tangential forces can be found using the equilibrium
conditions of the pad [16].

Interior Stress State

The stress state in the half-plane is given by the
superposition of the contact-induced stress state and
the bulk stress. In order to evaluate the contact-
induced stress state, the pressure and the shear trac-
tions are considered as arrays of overlapping triangular
traction elements. The use of such elements results in a
piecewise linear approximation to the surface tractions
and is, thus, free from discontinuities associated with
the piecewise method [25]. The stress state due to
each traction element is calculated and used to obtain
the total contact-induced stress state. For convenience,
only the �rst component of the stress state, �x, is used
for demonstration purposes in the following sections.
However, it should be noted that this method can be
applied e�ciently to calculate all components of the
stress.

FINITE ELEMENT MODELING

The con�guration of the �nite element model is shown
is Figure 2. This model has been extensively used
in [11,23-27] because of its similarity to most fretting
fatigue experimental setups. In the �nite element
modeling of this con�guration, the lower plate was
taken as large enough to appropriately approximate a
half-plane.

The model was loaded in two steps. In the
�rst load step, normal force was applied to the pad
and, in the second step, the bulk stress, �b, was
applied to the lower plate. Note that the bulk stress
automatically brings about the tangential force, Q. As
shown in Figure 3, in order to create the moment, M ,
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Figure 2. The con�guration of the �nite element model
under fretting loading. Note that in order to introduce the
tangential force, Q, the pad is constrained in x direction.

Figure 3. A schematic view of the pad loading. Static
equilibrium requires the pressure distribution to be
asymmetrical to make the moment (M), opposite to the
moment created by the tangential force around the
contact center (o).

necessary for the equilibrium of the pad, the pressure
distribution over the contact surface should be asym-
metric. However, pressure distribution in homogeneous
contacts should be independent of tangential loads.
The symmetry of pressure distribution is a signi�cant
concern in the �nite element modeling, and can be
signi�cantly overcome by coupling the nodes of the
pad's upper side in the y direction. The size and
number of the crack tip singular elements were chosen
according to [26].

The model was meshed using 8-node plane ele-
ments. Mesh re�nement was undertaken in multiple
steps. At each step, the model was run and the stress
values at some points of interest were recorded. The
mesh re�nement was quitted when these stress values
were stabilized.

In contrast to the contact mechanics approach of
analyzing the stress state, in which the Q value is an
input to the problem, in this �nite element model, Q
could not be prescribed directly into the model. The
value of Q is a�ected by many factors, such as the

length and elasticity modulus of the pad arm (i.e. the
extended side of the pad in Figure 2) and the bulk
stress. In the current model, the pad arm was de�ned
by a new set of material properties, so that its E values
could be adjusted for obtaining the desired Q value.
The adopted trial and error approach required several
runs of the model for the number of E values of the
pad arm and for recording the corresponding Q values.
Finally, an E value for the pad arm was found that
corresponds to an acceptable value of Q.

DISTRIBUTION OF DISLOCATIONS
METHOD

The distribution of dislocations method is a convenient
approach for calculating the SIFs of cracks in half-
planes under complicated stress states [21,27]. This
method is based on the numerical solution of integral
equations that relates the relative displacement of the
crack faces to the stress state of an uncracked half-
plane. Once the relative displacements of the crack
faces are calculated, the SIFs can be obtained using
the well-known fracture mechanics relations of the SIFs
and the relative displacement of the crack faces. In
this method, �rst the stress values along the line of the
crack are obtained in its absence. Then, a distribution
of dislocations is introduced along the line of the crack.
Let N(x) be introduced as the total normal traction
across the crack, and �T (x) as the stress along the line
of the crack in its absence. Based on the coordinate
system depicted in Figure 4, the mentioned integral
equation for cracks of length b can be written as [21]:

N(x) = �T (x) +
G

�(�+ 1)

Z b

0
By(c)K(x; c)dc: (6)

Figure 4. A normal crack in a half-plane with the length
b.
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It should be noted that for traction free crack faces,
N(x) is zero. In the above equation, By(c) is the
density of the distribution of dislocations given by:

By(c) =
dby
dx

(c); (7)

where by is the length of the dislocation burger vector,
which in the case of the present work is directed in
the y direction. K(x; c) is a generalized Cauchy kernel
given by:

K(x; c)=2
�

1
x�c�

1
x+c

� 2c
(x+c)2 +

4c2

(x+c)3

�
: (8)

The �rst step involved in the numerical solution of
Equation 6 is to normalize the variables by introducing
new variables given by:

s =
2x
b
� 1; r =

2c
b
� 1: (9)

And by switching to a series representation, such that
a system of simultaneous linear algebraic equations
remains, the following is obtained:

b
2
� G
�(k+1)

nX
i=1

2�(1+ri)
2n+ 1

K(sk; ri)�(ri)=��T (sk):

By calculating the values of �(ri), �(1) can be obtained
as follows:

�(1) =
2

2n+ 1

nX
i=1

cot
�
�
2

�
sin (n�)�(ri); (10)

where � = (2i�1)�
2n+1 . Finally, the �rst mode stress

intensity factor, denoted by KI , can be obtained:

KI = 2
p

2
p
�b

G
(�+ 1)

�(1): (11)

A similar approach can be applied to obtain the mode
II stress intensity factor, KII .

DISCUSSION AND RESULTS

The role of pad geometry on fretting fatigue is studied
by observing the e�ect of varying each geometrical
parameter on the half-plane stress states and SIFs of
fretting.

Three values are considered for the radius of the
pad corners, R, as 50, 100 and 140 mm. For each R
value, the width of the central 
at part of the pad, 2b,
is taken as 3, 6, 10 or 16 mm.

Consideration of the mentioned values for b and R
results to twelve pad geometries. For each of these 12
pad geometries, the SIFs were calculated for a number
of cracks with lengths from 0.1 mm to 1 mm. The plane

Table 1. The speci�cations of the contact model used in
the study.

E
(MPa)

v f P
(N)

Q
(N)

�b
(MPa)

126000 0.3 0.5 896 376 23.7

strain state was assumed. The other speci�cations of
the models are shown in Table 1.

Since the values of a, c and e vary in accordance
with R and b, their values should �rst be calculated, us-
ing the contact equilibrium equations and consistency
conditions for each of the contact geometries [16,23].

The e�ect of pad geometry on stress states in the
half-plane are studied for each of the four cases shown
in Table 2, where the highest and lowest values for R
and b have been chosen in their mentioned intervals to
accentuate the e�ect of parameter variations. Using
the method described previously, the value of the x-
component of the normal stress, �x, at the depth of
0.1 mm (y = 0:1 mm), was calculated for each case.
Figure 5 depicts the value of �x for the four cases.
A peak value of �x can be observed near the contact
boundary. It can be seen that increasing b and R
reduces the peak value of �x. Also, note that, as the

at part width of the pad increases, the e�ect of corner
radius on the peak value of �x is weakened.

Table 2. The geometrical parameters of the pads for the
cases shown in Figure 5. In each case, the highest or
lowest value of each parameter is chosen for a better
comparison of the resulting stress states.

Case No. 1 2 3 4

b 8 8 1.5 1.5

R 50 140 140 50

Figure 5. The values of �x in respect to four pad
geometries, in the depth of 0.1 mm.
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A sample case was studied by FEM to verify the
results. For this sample model, parameters are chosen
to be b = 5 and R = 100. As shown in Figure 6,
the values of �x, at the depth of 0.1 mm, are in good
agreement with FEM results. The values of KI for
cracks with di�erent lengths in this model, are shown
in Figure 7.

In order to investigate the e�ect of pad geometry
on the SIF of fretting cracks, the �rst mode stress
intensity factor, KI , versus crack length, is illustrated
in Figures 8, 9 and 10 for R = 50, 100 and 140 mm,
respectively.

As shown in Figures 8, 9 and 10, the e�ect of
pad 
at part width, b, on the value of KI , is highly
a�ected by crack length. For shorter cracks, increasing
b results in the decrease of KI . However, for cracks
longer than a critical value, the e�ect of b on KI is

Figure 6. �x in the depth of 0.1 mm in the sample model.

Figure 7. The KI values vs. crack length in the sample
model.

Figure 8. KI values vs. crack length for R = 50 mm.

Figure 9. KI values vs. crack length for R = 100 mm.

Figure 10. KI values vs. crack length for R = 140 mm.
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reversed. This critical crack length varies, according to
the values of R.

Although KI and its variations have been the
main concern of most fatigue studies, knowledge about
KII values is essential too, for fretting fatigue studies.
Therefore, the e�ect of pad geometry on KII values
has also been investigated using the same methods and
assumptions employed for the study on the �rst mode
of stress intensity factors.

The KII values of the cracks in the sample model,
calculated by FEM, and the distribution of dislocations
method are shown in Figure 11. The KII values of
cracks with di�erent lengths for R = 50, 100 and 140
mm are shown in Figures 12, 13 and 14, respectively.
As shown, increasing R and b can signi�cantly reduce
the KII values.

Figure 11. The KII values vs. crack length in the sample
model.

Figure 12. KII values vs. crack length for R = 50 mm.

Figure 13. KII values vs. crack length for R = 100 mm.

Figure 14. KII values vs. crack length for R = 140 mm.

CONCLUSIONS

In this paper, the e�ect of geometrical parameters on
the fretting fatigue of a half-plane in contact with a

at and rounded pad is studied. Some of the key
observations made in this work can be summarized as
follows:

1. For the pads with small 
at parts, the �rst mode
stress intensity factor of the fretting crack, KI , is
almost independent of the crack length. It was also
observed that increasing the pad width decreases
the KI values of short cracks and increases the KI
values of longer ones. The crack length at this
turning point is highly a�ected by the pad corner
radius. Indeed, this is the only noticeable e�ect of
the pad radius on the values of KI .

2. In contrast to the observations made on the vari-
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ations of KI values, a relatively consistent pattern
was observed on the e�ect of the pad geometry on
the second mode stress intensity factors, KII . As
the crack length increases, a consistent increase in
the KII values takes place. Increasing each of the
geometrical parameters decreases the values of KII .
Although this e�ect is less noticeable for very short
cracks, it can be clearly acknowledged for the longer
ones.

Results of the study show that no general rule can be
established for the assignment of a pad 
at part width
to minimize fretting fatigue. However, increase of the
pad corner radius can consistently be a good choice for
weakening the fretting fatigue.

NOMENCLATURE

a half of the contact width
b half the width of the pad 
at part
b crack length
by length of burger vector of a normal

dislocation
B(c) density of distribution of dislocations
c half of the stick zone width
e stick zone shift from the center of

contact
E modulus of elasticity
f coe�cient of friction
G modulus of rigidity
g(x) tangential relative slip of contact

points
K generalized Cauchy kernel
KI �rst mode stress intensity factor
KII second mode stress intensity factor
M moment created by asymmetrical

pressure distribution
N total normal traction on crack path
p(x) normal traction on contact area
P normal contact force
q(x) shear traction on contact surface
Q tangential contact force
R radius of the pad corners
v Poisson's ratio
�b bulk stress
�T normal traction on crack path due to

loading
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