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Motion Equations Proper for Forward Dynamics
of Robotic Manipulator with Flexible Links by
Using Recursive Gibbs-Appell Formulation

M.H. Korayem'* and A.M. Shafei!

Abstract.

In this article, a new systematic method for deriving the dynamic equations of motion

for flexible robotic manipulators is developed by using the Gibbs-Appell assumed modes method. The
proposed method can be applied to the dynamic simulation and control system design of flexible robotic
manipulators. In the proposed method, the link deflection is described by a truncated modal expansion.
All the mathematical operations are done by only 3 x 3 and 3 X 1 matrices. Also, all dynamic expressions
of a link are expressed in the same link local coordinate system. Based on the developed formulation, an
algorithm is proposed thatl recursively and systematically derives the equation of motion, then this method
is compared with the recursive Lagrangian method. As shown, this method is computationally simpler
and more efficient and it reduces a large amount of computational complexity. Finally, a computational
stmulation for a manipulator with two elastic links s presented to verify the proposed method.
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INTRODUCTION

The derivation of dynamic equations of motion describ-
ing the dynamic behavior of robotic manipulators is
necessary for dynamic simulation and control system
design. Today, many systematic methods can be used
for deriving the dynamic equations of robotic manip-
ulators [1-3]. But, these methods are only suitable
when the individual links of a robotic manipulator are
assumed rigid.

Based on recent advances in robot utilization
and also the demand for faster robots with great
quality, a light robot usage idea is represented. Robots
with elastic links are introduced as a solution for the
deformation phenomena in light robots with heavy
loads. In this case, deformation causes accuracy
reduction and system instability. Therefore, there is an
obvious requirement for a complete dynamical model
for this kind of robot to control light links at high
velocity and in heavy load situations, appropriately.
The two main approaches for the dynamic modeling
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of flexible robotic manipulators are the finite element
method [4] and the assumed modes method [5-9]. The
finite element method is a general method and can he
applied to manipulators with complex shaped links.
But, this method requires sophisticated software for
performing assembly and the order reduction of the
element equations.

The assumed mode method of modeling flexible
manipulators is mainly presented by Book [5]. He
represented the link deformation and kinematics of rev-
olute joints with a 4 x4 matrix and used modal analysis
for link deformations. This method of formulation had
acceptable efficiency in comparison with other methods
of that time. King applied Walker-Orin’s method,
based on Newton-Euler formulation, to improve Book’s
method [6]. But, his method still suffered from great
computational complexity. Jin and Sankar also have a
systematic approach for elastic links [7]. They obtained
dynamical equations by using Lagrange formulation
and the modes approach assumption. In this method
3 x 3 matrixes are used for computations and the
results are simulated for a robot with one link. The
computations, however, are massive.

Highly efficient multi-flexible-body methods have
been previously presented by Anderson [10] and Baner-
jee [11] based on Kane’s Method with many other com-
parably efficient multi-flexible-body routines developed
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by E. Haug, J. Angeles, R. Singh, R. Schwertassek,
A. Jain, R. Wehage, J. Ambrosio and others [12].
Many of these methods are so-called O(N) routines,
being able to form equations of motion with an overall
cost that increases only linearly with the number of
system degrees of freedom N, (for rigid body systems).
For flexible body systems, this overall cost (equations
formation) is adjusted somewhat, being approximated
as O(n% x m?).

Dynamic equations of motion by the Gibbs-
Appell formulation begin with a definition of Gibbs’
function (acceleration energy) [13]. Then, a set of
independent quasi velocities (linear combination of
generalized velocities) should be selected. By taking
the derivative of the Gibbs’ function, with respect to
quasi accelerations (time derivate of quasi velocities),
and equalizing them with generalized forces, these
equations will be obtained. But, this method has been
the least used for resolution of the dynamic problem
of manipulating robots. In the field of robotics,
Popov proposed a method later developed by Vuko-
bratovic and Potkonjak in which the G-A equations
were used to develop a closed form representation of
high computational complexity [14]. This method was
used by Desoyer and Lugner to solve, by means of
a recursive formulation, O(n?), the inverse dynamic
problem, using the Jacobian matrix of the manipulator
with the purpose of avoiding the explicit development
of partial derivatives [15]. Another approach was sug-
gested by Vereshcahagin, which proposed manipulator
motion equations from Gauss’ principle and Gibbs’
function [16]. This approach was used by Rudas
and Toth to solve the inverse dynamic problem of
robots [17]. Recently, Mata et al. presented a formu-
lation of order O(n) which solves the inverse dynamic
problem and establishes recursive relations that involve
a reduced number of algebraic operations [18].

In this article, a new systematic method for
dynamic modeling of flexible robotic manipulators
is developed using the Gibbs-Appell assumed modes
method. In this method, the equation of motion for
flexible rohotic manipulators is written in the following
form:

1(0)6 = Re, (1)

where I(0) is the inertia matrix of the whole system;
O denotes the vector of the generalized coordinate

containing joint and deflection variables; and Re is the
vector composed of the strain, gravitational, Coriolis,
centrifugal forces or torques and also the generalized
forces or torques exerted to the joint and link vari-
ables. Also, a recursive algorithm is proposed that
systematically derives the equation of motion of elastic
robotic manipulators. Then, this method is compared
with the recursive Lagrangian method and, as shown,
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this method is computationally simpler and more
efficient and it reduces a large amount of computational
complexity. Finally, for verification of this method, a
computational simulation for a manipulator with two
elastic links is presented.

KINEMATICS OF FLEXIBLE LINK

In this section, the kinematics of a chain of n elastic
links is taken into consideration. The coordinate
system of every link is attached according to the rules
developed by Denavit and Hartenberg. X Y7, is the
coordinate system that is attached to the base of the
manipulator and can be considered as the reference
coordinate system. Because of the elastic property of
the links, two rotations occurred one of which is in the
joints and the other of which is in the links. It is useful
to separate the transformations due to the joints from
the transformations which are due to the flexible links.
So, we allocate two coordinates system to each link.
Z;yi%; 18 a coordinate system on link ¢ whose origin is
located at the beginning of this link, but %;9;Z; is the
coordinate system that is attached to the end of this
link. When link 7 has no deformation, the axes of Z;¥; Z;
are parallel to the axes of x;y;2; .

In Figure 1, the arbitrary point, @, is shown.
The position of this point with respect to the th
body’s local reference system is expressed by iFQ/Oi.
To incorporate the deflection of the link, the approach
of modal analysis is used. So:

‘Toj0, = 1T+ Zj; 6i; (t)7i5(n), (2)

where 7 = {n 0 0}7 and 7i; = {wi; vi; z;}7. Also,
1 is the undeformed distance between the origin, O;,
and the point, (J; z;;,v;; and z;; are the displacement
components of 7 mode of the ¢th link; ;; is the time
varying amplitude of mode j of link 4; and m; is the
number of modes used to describe the deflection of
link 3.

By using the rotation matrix, 7 R;, we can express
the arbitrary vector, @, in every coordinate system, j,
in the following form:

i@ =7 R;"a. (3)
As noted above, it is better to separate the rotations,

due to joints from deflections. So, 7 R; can be presented
recursively as follows:

IR; =7 Ri_1B;_1 A, (4)
where A; is the rotation matrix of the ith joint that

shows the orientation of the z;y;z; coordinate system
with respect to &;_19;_1Z;_1. The coeflicients of this
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Figure 1. Manipulator with elastic links.

matrix can be presented by dot products of a pair of
unit vectors as follow:

TiTio1 YiTic1l 24T
A = | T Yi¥i-1 Zilio1| - (5)
TiZi—1 Yi-Ri-1 %Rl

Also, E; is the ith link rotation matrix that shows the
orientation of #;7;z; the coordinate system with respect
to x;y;z;. Like A;, this matrix is also composed of dot
products of a pair of unit vectors, but because of the
small angles between these vectors, F; is simplified in
the following form:

1 _Hzi Gyz
_Gyi 99:7,' 1

where 6,;,0,; and 6.; are infinitesimal rotations of
;9 2;, with respect to x;, y; and z; axes, respectively. It
should be noted that all the angles in E; are evaluated
at n = I; , where [; is the length of the ith link. Now,
we define *f; as follows:

These small angles can be represented by truncated
modal expansion as follows:

f; = Zj:l 65 ()05, (8)
where 9_;']‘ = {GTZ] Gyij Guvj}T. By taking the time
derivative of f;, the angular velocity and acceleration
of Z;7;%; the coordinate system, with respect to x;y;z;,
will be obtained.

SYSTEM’S ACCELERATION ENERGY
(GIBBS FUNCTION)

In this section, the expression for the system’s accelera-
tion energy is developed for use in Gibbs-Appell’s equa-
tions. First, the acceleration energy for a differential
element is written. Then, integration of this differential
acceleration energy over the link gives the link’s total
contribution. Summation over all the links provides
the total acceleration energy. The acceleration energy
of a point on the ith link is:

1
dsi = §dm(z’/_"QT.z7_"Q), (9)
where dm is the differential mass of point @ and 1'1%@ is
the absolute acceleration of differential element @ that
is expressed in the ¢th body’s local reference system:

—

ZTQ = ";.Oi +i %‘Q/O;, + Qiﬁi X1 ;.Q/O;,
-I-ICJ'Z' XiFQ/Oi —|—i(.<_)'i X (i@'i X7 FQ/O,,.’)‘ (10)

In the above expression, i%oi is the absolute acceler-
ation of the origin of the ith body’s local reference
system, ‘@; and '&; are angular velocity and angular
acceleration of the 7th link, respectively and ZVF'Q/Oi and
Fo 0, are the velocity and acceleration of differential
element @, with respect to the origin of the 7th body’s
local reference system which will be obtained by taking
the time derivative of Equation 2 as follows:

o0, =Y B (). (11)

oj0, =Y, b)), (12)

By substituting Equation 10 in Equation 9 and inte-
grating over the link, one can obtain the link’s total
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acceleration energy. In this paper, it is assumed that
the links are slender beams. For slender beams, dm =
ndn where p is mass per unit length. So, one can
integrate over 7 from 0 to /;. Only the terms in iFQ/O’.
and its derivatives (1'1‘7@/0 1'7;4@/0 ) are functions of 7
for this link. Thus, the integration can be performed
without knowledge of *&;,'&; and *7p,. Summing over
all n links, one finds the system’s acceleration energy
to be:

n L
S = E X dSl
=1 )
no 1o e iw Tip
S = E =M, ro, . To, + To, . By;
i=1 2 Y
i% Tp i-s i% Tp i  i% Ti~ i
—2"To,” Byi'd; —'To,” Bsi'd; — 'To, " "'wiB3;'d;
insT i
wi‘B&

1 o
+ §B4i —2'3;" ' Bs; +

— '@ Bri'@i + 2'6 " Bsi '@ + §ZWiTB9ilwi

+ i@'iTi@,-Bgii@'i + irrelevant terms, (13)
where:

Py l, . s

ZBu:/ WG 0,dn, (14)
a
L ..

BQi:/ WrQ 0,4, (15)
a
.

B&':/ WTQ o.dn, (16)
a
lz L oae Ty

B4¢=j WTQ/0,- Tq 0, dn, (17)
0

. l, . ae L.

ZBS@':/ W'TQ 0, TQ)0,dn, (18)
a

. ll . L ee

2Bm‘Z/ W'TQ 0,'Tg 04N, (19)
a
li . . es

Bn:/ 1'igso." 'Tq 0, dn, (20)
a
li . .

BSi:] 1'ig 0, o 0.dn, (21)
a
ZI' . .

Bgi :] ,U,ZFQ/OiTZfQ/Oidn. (22)
a

In Equatlon 13, M; is the tota] mass of the ith link.
Also "7 0,, "TQ )0 rQ/o and '@; are skew-symmetric
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tensors representation of the 'FQ/O , ?’Q/O , V%Q/O and
'J; vectors. For developmg an expression for S, these
vector relations, @.b = b.@, @ x b = ab and (@ x b).¢ =
@.(b x @) are frequently used. By interchanging the
integration and summation in Equations 14 to 22, one
obtains:

Z'Bll — Zj%] 62]&] (23)
By = Z% i€, (24)
By = M, + ZF 8ii€ij, (25)

_ 'j"z'f ijk>
B4z - Z Zkfl 62 6 chjk (26)

"By = Z " Z 5ij5ik8ijka (27)
By, = Z;’; 8i;ij, (28)
Bq; = Z;n:l 843 Bi (29)
Bs; = Z;n:l b3 Bi (30)
By, =¢; + Zj:l &jCiJ‘T + Z::l ik Bk (31)

where:
Qi = Cij + ZZ; 0irCikj, (32)
Bij = cij + 22;1 Oir" Cikj- (33)

By definition, 7 and 7;; are skew-symmetric tensors
associated with 7 and 7;; vectors. The expressions of

EijsEij mmascijhajk,aj, cij, "cijk, ¢; that appeared
in Equations 23 to 33 can be written in the following
form:

l;

£ 2/ pTjdn, (34)
0
I;

Eij :/ wrijdn, (35)
0

— Li

M, :/ widn, (36)

0
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1;
“Cijk :/ pis; T i, (37)
0
1;
Cijk = / Wi Tk, (38)
0
l;
Cij Z/ P, (39)
1]
1;
Cij :/ iy Tpdn, (40)
0
1;
ik :/ (i Fadn, (41)
0
I;
ci= [ wil'idn. (42)
Q

Now, it should be noted that Bg; has a unit of inertia
matrix. For example, its first term (¢;) represent rigid-
body-inertia terms. It can also be shown that ™¢;;; =
'mcz-ij. The terms defined in Equations 23 to 33 are
easily simplified if one link in the system is considered
rigid (m; = 0). Furthermore, the expression for By;
has a term of order 62, which is small and a candidate
for later elimination [5]. Finally, the integration of the
modal shape products in Equations 34 to 42 can be
done off-line one time for a given link structure.

Derivatives of Acceleration Energy

G-A equations are obtained hy taking the derivative of
Gibbs’ function, with respect to generalized accelera-
tions (q] 5jf)2

as oS

v — .

an 66jf
In Equation 13, there was a term named an irrelevant
term. In fact, in Gibbs’ function, the terms that are
not functions of §; and é,¢ can be eliminated, because
they have no role in construction of the derivative of
acceleration energy. B )

In Gibbs’ function, only "7, and *&; are functions

of ¢;. So, the partial derivative of Gibbs’ function with
respect to ¢; becomes:

n
Zi:j+1

i it - i
— 2B5;"&; — Bs;'W; — 'w; Bs; Wz')

a5

a8 d'ro,”
9§

- sz'i%o,- +°'By;
8q_7- (

o'a;"
g

J

+3 7

=7

(BSii%O; + " Be;

+ 2Bgii@; + Boiii + ZaiBgf@) . (43)
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Here, it should be noted that, in the above expres-
sion, this property of the skew-symmetric matrix, in
which a” = —a is used. The partial derivative of
Gibbs’ function with respect to ;; is more complex,
because in addition to i%'oi and %Lu'i, the expressions
of iB-]i,B4i,iB-5i,iB-Gi and B72' are also functions of

deflection variables. So, the expression of a?s’s can be
af

presented as follows:
= Z¢:j+]

i i - i~
— 2B5;"'&; — Bsi'&; — 'w;Bs;'W; )

o T

96

d'Fo,
db;¢

(.hrz'i%'oi 4+ iB.li

o'a; T

! Zi:ﬂ“ 08¢

i o P
+2Bg;'&; + Bo;'&; — "w; Bei"'&; )

(B3¢i7.:"0,i + 'Bei

m) . 5 7_. T m) . =
+ E et (Sjk Cifh — 27 0; E et (Sjkcjfk

= T - iS5 T = i T =
—7d;" B’ + 770, Ejp +70; Ay (44)

95

af

An additional simplification of arises, due to the

fact that “c;jrp = iy

SYSTEM’S POTENTIAL ENERGY

The potential energy of the system arises from two
sources:

1. Potential energy due to gravity,

2. Potential energy due to elastic deformations.

The effect of gravity on manipulators can be
considered simply by putting %7, = §, where § is the
acceleration of gravity. Under these circumstances, we
can assume that the base of the manipulator has an
acceleration of 1 g to the top. So, the effect of gravity
has been considered without additional computations.

To express the strain potential energy stored in
the ¢th link, let us assume that the assumptions of
the classical beam (Euler-Bernoulli) hold. So, the
strain potential energy will be expressed in terms of
deflections and rotations as follows:

1 L 811,7‘ 2 62’11)2' 2
e EA ‘ EI, [ 22
Ve Qfo <3n> - y<3n2>
9%v;\° 96,;\°
EI GI,
R (3772) * ( an )

where EI, and EI, are the bending stiffness in the OY
and OZ directions, respectively; E A is the extensional

dn, (45)
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stiffness; GI, is the torsional stiffness; wu;,v; and w;
are the deflections in the OX,0Y and OZ directions,
respectively; and 6, is the rotation in the OX direction
as shown in Figure 2.

Tt is easy to show that the following relations
between the component of deflections and rotations
exist:

a’l)i m; ayij
21 — = I~ 4
Gwz _ m; 3z”

where 6,; and 6.; are the rotations in OY and OZ
directions, respectively.

By substituting Equations 46 and 47 in Equa-
tion 45 and ignoring the strain potential energy due
to axial deformation, in comparison with the strain
potential energy due to bending and torsion [5], the
expression for V,; is simplified as follows:

1 b 90, \ 2 96.;\>
V., == EI vt EI (22
2/0[ y(3n>+ “<3n>
90,.\ >
GI, [ ==Y |an. 48
wor () | e

As noted previously, angles 6,,,6,; and f.; can be
presented with a truncated modal approximation. For
example the rotation about the OX axis is presented
as follows:

=S St n), (49)

k=1

where 6, is the angle corresponding to the kth mode
of link 7 at point 7. By substituting the achieved
expressions of ,;,6,; and ., in Equation 48, the strain
potential energy for the whole system will be obtained
as follows:

Zj 1 va ZZl ik Ot Kigi,s (50)

where:

Kiri = Kaingt + Kying + K. (51)

“ v
.
: ' _ I i 0,
20 4 X 0. \'a [
S 74
-

Figure 2. Deflections and rotations of a link.
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Also, Kk, I yir and K .;p; are defined as follows:

b 00ua(n) Brin(n)
I\vmi :/ GIT = — d ’ 52
T o an (52)
il )89 zk( )
I\yzkl */ EI %77 yan dnv (53)
b 0B 90.u(n)
K. :] E]ZLL(M. 54
T o an (59

It should be noted that K;;; = K. For deriving the
dynamic equation of motion, the partial derivatives of
strain potential energy with respect to the generalized
coordinate is needed. Upon taking the partial deriva-
tive with respect to g;, one obtains:

oV,
qu

= 0. (55)

But taking partial derivatives with respect to 0;f
results in:

a‘/( my
5, = Zk 6K i, (56)

where I;;; can analytically or numerically be deter-
mined.

DERIVATION OF DYNAMIC EQUATIONS
OF MOTION USING G-A’S FORMULATION

The components of the complete equations of motion
in G-A’s formulation, except for the external forcing
terms, have been evaluated in Equations 43 and 55
for the joint equations and in Equations 44 and 56
for deflection equations. The generalized force in joint
equations is the torque, 7;, that applies to joints.
But, in deflection equations, the corresponding gener-
alized force will be zero, if the corresponding modal
deflections or rotations have no displacement at those
locations where external forces are applied [5]. So, with
this assumption, the dynamic equation of motion in G-
A’s formulation will be completed as follows:

1. The joint equations of motion:

a8

S 57
8(]] T] ( )
2. The deflection equations of motion:

as AV,
85jf a(sjf

=0. (58)

The above equations are in the form of inverse dynamic.
In this type of dynamic, the forces exerted by the
actuators are obtained algebraically for certain con-
figurations of the manipulator (position, velocity and
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acceleration). On the other hand, the forward dynamic
problem computes the acceleration of the joints of the
manipulator, once the forces exerted by the actuators
are given. This problem is part of the process that must
be followed to perform the simulation of the dynamic
behavior of the manipulator. This process is completed
after it calculates the velocity and position of the
joints by means of a process of numerical integration
in which the acceleration of the joints and the initial
configuration are data input to the problem [15].

FORWARD DYNAMIC EQUATIONS OF
MOTION

In thls section, the first step will extend the equations
of 'rp, and also ;. These equations are used to
separate the second derivatives of joint variables and
deflection variables from the dynamic equations of
motion.

The absolute acceleration of the origin of the ith
body’s local reference system in recursive form can be
presented as follows:

= ; —1 5 =15 i—1 -
"o, = "Ri_1 (Z 7o, , +" T0,;/0,_, + 270

14 i—1 =

i—15% i
X0, /0,0, Wi X T, 0,

+ 715 (iil@—l x i 7o, /O, 1))’ (59)

where:
0100 = b + Z;n:l 645 ()7i5(1), (60)
T, =2 bult)y (L), (61)
Fojo.= 3, Bl (). (62)
and also I; = {l; 0 0}7. Before developing an

expression for angular acceleration, we should present
angular velocity, because by taking its time derivative,
angular acceleration will be obtained. The angular
velocity of the ith link is the same as the i — 1th link
plus two new components, one of which (*Z;q;), comes
from the angular velocity of the 7th link and the other

(i-16;_1) is produced due to the elasticity of the i —1th
link. So, the expression of angular velocity can be
presented as follows:

G = Ry (T3 AT ) + B, (63)
where:

Gy =3 b)), (64)
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and °Z; = {0 0 1}7. By taking the time derivative of
Equation 63, the expression of angular acceleration will
be obtained:

{Gi="Ri_, (i G+ 0+ B, Xiilé;q)
+ 'Ry (1 Y34 +i71t§;‘—1) x "Ziq; + % (65)

In the above expression, “~16; {(l;_,) is the angular
acceleration that is produced because of the elasticity
of the 7 — 1th link:

iei (ll) = Z_y‘:l (Si]‘ (t) Hij (lz) (66)
Now, by having ‘7, and ‘@; in recursive form, we can

convert them in summation form as follows:

1—1

o, = Zk: Bt TO’+1/01
i1 - . .
+ 3 R (M6 X o0, ) + oL (67)
i :
&= Zkil
3

where:

i i1y N
TO.: = QZk_l Ry ( Wy X rOkJrl/Ok)

ip ko s
"Ry 2

‘Ry* ¢9A (k) + "oy (68)

i—1 .
+ Zk:l sz (ka}.k X (kajk X kFOL-+1/OL.>> b) (69)

i—1

i ip ke i k41
"Gy = E ey BTGk X R
i1
>
k=1

In fact, 7, .

Zrt1Gr+1

"RiF 0k x "Ryt " Zisr i (70)

and ifu'vll- are those constructive terms of
i%},i and '@; that do not contain the second derivatives
of joint variables and deflection variables. By having
i, and ‘dJ; in summation form, the calculation of par-
tial derivatives that appeared in the dynamic equations
of motion can be done as follows:

ST
L ="RIZ;, 71
aqj J =7 ( )
T o =
— ="R.0,(1,), 72
35jf J ]f( _7) ( )
0o, i i
- ="'R;7Z X "To. 73
ai; i7 25 X T /0,5 (73)
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9o, _ip, - in g is
— = "R (l;) +'R;0;1(1j) X 'T0,/0,.,,  (T4)
06 ¢

where iFoi/OJ is a position vector drawn from the jth
body’s local reference system to the ¢th body’s local
reference system (7 < 14).

Inertia Coefficients

For construction of the inertia coefficients that multiply
the second derivatives, we substitute Equations 71 to
74 and also the summation form of *7,, and ‘@&; (Equa-
tions 67 to 68) into the relevant parts of Equations 43
and 44. By collecting the terms that contain ¢; and
5j ¢ and by arranging them, we obtain expressions that
should be written in matrix form. By assembling these
matrixes, the inertia matrix of the whole system will
be obtained. In continuation the details of the above
steps are brought.

Inertia Coefficients of Joint Variable in Joint
Equations

All occurrences of §; in Equation 43 are in the ex-
pressions of ‘J; and '7,,; by isolating these terms and
interchanging the order of summations as follows:

n—1

n
sz 1 ZZI max(k+1, ])

Z Zk 1 Zzz max(k, ]+1)

i=j+1

n—1

i: Zi—] n
k=1 Z Zi:max k+1,5)
i=j k=1 ( )

Z Zk 1 Zzz max(k+1 ]Jrl)

i=j+1

n-l k n—1
DI ZZL e
k=1

the below expression for the terms that contain §; is
obtained:

n . . . ., n—1 ., . . .
- - (75)

where:

n

ig), = E:

i=max(k,j)

IR;By;' Ry, (76)
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n

w= Y

i=max(k,j+1)

70, /0,” RiB3;' Ry, (77)

n—1

Uy, = Z(j% +7€4)" 50,41 /0, Re- (78)
t=k

Also 77 and 7€+ are defined as follows:

n

Ty = Z

i=max(t+1,5+1)

170,10, M Ry, (79)

n

jfﬁ = Z

i=max(t+1,7)

JR;B3;'R,. (80)

In the next section, Expression 75 will be written in
matrix form that makes the inertia matrix of the joint
variable in the joint equations. As will be shown, this
matrix is symmetric and this fact reduces the necessary
computations. Also, the expressions appeared in sum-
mation form (7&,+,7v;,7Uy, Uk, 01,) can be calculated
recursively. This is an important issue that causes
the reduction of necessary computations and will be
considered in detail in the next section.

Inertia Coefficients of Deflection Variables in
Joint Equations

In consideration of Equation 43, we observe that the
deflection variables & jf appear not only in '7p, and *&@;,

but also in ' By; and * B;. By isolating these terms, the
expression for the terms that contain 0, is obtained as
below:

n—1
>
n—1 my,

2 2
k=1
k=1 t=1 7
my, . . X
>Tj= -
ZL ]HZ Z.‘ ]Tok»/OJJngkt
n myo . . .
=T o
+ Zk_j >, 0% ]Rkakt) Okt (81)

where:

(o =Tt ) e

P&+ + 7)) Tt

TUp+ Okt

n

Tops = Z TR;By;' Ry, (82)
i:max(k—l—l,j)
Is = Z I70,/0,’ RiBs;' Ry, (83)

i=max(k+1,j+1)
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n—1
e = Y (m+76w) "o, 0, B (84)
t=k+1

By writing Expression 81 in matrix form, the inertia
coeflicients of deflection variables in the joint equations
will be obtained.

It can be shown that the inertia coefficients for
joint variables in the deflection equations are the same
as the coefficients of deflection variables in the joint
equations. This issue implies the symmetry of the
inertia matrix of the whole system and can be used
for reduction of necessary computations.

Inertia Coefficients of Deflection Variables in
Deflection Equations

In a manner much the same as the previous two steps,
the below expression is obtained by isolating the terms
that contain 0;; in deflection equations:

<Z: 1127”1 0" <j+0'k+ —j+-t'k+) O
-3 1Zm’ G T U O
DD I
_Zz iZt \Tif T g B
- Zf;i ZZZ 5T Wdl
+z‘::: z:’; i
DD D
DI DT
+ Z::j+1 ZZ 7577 Ry

SIS DRRITE
Y 2 s R ) B (85)

where:

Jvkekf

o+ o+ .
(j Vi +7 Ek+) Thet
DY

T3 Ry

) =
T0,/0,41" Bi€ht

n

i+
J O+ = E

i=max(k+1,7+1)

I R;Bo;' Ry, (86)
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e = > IR;iBs;' Ry, (87)
i=max(k+1,5+1)
n—1
>IN Ty o, Ri (88)
t=k+1
I s = Z IT0;/0,01” RiBsi' Ry, (89)
i=max(k+1,7+2)
Pye= S g0 MRy, (90)
i=max(k+1,7+2)
W, = Z IR %oy jor Rics (91)
t=k+1
. n—1
J Uk:+ = Z <] %+] 51“*’) ) Of+1/01 Rka (92)
t=k+1
I\ = > MRy, (93)

i=max(k+1,j+1)

Like the previous two steps, the above expression is
written in matrix form. The symmetry of this matrix
can be shown by expanding its coefficients. On the
other hand, all the expressions in summation form can
be calculated recursively.

Final Form of Forward Dynamic Equations

The complete simulation equations have now been
derived. It remains to assemble them in final form
and point out some remaining recursions that can be
used to reduce the number of calculations. The second
derivatives of the joint and deflection are desired on
the “left hand side” of the equation as unknowns,
and the remaining dynamic effects and the inputs are
desired on the “right hand side”. To carry out this
process completely, one would take the inverse of the
inertia matrix, 1(#) , and premultiply the vector of

other dynamic effects, Re. Because of its complexity,
this inverse can only be evaluated numerically. Thus,
for the purpose of this paper, the equations will be
considered in the following form:

1(0)6 = Re, (94)

I(©)  The inertia matrix consisting of coefficients
will be obtained in the next section;
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9] The vector of generalized coordinate;
S {Q1 611 012 O1m, G2 021
62771,2 ok 6].",1 e 6km,k cr 6nm”}T;
qk The joint variable for the kth joint;

Ot The deflection variable (amplitude) of
the tth mode of link %;

Re Vectors of remaining dynamics and external
forcing terms, { Re;  Ren Reym,
Reg RGQ] Regm,z e Re]‘ Re]‘]
- Rejm, Rem, }7;

Re; Dynamics from the joint equations j

(Equation 43), excluding second derivatives
of the generalized coordinate;

Re;;  Dynamics from the deflection equations j f
(Equation 44), excluding second
derivatives of the generalized coordinate.

At first, consider Re;. In joint equations, by collecting
the terms that do not contain §; and ;5 , the
expression is obtained as below:

n ai%o,T . n ai(b-_T .
Rej =T;— 77'.151'— . .'LTYL'7
Zi:j+1 Zz‘:j

35]}‘ 35]3 (95)
where:
1S = Mo, L= 2By '@ — Bsi'@, — '0iBsi' @i,
(96)
‘T, = Bsi*fo, L+ 2B’ D + Boi'@, i 4 @i Boi' 3.
(97)

By substituting Equations 71 and 73 in Equation 95
and changing it to a recursive expression, a new
equation for Re; is obtained:

Re; =7, —7Z17%;, (98)
where:

I =T +7%0,,,/0,7 8 + I Rjt1? ™ ¥4, (99)
and:

79; =7 Rjp <'7+1§j+1 +j+15j+1) : (100)

Now, consider Re;s. If in the defection equation the
terms that do not contain ¢; and ¢;5 are collected, the
following expression will be obtained:

m; R n 8"'7.':'07’71 -
Rejp == Zk:l S Fes = Zi:7‘+1 W‘ZSZI
i J

n ' ;iT .
S STy, (101)
AR
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where:
o . T /IYLJ . _. . T -,
Qjr =2 w, ‘Zkzl Sk +73;7 B¢’ G;

— 970, T &y =8, gy (102)
Like the previous step, the following recursive equation
for Re; s is obtained:

Rejf = — Zk:)l 6jk4r\'jkf + ij
— 7736 = 05T Ry (103)

Equations 98 and 103 are used to construct the right
hand side equations of motion.

PROPOSED ALGORITHM

Now, we shall present an algorithm that results from
the expressions developed in previous sections. In
this algorithm, all cross products are done in tensor
notation. And, also, each specific algorithmic ex-
pression is accompanied by information that indicates
the number of algebraic operations that are involved,
showing separately products M and A sums. The
calculations are done in a step by step process, as
follows:

Step 1: The rotation matrix will be calculated by this
algorithm.

fori=2:1:n
iilRi = Ei—lAz' & 2VZ:RZ'_l = 2vle,Z'T; 15M6A

Step 2: The vectors of '@;, ‘&, ,; and 7o, , can be
calculated recursively, as follows.

Initialize:
G =54 & '@,i={0 0 017 &

Yoo =MA"g. gy 9237

fori=2:1:n

Equation 63 9M10A

Gy ="Ris ((iil@iq + iiléi—l) IR

n i—lévvli,l) . 18M184
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i i i—1~ i1
7o, , = Riq (2 Wi—1

.,
To;/oi—1

i—1 =~ 1—1 =
+ Wy, i—1 To;/oi1

i—1

1~ i

+ 7w (i_ Wi—1 _1F0i/05—1)

+70F, ) 33M27A

Step 3: In this step, the vectors of ‘S; and ‘T, are
calculated.

for i1=2:1:n

Equation 96; 27TM 21A
fori=1:1:n
Equation 97; 39M 33A

Step 4: The vectors of i(;_ﬁ'i and 'Y, can be calculated
by the following algorithm:

Initialize:
"on=1{0 0 0} & "{,="T,
forj=n—-1:-1:1

Equation 100; 9M 9A

Equation 99; 15M 15A

Step 5: Calculation of @;,
forj=1:1:n;f=1:1:m;
FEquation 102; 21M 17A

Step 6: In this step, Equations 98 and 103 are used
to calculate Re; and Rejy.

forj=1:1:n
FEquation 98; OM 1A

for f=1:1:m,

Re,; = — Zk:'] Sk Kis +Qnp; OM 1A
forj=1:1:n—-1;f=1:1:m,
Equation 103; 15M 134

At the end of this step, the right hand side of
the equations of motion is completely evaluated. In
continuation, a recursive algorithm is presented that
evaluates the left hand side of the equations of motion

489

and, also, the inertia matrix of the whole system.
Step 7: Calculation of the compound rotation matrix,
foryj=1:1:n
IR; = Isxs;
forj=1:1:n—-2k=35+2:1:n

TR, ="Rp_1" 'Ry &

"R;=7R,T; 27M 184

Step 8: The following algorithm evaluates the vector
of 1FO,/Oi:

forj=2:1:n—-1;j=i—-1:-1:1

jFO,;,+1 /O,,', = jRj+1j+1FO,-+1/O,-; 9Jur 6A
fori=1:1:n—-27=142:1:n
iFOJ/Oi = iFO,_l/O; + Zvf})}/()}_l; OM 3A

Step 9: In this step, the variables that have been
appeared in summation form in the inertia matrix are
evaluated.

e Calculation of 7oy:

fork=n:-1:1;7=k:-1:1

if (k=n) "o, = Bon;
else

k

0k = Bop + Forp 1 FTIRy: 27TM 27A

else

jok:jRjHjHak; & koj:jak,T; 27TM 18A

A recursive algorithm, like the one mentioned
above, for calculation of 7¢;,, can be used. However,
it should be noticed that, instead of Bg; , we have
Bs; and, also, at the last line, we have:

R =47,

e Calculation of 74/,
fory=n—-1:-1:1
J

Un =770, 0, €n; 18M 94
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fory=n—-1:-1:1;k=n—-1:-1:1
if (k> 7)
I =931 " Ry, + 770, 0,7 RiBak; 63M 45A
else iy =Ty "Ry 27M 184
e Calculation of 7 \:

fork=n—-1:-1:1;5=Fk:-1:1

if (k=n—1)""1\,_1 = M, I3x3; 3M 0A
else
"X = Miyilaws + " N1 3M 34
else
INe=TRj 7 A & FA =0T 2T M 184
e Calculation of 7,
fory=n—-1:-1:1
It =770, /0, An—1;  18M 9A
forj=n—-1:-1:1k=n—-2:-1:1
if(k <j) 7y = 1" TRy, 27M 184

else

I =91 " R+ M1 770, j0,7 Ri; 51M 36A

e Calculation of 7Uy:
forj=1:1:n
IUpy = (’j’Yn—l +j€nfl+> 7‘hlfo"/o,,,,ﬁ
18M 184
fory=1:1:nk=n—-2:-1:1

jUk = (j“/k + jEkJr) kfok,-m/ok

+ U1 " Ry A5M 454

M.H. Korayem and A.M. Shafei

e Calculation of 7Vj:
forj=1:1:n-1
Voo =" A1 Y0, /0, 'Ru—o; 18M 9A
fory=1:1:n—1;k=n—-3:-1:1
W, = j)\ic+1k+17’ok+2/ok+1 MR,

+ Vi1 "Ry 45M 364

e Calculation of 7o+
fork=1:1:n—-1;j=1:1:n
-7ok+ :jakaHRk; 27M 18A

e Calculation of 7 gp4:
fory=1:1:n—1;k=1:1:n-1

ijO'k+ :jRj+1j+10'k+; 27TM 18A

For calculation of 7&,+,74+ and U+ we use the
algorithm like the one that was used for calculation

of Igpe. Also, &4 9"y, and 7 Ups can be
calculated by the algori;chm like the one that was
used for calculation of 7 o,+.

Step 10: Finally, calculation of the inertia matrix for
the whole system is considered.

¢ Calculation of the inertia matrix for joint variables
in joint equations:

fory=1:1:n—-1;k=j:1:n—-1

L =27 (op — vy, — 1) "5 &

I =1 OM 184

forj=1:1:n
if (j#An) Ln="5" (on—7tn) "2k
I.j=1;,; OM9A

else I, ="%,""0,"Z,; OM 0A
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e Calculation of the inertia matrix for deflection vari-
ables in joint equations:

forj=2:1:n; k=1:1:53—-1;t=1:1:my

L =727 ((j0k+ — s =T+ ) Bl
+ (P&t +77) e ) 18M 424

for j=1:1:n—-1;k=4;t=1:1:my

Ly =727 ((j0k+ — s —TUp+) Oy
+ (&t +7) Foe + @re ); 18M 454

forj=1:1:n—-2;k=j4+1:1:n—1;t=1:1:my

Ijkt :JE]T ((jo-k+ _j.t-k+ _jUk+) H_.kt
+ (P&t + ) Tre + 7 Ry
+770, )0,7 Riéie ); 42M 63A
for j=1:1:n—1;k=n;t=1:1:my
Iine = j'gj’r (ijd'kt +j770k./OJijgkt) ; 24M 18A
for j=k=n;t=1:1:my
T, =37.T&..
jkt = T2k Okt oM 0A

e Calculation of deflection variables in deflection equa-
tions:

for j=1:1:n—1ik=yit=1:1:my; f=1:1:m;

= i+ + .
Ligpr = 0" (3 Y +7 5k+) Prt

—

+ (ﬁam —j+'t'k+ —j+Uk+) m

— 7 ((ij +j+£k+) O — j/\kf'kt)
e 42M 724

for j=1:1:n—2;k=44+1:1:n—1;t=1:1:my;

f=1:1:m,

491

Linge = 0557 (<j+% +j+£k+> Tt
+ <j+0k+ —j+t'k+ —j+Uk+) Gt
+ Ryt + jR_j+1j+1fok/o,+1j+]Rké'kt )
—ijT<<ij +j+£k+) O
W —ijgkt); 84M 107 A
for j=1:1:n-1k=n;t=1:1:my; f=1:1;m;
Linse= 05" ( Ri@iu+’ Risa’ 70, 0,07 T Rii)

+7 4TI RyE; 48M 354

forj=nik=nit=1:1:my; f=1:1:m;

ijkt = Sijt; 0M 0A

The required mathematical operations for calculating
the above steps are listed in Table 1, where n is the
total number of links; n is the number of flexible links
and m is the number of modes describing each flexible
link, the same for all flexible links.

In Table 2, the computational complexity of this
method compared with the ones of [5], are shown. Also,
Table 2 shows the number of operations for two typical
cases.

As a general comparison, the number of mathe-
matical operations of the method proposed in this ar-
ticle for the dynamic modeling of flexible manipulators
is less than the recursive Lagrangian method in [5].

COMPUTATIONAL SIMULATION

In this section, we verify the proposed method for
the dynamic modeling of flexible robotic manipulators
in the preceding sections by means of computational
simulation for a manipulator with two elastic links.
The first mode shape of clamped-free beams is used to
model the elastic deformation of each link. All neces-
sary parameters of flexible links for this computational
simulation are shown in Table 3. These parameters are
the same as in [4].

To clearly explain computational procedures for
the simulation, we rewrite Equation 94 in state form.

él = 627

(;_)-2 = I_l (@1)].:;}6

The initial conditions are also the same as in [4] as
shown in Figure 3.
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Table 1. The required mathematical operation for deriving the equation of motion in G-A’s formulation.
Sums Products Step
6n — 6 15n — 15 1
55m — 55 60n — 60 2
54n — 21 66m — 27 3
24n — 24 24n — 24 4
17Tnym 2Inym 5
n —12m + 13mny 15mny — 15m 6
In” — 27n + 18 13.5n" — 40.5n + 27 7
4.5n" — 13.5n 4+ 9 4.5n" — 13.5n + 9 8
276 — 652.5n + 328.5n° 390 — 901.5n + 457.5n" 9
In® — 9+ 52.5mn} — 79.5mns + 18m— | 30mn} — 30mny — 60m’ns+ 10
89.5m’ny 4+ 18m” + 53.5m”nj 18m” +42m*n}
Table 2. The comparison of computational complexity.
Sums Products Principle | Authors
329n + 115.5mn} + 19m’ng 279n + 118mn} + 17.5m ny
+123mn; 4 85n” 4 68nnym +137.5mn s + 84n” + Tdnnym L-E Book
+6.5mn} — 91 + 80nny + 111ns | +6m*nG — 57 + 86nny + 126n;
6m — 553n — 49.5mny —15m — 790.5n + 6mny
+351n” + 18m” + 53.5m"n} +475.5n" + 18m” + 42m°n} G-A This work
+52.5mn} — 89.5m”ny + 188 +30mnj — 60m°ns + 300
n=6,ny=6m=23 n=3ny=2,m=2
24569 A 25251 M 4851A 4922 M Book
18332A 19557 M 2134 M 2706 M This work
0, =—-90 deg, 6;=15 deg, ures 4 to 15 represent the flexural responses of the

61(0)=05(0)=611(0) =12(0) =621 (0) =51 (0) =0.

Then, by using a numerical method, such as Runge-
Kutta, a set of differential equations will be solved.
By solving this set of differential equations, the
time response of the system will be obtained,
(ql, ql, 611, 611, qa, QQ, 621, 621) In [4] which uses FEM
for simulation, the results of flexural displacement and
angular displacement in the middle and at the end of
each link are shown. So, for comparison, we present
the same results in Figures 4 to 15.

Variables us, ug, us, ug, w3, wq, w5 and wg in Fig-

Table 3. The necessary parameters for simulation.
Value Unit
Li=0L=1 m
Ey = By = 2.0 x 10" |[N/m?
I.=1,.=50x10"? m*
kg/m

Parameters
The length of the links
Module of elasticity

Moment of inertia

Mass per unit length pr=p2=5

system. The response of these variables portrays
the vibration modes of the system response and their
influence on the quality of the system response. Sim-
ulations results show that the response of the flexible
manipulator is highly undesirable and, in order to get

=Y

#1(0) = —90"

Figure 3. Initial condition for simulation.
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the dynamics of the system to be acceptable for most
practical purposes, very effective controls are needed
to control the vibration modes. On the other hand,
as seen, the results are in good concordance with ones
in [4]. It should be noted that the simulation is done
by using only one mode shape. More accurate results
will be obtained by using more mode shapes.

CONCLUSION

This article has presented an efficient and systematic
method for the dynamic modeling of flexible robotic
manipulators. The proposed method can be applied
to the design of control systems and the dynamic
simulation of flexible manipulators. The advantages of
this method in comparison with others are as follows:

1. A reduction in computations by using only 3 x 3
and 3 x 1 matrices.

2. Increase in the speed of generating the equations
of motion by reducing the number of additions and
multiplications, as shown in Table 2.

3. Ease of understanding, as it uses primitive dynamic
concepts.
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