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A Heuristic Algorithm and a Lower Bound

for the Two-Echelon Location-Routing
Problem with Soft Time Window Constraints

E. Nikbakhsh! and S.H. Zegordi'*

Abstract.

The location-routing problem is one of the most important location problems for designing

integrated logistics systems. In the last three decades, various types of objective function and constraints
have been considered for this problem. However, time window constraints have received little attention,
despite their numerous real-life applications. In this article, a new j-indexr mathematical model, an
efficient and fast heuristic and a lower bound for the two-echelon location-routing problems with soft
time window constraints are presented. The proposed heuristic tries to solve the problem wvia creating
an wnitial solution, then improving it by searching on siz neighborhoods of the solution, and using the
Or-opt heuristic. At the end, computational results show the efficiency of the proposed heuristic, using

the proposed lower bound.
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INTRODUCTION

Integration of supply chain management activities is
an important step toward the success of a supply
chain. One of the main types of supply chain inte-
gration involves integrating the physical material flow
between suppliers, manufacturers, distribution centers
and customers [1]. During the last three decades,
this type of integration, known as an integrated lo-
gistics system, has become one of the most important
aspects of logistics and supply chain management.
This concept considers the interdependence between
facility location, transportation and routing structures,
inventory control systems and production planning and
scheduling systems for various parts of the supply
chain. This comprehensive approach and simultaneous
solving of logistics problems prevents the local opti-
mization of dependent problems. Integrated logistics
problems include different problems, such as location-
routing [2], inventory-location [3], queuing-location [4]
and inventory-routing [5] problems.

The Location-Routing Problem (LRP) tries to
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jointly solve the problem of finding the optimal num-
ber, the capacity, the location of facilities serving more
than one supplier/customer and optimal routing struc-
ture and scheduling [6]. Applications of LRPs range
from bill delivery, postal system, dairy distribution and
communication network designs to waste/hazardous
material collection. Two main subproblems of LRP
are the Location-Allocation Problem (LAP) and the
Vehicle Routing Problem (VRP). Since both of these
problems are NP-Hard [7,8], LRP may be considered
NP-Hard as well.

The first steps of creating LRPs dates back to the
1960s [9,10]. However, the created models were not
the same as LRP, since they did not consider the trip
from the last customer of the route back to the starting
facility. The first real LRP models were developed in
the late 1970s and early 1980s through the efforts of
various researchers [11-15].

Despite extensive applications of time window
constraints in the more realistic modeling of LRP,
researchers have paid little attention to LRPs with
time window constraints beginning only in the early
1980s. Jacobsen and Madsen solved a one-echelon
LRP with hard time windows (LRPTW) for a news-
paper distribution network, using a combination of
a location-allocation-first, route-second heuristic with
a tree-tour method [11] and a saving method [12].
In a two-echelon LRP model for rubber collection,
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Nambiar et al. [14] considered the maximum allowed
time for delivering commodities as the time window
for the depots. In recent years, two researchers have
considered the application of multi-echelon LRPTW in
military theater distribution. Cox [16] considered the
possibility of multiple trips for each and solved a mixed
integer programming model using CPLEX. In addition,
Burks [17] solved multi-echelon LRPTW with pick-up
and delivery using a tabu search algorithm.

In recent years, researchers have considered other
types of LRP. Lin et al. [18] solved a two-echelon LRP
with a capacitated vehicle fleet, using a three-phase
heuristic based on simulated annealing, branch and
bound and the traveling salesman problem. Wu et
al. [19] considered a one-echelon LRP with a capaci-
tated heterogeneous vehicle fleet, and solved it with a
hybrid heuristic based on decomposition and a simu-
lated annealing algorithm. Chan et al. [20] considered
a LRP with a maximum route duration constraint and
solved it via a saving/insertion heuristic. In addition,
they presented an upper and lower bound for the
number of facilities and the vehicle fleet size in each
facility. Albareda-Sambola et al. [21] modeled a one-
echelon LRP and presented an upper bound, using a
tabu search and a lower bound using a saving/insertion
heuristic.

More recently, Alumur and Kara [22] modeled a
two-echelon LRP for hazardous material with multiple
objectives as a mixed integer programming problem,
and solved it via CPLEX. Ozyurt and Asken [23]
presented a branch and bound scheme based on a
tabu search heuristic, Lagrangian relaxation and a
minimum spanning forest problem. Albareda-Sambola
et al. [24] considered a LRP with stochastic customers
and applied it, using a neighborhood search heuristic
and a lower bound, based on decomposition of the
objective function to location and m-TSP subproblems.
Schwardt and Fischer [25] proposed a neural network
algorithm, based on self-organizing maps for a single
facility LRP in the continuous space. Finally, Am-
brosino et al. [26] proposed a two-phase heuristic with
a large neighborhood search, based on path and cyclic
exchanges of customers among routes, for the single
facility LRP.

The main reason for neglecting time window con-
straints in LRP literature can be attributed to different
planning levels and horizons of location and routing
decisions; strategic and tactical, respectively. However,
researchers have shown that initial simultaneous and
joint decision making for these two problems leads to
lower costs in the long run, even though the routes
change in the course of time [27,28]. Hence, one
can conclude intuitively that in the long run solving
LRPTW can also lead to lower costs

The main purpose of this article is to model
and solve a two-echelon location-routing problem with
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soft time window constraints (2ELRPSTW). In this
problem, serving each customer is possible in two
consecutive time intervals. The second interval differs
from the first in the fact that serving the customer
is only possible via paying a fixed penalty cost. In
addition, the vehicle fleet capacity for each regional
distribution center is considered limited. Due to
working regulations and/or the requirements of the
commodity being delivered, it is assumed that each
vehicle can only be used for a limited duration in each
working day.

For this problem, a new 4-index mathematical
model and a heuristic algorithm method are presented.
The proposed heuristic algorithm method is based on
location-first, allocation-routing second, for an initial
solution construction and a neighborhood search and
Or-opt heuristic for solution improvement. Then, a
lower bound for 2ELRPTW based on objective func-
tion decomposition is presented. For the computation
of lower bound routing subproblems, existing methods
for using the minimum spanning forest problem are
improved via a binary programming problem. The
efficiency of the proposed heuristic is shown via com-
putational results. Finally, research results and future
research opportunities are discussed.

MATHEMATICAL MODEL

The 2ELRPSTW logistic system is defined on an
undirected graph, G = (N, E). The nodes of this
graph (N) consist of Central Depot Centers (CDC),
Regional Depot Centers (RDC) and Customers (C).
The undirected edges of this graph (E) are composed,
of edges linking CDCs to RDCs, RDCs to customers
and customers to customers. Triangle inequality is
assumed to be valid for edges linking RDC to customers
and customers to customers. It is assumed that the
capacities of the CDCs, RDCs and the homogeneous
vehicle fleet are deterministic and known parameters.
The vehicle fleets assigned to RDCs are assumed homo-
geneous. Finally, customer demand is also known and
deterministic and cannot be split. The 2ELRPSTW
parameters are as follows:

I set of central depot center nodes,

J set of regional depot center nodes,

C: set of customer nodes,

Nyj: set of all nodes belonging to the set, C'U j,

vyeld

F: capacity of the ith CDC,

FCj: fixed cost of opening jth RDC,

VCj:  variable cost of operating the jth RDC for a
unit of the commodity,

;0 cost of transportation for a unit of the comm-
odity between the ith CDC and the jth RDC,

IE capacity of the jth RDC,
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cVv: fixed cost of a vehicle,

o: vehicle capacity,

nyj: maximum number of vehicles assignable
to the jth RDC (nv; = [Fj/o]),

T: maximum allowable route duration,

Dy: demand of the kth customer,

thm: travel time between the nodes k and m,
k&m € Nij, j€eJ,

Al travel cost between the nodes k and m,
k&m € Nij, 7€ J,

[ax,br]:  acceptable time interval for serving the
kth customer with no penalty,

[be,D)]:  acceptable time interval for serving the
kth customer with penalty,

PCy: penalty cost for serving the kth customer

in the interval [by, b},],

The 2ELRPSTW variables are as follows:

Lij:

Yj:

Uji:

gl

Vim:

amount of commodity to be transported bet-
ween the ith CDC and the jth RDC,

binary variable for opening the jth regional
depot center,

binary variable for assigning the [th vehicle
to the jth RDC, j € J. I =1,...,nv;,

binary variable for traveling the link (k,m)
by the [th vehicle of the jth RDC, k &
m € Nij,k#m,je Jl=1,..,ny;,

binary variable for assigning the kth custo-
mer to the jth RDC,

arrival time of the [th vehicle of the jth
RDC to the kth customer, k€ C, j € J,
[=1,.. nvj,

binary variable for serving the kth custo-
mer with the [th vehicle of the jth RDC in
the penalized interval [by,b;], k € C,j € J,
I=1,.., nvy,

The 4-index mathematical model for the 2ELRPSTW
based on models proposed by Daskin [29] and Daskin
et al. [30] is as follows:

min

ZFijj + ZZCR@'I@'

JjEJ el jeJ

nvj

+ ZVC] Z Dkzkj +CVZZUj1

Jj€J kel jeJ I=1

nvj;

T2 2 D i,

JEJ =1 mENlj kENlj

TL’Uj

+ > PG Y Y ol (1)

keC jeJ k=1

Subject to:
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> wy < F Vi€l

JjeJ

> xy < Fyy; Vi€,

i€l

ZDkzkj_inj<O VjEJ,

keC i€l

Y Y =1 Vkec,

jEJ I=1 meNy;

> Dp Y v, <o Vield =1, n;,
keC mENy;
YOIV v
meENy; meENy;
VJEJ, l:].,...,TLZ/j7 \V/]CENU7
S v e <
mENy; hENy;

VeeC, Vield I=1,..ny;,
Zl/ié:uﬂ vield, I=1,..nv;,
keC
Zyj}i:uﬂ Vied, [=1,..,nv;,
keC
wil > wi,l + thm — M(1 — y,]clm)

Ve&meC, Vjeld [1=1,.. nvj,
max {tjm, am } < wl! < min {(7 — tmj)s bl }
YmedC, Vjeld I=1,..,nvj,
wil <b,+ Mril
Vekel, VjelJd Vi=1,..

y V5,

wil > b — M(1 —ril)

VEeO, Yjed, Vi=1,..nmw;,
xiij Viel, VjeJ,
y; €{0,1} vjeJ

(2)

(6)

(11)
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uj € {0,1} Vield, 1=1,..nv, (17
V,]clm € {0,1}

Vield, 1=1,..,nv;, Vk& me Ny, (18)
2k € 0,1} VkeC, VjeJ, (19)

rlte{0,1} VYkeC, VYjed, I=1,..,nvy. (20)
In the above model, Objective Function 1 includes
RDCs opening fixed costs, CDCs to RDCs commodity
transportation costs, RDCs variable costs, vehicle fleet
acquisition costs, routing costs and soft time win-
dows violation penalty costs. Constraint 2 limits the
outgoing commodity from each CDC to its capacity,
while Constraint 3 limits the incoming commodity into
each RDC to its capacity. Constraint 4 balances the
incoming and outgoing commodity volume at each
RDC. Constraint 5 requires each customer to be on
just one route belonging to one vehicle of one of the
RDCs. Constraint 6 imposes a capacity restriction on
each vehicle.

Constraint 7 ensures the flow conservation. Con-
straint 8 assigns a customer to a RDC, if a vehi-
cle from that RDC enters that customer node and
leaves the RDC node itself at the beginning of its
trip. Constraints 9 and 10 ensure that if a vehicle
is assigned to a RDC, it both enters and leaves that
RDC. Constraint 11 calculates the arrival time of
vehicles to customers and also eliminates subtours [31].
Constraint 12, a generalization of Kontoravdis and
Bard’s model for a time window constraint [32], defines
the soft time window domain for each customer. Its
lower bound tightens the time window lower bound
with the earliest direct arrival time of a vehicle to
a customer from the origin RDC, if possible. 1In
addition, its upper bound tightens the time window
upper bound with the route maximum allowed travel
time, if possible.

Constraints 13 and 14 determine if a vehicle has
passed the maximum allowed time for arrival to a
customer without paying a penalty (bs). Finally, Con-
straints 15 to 20 define the variables types. The com-
plexity of the above mixed integer programming model
is due to the existence of soft time window constraints
and the NP-Hard nature of the problem. Hence, solving
medium and large-sized instances of this problem via
exact methods is a challenging and difficult task.

The proposed mathematical model for the 2EL-
RPSTW is based on 4-index routing variables (source
node, destination node, source RDC and the vehicle
number belonging to the RDC) for on routing RDC-
to-customer and customer-to-customer edges. Since
this 4-index model considers as many variables for each
RDC as the maximum number of vehicles assignable
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to that RDC, this model has fewer variables used in
each constraint compared to common 3-index mod-
els [29,30]. In addition, this model allows for merg-
ing maximum route duration constraints with time
window constraints, which has been described previ-
ously.

HEURISTIC ALGORITHM

In this section, a two-phase heuristic algorithm based
on the neighborhood search proposed by Albareda-
Sambola et al. [24] and Or-opt heuristic [33], is pre-
sented (Figure 1). In the construction phase, an initial
solution is created with a location-first, allocation-
routing-second algorithm and then improved with an
Or-opt heuristic. Then, in the improvement phase,
the final solution is obtained by searching six neigh-
borhoods of the initial solution and Or-opt heuristic.

Construction Phase

1. Location: In this step, RDCs to be opened are
found sequentially based on the ratio of their fixed
cost to their capacity. An unopened RDC with a
minimum ratio is selected for allocating customers
to it.

2. Allocation-Routing: In this step, customers

Construction phase{

1. Find an unopened RDC with minimum fixed

cost to capacity ratio,

2. Assign previously unassigned customers to

the last opened RDC and create intial rutes,
2.1. If all customers are assigned goto
step 4,
2.2. Else goto step 1,

3. Improve intial route with Or-opt heuristic.}

Improvement Phase{
1. Update stopping criteria,
2. While stopping criteria are not met:
2.1. Until no feasible move for improvement
is found, repeat:
2.1.1. Search on N3(z) and update z,
2.1.2. Search on Ni(z) and update z,
2.1.3. Search on N5(z) and update z
2.1.4. Search on Ng(z) and update z,
2.2. Until no feasible move for improvement
is found, repeat:
Improve routes with Or-opt heuristic
and update x.
2.3. Search on N3(z) and update z,
2.4. Search on N4(z) and update z,
2.5. Improve routes with Or-opt heuristic
and update z.
3. Goto step 1.}

Figure 1. Heuristic solution algorithm.
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are added to the last opened RDC and inserted
into routes using the modified Balakrishnan algo-
rithm [34], based on the minimum weighted sum
of the routing time, amount of soft time window
violation and customer priority. In each customer
allocation, none of the Constraints, 3, 6 and 12
can be violated. If all customers are not allocated
to the current opened RDCs, the location step
will be repeated until all customers are allocated
to the opened facilities. In this step, the maxi-
mum allowed soft time window constraints violation
penalty cost is restricted to 20% of its total sum.

3. Initial Route Improvement: In this step, the
initial routes of step 2 are improved via the Or-opt
heuristic.

Improvement Phase

In this phase, the initial solution derived from phase
one is improved by searching on six neighborhoods of
the initial solution. In addition, the Or-opt heuristic is
used to improve each route with intra-route exchanges.
All moves are performed with respect to the amount
of total saving due to changes in the RDCs fixed
cost, RDCs wvariable costs, transportation between
CDCs and RDCs, routing costs and soft time windows
violation penalty costs. Also, in this phase, the same
feasibility conditions as the feasibility conditions of
step 2 of phase one are controlled.

Six neighborhoods of the improvement phase are
an extension of the algorithm proposed by Albareda-
Sambola et al. [24] for the single-echelon LRP.
Albareda-Sambola et al. [24] proposed four neighbor-
hoods (Ni(x), Na(x), N3(x) and Nu(z)) for a local
search in a LRP with a stochastic customer presence.
The new neighborhood N5(x) exchanges the starting
RDC of two routes. In each solution belonging to
Ns(z), the starting RDCs of two routes belonging to
ith RDC and jth RDC are set to jth RDC and ith
RDC, respectively. In addition, the new neighborhood
Ns(z) adds a new route to a RDC with the least used
capacity ratio, and then, some customers from other
routes are removed and inserted into the new route. A
search on the four neighborhoods of step 2.1 of Figure 1
improves the current solution with respect to current
opened RDCs. In addition, two neighborhoods of steps
2.3 and 2.4 of Figure 1 diversify the search space with
opening new RDCs.

Stopping Criteria

If no feasible move is performed while searching neigh-
borhoods N3(z) and N4(z), then the algorithm stops.
In addition, if the amount of saving between two main
algorithm iterations is less than a specified value, ¢,
then the algorithm stops.
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LOWER BOUND COMPUTATION

For computing the lower bound of the objective func-
tion of Problem (1-20), Z1p, the set of constraints
linking the location and routing subproblems (Con-
straint 8) are relaxed and the customers-to-RDCs
assignment variables are omitted. Then, each of
the location (Z;) and routing (Z2) subproblems are
minimized, regarding their respective constraints. The
first subproblem consists of the fixed and variable costs
of RDCs and the costs of CDCs to RDCs commodity
transportation. The second subproblem consists of the
vehicle acquisition fixed costs, routing costs and soft
time windows violation penalty costs. The first sub-
problem is a location problem. The second subproblem
can be converted to a degree-constrained capacitated
Minimum Spanning Forest Problem (MSFP) with max-
imum route duration, after the necessary modifications.

Lower Bound Location Subproblem

Before obtaining the first subproblem solution, imple-
mentation of the following modification is necessary.
Since the Minimum Spanning Forest Problem (MSFP)
neglects the cost of returning from the last customer in
each route to the RDC, the term Trrrlleiré{amj}.nyj.src

is added to the fixed cost of each RDC, FCj, as
an estimate of the return cost to the RDC. In the
aforementioned term, sr. is used to compensate for
the possible overestimation caused by nv;, and it
is calculated as the average of the ratio of vehicles
assigned to each opened RDC to the maximum number
of vehicles assignable to that RDC in the final solution
of the proposed heuristic for each test problem size.
The objective function and constraints of the lower
bound location subproblem are as follows:

min Zy =) FCyuy,+> ) CRyw,

Jj€J i€l j€J
+ZVC]'Z$¢]'7 (21)
jed icl
Subject to:

> wy < F Viel, (22)
jeJ
dow; <Fy, Vi€l (23)
iel
S Yn-Y o 2
iel jeJ keC

In the above problem, Constraints 22 and 23 are the
same as Constraints 2 and 3. Constraint 24 makes the
total amount of the commodity transported from CDCs
to RDCs equal the total demand.
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Lower Bound Routing Subproblem

The application of MSFP with the degree, vehicle
capacity and route duration constraints, in solving
the LRP and obtaining its solution, using Prim’s
algorithm [35], has received little attention from re-
searchers [23,36]. This problem in its simplest case
(relaxing vehicle capacity and route duration con-
straints) on a connected graph is a degree-constrained
minimum spanning tree problem that is known to
be NP-Complete [37]. Hence, obtaining its optimal
solution in polynomial time using exact optimization
techniques is not possible. The objective function of
the second subproblem of Objective Function 1, after
relaxing soft time window constraints, is as follows:

PN DSBS Zamwmk

j€J I=1 j€J 1=1 meN1j keC (25)

For transforming Objective Function 25 into a degree-
constrained capacitated MSFP with route duration
constraints, the vehicle acquisition fixed cost term must
be omitted via adding the vehicle fixed cost to all of the
edges emerging directly from RDCs to customers. This
modification also restricts the irregular emerging edges
from the RDCs selection and hence, an unrealistic
customer service scheme. Then, the remaining con-
straints must be modified so that a degree-constrained
capacitated MSFP with route duration constraints is
obtained. The objective function and constraints of
this problem are as follows:

nvy

min 75 = Z Z Z(Oéjk + C’V)zx?,lv

jeJ =1 keC

nvj

200D D Aty (26)

J€J I=1 meC keC

Subject to:

nv;

2.0 2 =1

jE€J I=1 m€ENz;y

Vk € C, (27)

nv;

D> 2D v <IVI=1

keV meV jeJ I=1

2< V<], wWec, (28)

nv; nvy

200 v 422> > vim =10 (29)

jeJ =1 meC j€J I=1 keC meC
m>k

Zni: Y Vi > {Z Dk/aw 7 (30)

JEJ I=1 meC keC

41
S <, vj e, (31)
=1 meC
Sy Yu<1 wec &2
JE€J I=1 meC
Z Z tmlcyiik <7 VjeJ, l=1,..,nv,, (33)
mENl]' keC

ZDk Z Vfikga Vied, I=1,..,nv;. (34)

keC mENlj

In the above problem, Constraint 29 sets total number
of selected edges to the number of customers. Con-
straint 30 guarantees the selection of at least as many
edges as the minimum required number of vehicles to
emerge from RDCs. Constraint 31 limits the number
of outgoing edges at each RDC node to the maximum
number of vehicles allowed to assign to that RDC.
Constraint 32 limits the maximum number of outgoing
edges at each customer node to one. The remaining
constraints are the same as the similar constraints of
Problem (1-20).

Since regular algorithms for the MSFP such as
Prim and Kruskal [38], cannot consider maximum route
duration and vehicle capacity constraints, Constraints
33 and 34 are relaxed using Lagrangian relaxation [39].
Hence, the right-hand side of these constraints is
subtracted from their left-hand side, and then, the
difference is multiplied with nonnegative Lagrangian
multipliers, A and u. Finally, these terms are added
to the objective function to create the new Lagrangian
function, Z(A, u).

nv;j

S i+ VY

JjeJ I=1 keC

Zh(\,p) =

nvj

LD IPIDBP BLIVH

j€J I=1 meC keC

nl/j
+Zz/\ﬂ Z ZDkarik_
jed i=1 meNy; keC
’nl/]' )
+Zzujl Z Ztmkllfrik—T .
jeJ 1=1 meN; keC (35)

It is known that the maximum of the minimum of
the Lagrangian Function 35 (Z,*(A, ) regarding A
and p, subject to Constraints 27 to 32, is a lower
bound for Objective Function 25 [40]. For solving this
maximization problem, a subgradient search method
(Figure 2) [41] is used for finding the Lagrangian
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Step 1. A0 0, ;L(”) — 0, U — 2,

! >st
22(1,4,' 1)

’

«— —o0, and Z(_,““\St 2 .

(1 o o
Step 2. Solve 7, (A®),u™) .
(1 ! 3
Step 3. If Z2(L)\’I)? ()\("’),;L“')> > 22“”‘\" Y| then

! st 2 ! rest ! rest 2 ! (ke
z,best 2z (et 1) gnd z,(Pet ) 7,

Step 4. If u < 3107 ° or best known solution gap,
AZ;“"M) = Z;(]"‘Ht b_ Z;(I"M‘ 2 , is less than

e = 0.0015 for three successive interations, then
stop and report Z;(]"M b,

Step 5. If m = 5 successive iterations have passed
since the last improvement of Z;(]"\‘\t 1), then

u— u/2.

Step 6. Update Lagrangian multipliers using
Equations 36 and 37.

Step 7. Goto step 2.

Figure 2. Lagrangian multipliers search algorithm.

multipliers maximizing objective function, Z5(\, u). In
addition, an extended Kruskal algorithm (Figure 3) is
used for solving Z5(A, u). In each of the subgradient
search method iterations, a step is taken along the
Lagrangian function subgradient, regarding the La-
grangian multipliers values. Let the Lagrangian mul-
tipliers vector of Lagrangian Function 35, consisting
of A and p, be shown by vector 1 and matrix A
be the technology matrix of two Lagrangian-relaxed
constraints. Also, let # be the right-hand side vector
of these constraints. Lagrangian multipliers values and
a Lagrangian multiplier step-size modifier are updated
using the following equations:

k1) = max{()w(k) + tk.(AV(k) —0)}, (36)

(Zyr (M 1) = Z,P B, )y
AV —g[2

tk =1U (37)

In Equation 37, Z,"(\, ), the upper bound of La-
grangian Function 35, is estimated using the routing
objective function of the proposed heuristic. The
Lagrangian multiplier step-size modifier, u, in Equa-
tion 37 is used for correcting the error of overshooting
the Z;*()\“u) upper bound.

The initial edge finding Problem (38-42), in step
2 of the extended Kruskal algorithm (Figure 3), tries to
minimize the total weight of the selected edges. Con-
straint 39 results in selecting exactly the same number
of edges as the minimum number of required vehicles.
Constraint 40 limits the number of derived edges from
each RDC to the maximum number of vehicles allowed
to assign to that RDC. Constraint 41 assigns each
customer to at most one RDC. Finally, Constraint 42

E. Nikbakhsh and S.H. Zegordi

Step 1. Create an empty set named F'.

Step 2. Insert n (minimum-required number of
vehicle) minimum-cost intial edges into set F' by
solving Problem (38-42).

min > >tz (38)
i€Jkec

Subject To:
SO oz = "Z D;\./U-‘, (39)
JEJ KEC keC

> ziy < nyj vjelJ, (40)
LeC
> <1 vj€J, (41)
JjEJ
2, € {0,1} VkeC, Yied. (42)

Step 3. Sort remaining edges based on travel cost
between nodes increasingly.

Step 4. Sequentially, insert |C| — n edges into set
F if no constraint (not creating a subtour and

each node maximum degree) is violated.

Figure 3. Extended Kruskal algorithm.

defines the assignment variable of the kth customer to
the jth RDC as a binary variable. The solution of this
problem is an improvement on the methods available
in the literature [23,36], resulting in better solutions by
not eliminating shorter edges because of node degree
constraints. This binary programming problem can
be solved optimally by means of common optimization
software.

For adapting Lagrangian Function 35 to the stan-
dard Kruskal algorithm objective function, the 3rd and
4th terms of this function are integrated with the cost
coefficient of the 1st and 2nd terms, as in Equation 43.

nvj

Zg(/\nu) = ZZ Z(Oéjk +CV + )\j[.Dk

JEJ I=1 keC

nvj

i1
RPES %3 2p o
JE€J I=1 meC keC
+ XDy + Hjl~tmk)Vﬁk

nvj

=3 > (Ao + uim). (43)

jEJT I=1

Validation of the Lower Bound ZLB

In the last two previous subsections, the minimum
values of location subproblem, Z;, and routing, Z5 =
Z (A, i), were derived using an exact algorithm and a
heuristic algorithm, respectively. It can be shown that
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Zrp = Z{ + Z; is a valid lower bound for Objective
Function 1 using the following axiom and lemma.

Axiom

Function H(X,Y) is composed of two functions, Hq(X)
and Ho(Y'). The minimum value of H(X,Y') is greater
than/equal to the summation of H;(X) and Hy(Y)
minimum values.

Lemma

Zrg is a valid lower bound for Objective Function 1.

Proof

Objective Function 1 is composed of two subproblems,
Zy and Zy. Solving Objective Function 21, with respect
to Constraints 22 to 24, minimizes subproblem Z;
optimally. Also, the maximum value of the mini-
mization problem, consisting of Objective Function 35,
with respect to Constraints 27-32 is a lower bound for
subproblem Z>. Hence, according to the stated axiom,
Zrp = Z{ + Z; is a valid lower bound for Objective
Function 1.

COMPUTATIONAL RESULTS
Test Problems and Algorithms Implementation

For evaluation of the efficiency of the proposed heuris-
tic, 21 random test problems are designed and used.
The graph nodes are selected randomly on a 1000*1000
Euclidean space. Table 1 contains the information
regarding the size of the test problems created in 5
classes. In these problems, the distribution of customer
demand, RDCs and CDCs capacities are UJ[7,30],
U[30,140] , and U[100, 600], respectively. Each vehicle
fixed cost is set to 250, RDCs fixed and variable costs
are set to U[20,80] + U[100,110].F7 and U[1.5,3] +
U[0.01,0.03)* F;, respectively.

Transportation costs between CDCs and RDCs
nodes and routing cost between RDCs and customers
nodes are 0.0075 and 0.5 per Euclidean distance unit,
respectively. Total RDCs capacity to total demand
ratios are set to be two and five. Vehicle capacity
and maximum allowed route duration are designed,
such that each route has between 5 and 10 customers.

Table 1. Problem instances class size.

Class Class Size
] /] €]
C1 5 10 25
C2 5 25 50
C3 5 25 100
C4 5 50 100
C5 10 50 100
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Finally, soft time window violation penalty costs, PCl,
are defined by U[120,180] + Dy.UI3,5], and each cus-
tomer’s time window is defined by Equations 44 to 48:

e = U[0.157,0.857], (44)
I, = N[0.17, 0.047], (45)
ap = max{0,cx — I}, (46)
w = min{cy + lg, 7}, (47)
by = by, — /2. (48)

For evaluation of the proposed heuristic efficiency,
six small-sized test problems (class 1), six medium-
sized test problems (class 2) and nine large-sized test
problems (classes 3, 4 and 5; each one three instances),
are selected. From these 21 test problems, the small-
sized ones are solved via the LINGO optimization pack-
age besides the proposed heuristic for the purpose of
identifying the amount of closeness of the heuristic final
solution and the lower bound to the global optimum.
Based on the initial experimental results, the routing
values of the proposed heuristic, sr., for small, medium
and large-sized problems are set to 0.93, 0.88 and 0.81,
respectively. All the proposed algorithms and classical
optimization techniques are implemented using C#
2.0 and LINGO 8.0. These programs were run on a
personal computer with a 2130 MHz CPU and one GB
RAM.

Experiments Results

Regarding the computational results of the proposed
heuristic (Tables 2 to 4), this method has an efficient
and fast performance. The average lower bound gap for
small, medium and large-sized test problems is 5.75%,
8.68% and 11.22%, respectively. The reason for the
decline in the performance of the proposed heuristic
along with the increase in the number of customers in
the test problems from 25 to 100 (Figures 4 and 3)
can be attributed to the growth of the solution space
of the neighborhood search phase and the local search
nature of the proposed heuristic. Also, the absence of
considering soft time windows in the proposed lower
bound can lead to an increase in this gap between the
final solution and the lower bound. However, this effect
is reduced and controlled via restricting the maximum
allowed soft time window constraints violation penalty
to 20% of its total sum. Also, by comparison of
the proposed heuristic final solution to the optimal
solutions obtained by LINGO, there is an average of
a 1.86% gap with the optimal solution. Therefore, it
seems that the heuristic solution is stronger from the
lower bound and closer to the global optimum.
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Table 2. Computational results for small-sized problems.

Problem Lower C_PU Final C_PU Lower Optimal C.PU Optirflal
No. Bound Time Solution Time | Bound Solution Time Solution
(sec.) (sec.) Gap (sec.) Gap
C101 10171.1 32 10814.63 96 6.33% 10537.77 27984 2.56%
C102 10786.27 23 11380.21 90 5.51% 11157.15 29761 1.96%
C103 9785.92 18 10297.81 103 5.23% 10297.81 32936 0.00%
C104 11143.82 24 11810.26 88 5.98% 11471.30 23521 2.87%
C105 11230.53 27 11756.64 92 4.68% 11756.64 31013 0.00%
C106 12326.12 25 13163.31 99 6.79% 12671.00 36709 3.74%
Average | 10907.29 | 24.83 11537.14 | 94.67 5.75% 11315.28 | 30320.69 1.86%
Table 3. Computational results for medium-sized problems.
Problem No. | Lower Bound CPU Time Final Solution CPU Time Lower
(sec.) (sec.) Bound Gap
C201 14948.45 663 16136.99 164 7.95%
C202 13223.91 613 14509.45 168 9.72%
C203 14021.72 666 15182.83 178 8.28%
C204 15751.13 573 17060.76 190 8.31%
C205 12290.65 634 13507.04 201 9.90%
C206 13837.21 574 14932.74 162 7.92%
Average 14012.18 620 15221.64 177.17 8.68%
Table 4. Computational results for large-sized problems.
Problem No. | Lower Bound CPU Time Final Solution CPU Time Lower
(sec.) (sec.) Bound Gap
C301 20989.41 6362 23034.85 260 9.75%
C302 18190.95 6503 20380.6 286 12.04%
C303 19382.03 6356 21687.43 281 11.89%
C401 25270.54 6378 28209.48 277 11.63%
C402 19190.39 6031 21417.79 252 11.61%
C403 22835.8 6988 25067.38 265 9.77%
C501 32413.05 5950 36158.71 235 11.56%
C502 36821.07 6141 40598.12 269 10.26%
C503 36585.15 6342 41161.64 271 12.51%
Average 25742.04 6339 28635.11 266.22 11.22%

From a solution CPU time perspective, the pro-
posed heuristic performs rapidly. This method solves
small-sized problems in a small amount of time (av-
eragely around 1.5 minute). It also solves medium
and large-sized problems in a reasonable amount of
time (averagely 3 and 4.5 minutes, respectively). It
can be observed that CPU time has a direct relation-
ship with the test problem size, and increases along
with an increase in the number of customers because
of the difficulty of solving the classical optimization

problems. The lower bound CPU time in the largest
problem instance is still less than 105 minutes, which
is acceptable, considering the strategic nature of deci-
sion making problems. The main factor determining
the proposed lower bound CPU time is solving the
location subproblem optimally, which requires more
CPU time along with an increase in the number of
customers.

Altogether, the proposed heuristic has an 8.55%
average lower bound gap and 179.35 sec average CPU
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Figure 5. Comparison of the heuristic solution/lower
bound for medium and large-sized problems.

time, which has an acceptable lower bound gap due
to the fast performance and heuristic nature of the
proposed solution algorithm.

CONCLUSION

In this article, a special case of integrated logistics
problems, a two-echelon location-routing problem with
time window constraints, was reviewed, modeled and
solved. The location-routing problem is a barrier to
the local optimization of location and routing decisions
because of considering the interdependence between
facility location, customer assignment and the struc-
ture of the routes. Despite the initial attention of re-
searchers to location-routing problems with hard time
window constraints, little attention has been paid to
this practical problem during recent years. Therefore,
the consideration of soft time window constraints is the
distinguishing feature of this article.

For this problem, a new 4-index mixed integer
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programming model was developed. This model has
fewer variables used in each constraint compared to
common 3-index models. In addition, it allows for
merging maximum route duration constraints with
time window constraints. Then, a two-phase heuristic,
based on location-first, allocation-routing second for
initial solution construction and a neighborhood search
for an initial solution improvement was developed. In
addition, a lower bound for this problem was designed,
based on objective function decomposition. For the
routing subproblem of the lower bound, a Lagrangian
relaxation scheme and the minimum spanning forest
problem were used. Finally, the efficiency of the
proposed heuristic was shown using the proposed lower
bound.

Further research opportunities include the ap-
plication of metaheuristics, such as tabu search and
simulated annealing, improvement of the proposed
heuristic via defining new neighborhoods for local
search and consideration of other local search mech-
anisms, considering other types of time window vi-
olation penalty functions, and finally, integration of
other logistics problems, such as inventory control with
LRPTW.
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