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Abstract The magnetohydrodynamic (MHD) boundary layer flow of a Casson fluid over an exponentially
permeable shrinking sheet has been investigated. The analytical solution arising differential system has
been computed by the Adomian Decomposition Method (ADM). Variations of interesting parameters on
the velocity are observed by plotting graphs.
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1. Introduction

The boundary layer flow over a shrinking surface is en-
countered in several technological processes. Such situations
occur in polymer processing, manufacturing of glass sheets,
paper production, in textile industries and many others.
Crane [1] initiated a study on the boundary layer flow of a vis-
cous fluid towards a linear stretching sheet. An exact similarity
solution for the dimensionless differential systemwas obtained.
Carragher and Carane [2] discussed heat transfer on a contin-
uous stretching sheet. Afterwards, many investigations were
made to examine flow over a stretching/shrinking sheet un-
der different aspects of MHD, suction/injection, heat and mass
transfer etc. [3–10]. In these attempts, the boundary layer flow,
due to stretching/shrinking, has been analyzed. Magyari and
Keller [11] provided both analytical and numerical solutions for
boundary layer flow over an exponentially stretching surface
with an exponential temperature distribution. The combined
effects of viscous dissipation and mixed convection on the flow
of a viscous fluid over an exponentially stretching sheet were
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analyzed by Partha et al. [12]. Elbashbeshy [13] numerically
studied flow and heat transfer over an exponentially stretching
surface with wall mass suction. Sajid and Hayat [14] provided
an analytical solution for boundary layer flow of a Jeffrey fluid
over an exponentially stretching sheet. The numerical solution
of the same problem was then given by Bidin and Nazar [15].
The effects of radiation on the MHD boundary layer flow of a
viscous fluid over an exponentially stretching sheet were stud-
ied by Ishak [16].
To the best of our knowledge, no information is yet available

for boundary layer flow induced by an exponentially shrinking
sheet. The present work deals with the MHD flow of Casson
fluid [17,18] induced by an exponentially shrinking sheet. The
Adomian Decomposition Method (ADM) has been employed
to obtain the analytical solution. This method has been
successfully applied to various interesting problems [19–25].
The Padé approximation [26] is used to handle the boundary
condition at infinity and to find the better convergence.

2. Mathematical model

Let us consider the two-dimensional flow of an incompress-
ible Casson fluid over an exponentially shrinking sheet. The
fluid is electrically conducting in the presence of a uniform
magnetic field applied normal to the sheet, and the induced
magnetic field is neglected under the approximation of small
Reynolds number. We also assume the rheological equation of
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Casson fluid, reported by Mustafa et al. [19], is:

τ 1/n = τ 1/no + µγ̇
1/n. (1)

Or:

τij =

[
µB +

(
Py
√
2π

)1/n]n
2eij, (2)

whereµ is the dynamic viscosity,µB is plastic dynamic viscosity
of the non-Newtonian fluid, Py is the yield stress of fluid, π
is the product of the component of deformation rate with
itself, namely, π = eijeij, and eij is the (i, j)th component
of the deformation rate. An anonymous referee has suggested
considering the value of n = 1. However, in many application
this value is n� 1.
The problem is governed by the following equations:

∂u
∂x
+
∂v

∂y
= 0, (3)

u
∂u
∂x
+ v

∂u
∂y
= ν

(
1+

1
γ

)
∂2u
∂y2
−
σB2

ρ
u. (4)

The boundary conditions are defined as:

u=Uw(x)=−U0 exp
( x
l

)
and v=Vw(x)=V0 exp

( x
2l

)
at y = 0,

u = 0 as y→∞. (5)

In the above expression Uw is shrinking velocity with U0
(shrinking constant), Vw is mass transfer velocity with (V0 > 0
for mass injection and V0 < 0 for mass suction), u and v are
components of velocity in x and y-directions, respectively, and l
is the characteristic length. It is assumed that themagnetic field
B(x) is of the form

B = B0 exp(
x
l
)

where B0 is the constant magnetic field. We introduce stream
function Ψ as:

u =
∂Ψ

∂y
and v = −

∂Ψ

∂x
, (6)

and define variables:

Ψ =
√
2νlU0xf (η) exp

( x
2l

)
,

and η = y

√
U0
2νl
exp

( x
2l

)
. (7)

‘‘With the help of the above transformation’’, equation of
continuity (1) is identically satisfied and momentum Eq. (2)
takes the form:(
1+

1
γ

)
f ′′′ −M2f ′ + ff ′′ − 2(f ′)2 = 0. (8)

The corresponding boundary conditions are:

f = s, f ′ = −1 at η = 0, (9)

f ′ → 0 as η→∞, (10)

where M2 = 2σB2 l
ρU0

is Hartmann number, and γ is Casson fluid
parameter.

3. Solution by Adomian Decomposition Method (ADM)

To solve the above dimensionless equation with given
boundary conditions from Eqs. (6) to (8) with the help of ADM,
we first write Eq. (6) in operator form as:

f ′′′ =
(

γ

1+ γ

)
(M2f ′ + 2f ′2 − ff ′′), (11)

Lf =
(

γ

1+ γ

)
(M2f ′ + 2f ′2 − ff ′′), (12)

where L = d3

dη3
. Applying the inverse operator is defined as:

L−1(∗) =
∫ η

0

∫ η

0

∫ η

0
(∗)dtdtdt. (13)

Applying L−1′′ on both sides of Eq. (12), we obtain:

L−1(Lf ) = f =
(

γ

1+ γ

)
L−1(M2f ′ + 2f ′2 − ff ′′), (14)

or:

=

(
γ

1+ γ

)∫ η

0

∫ η

0

∫ η

0
(M2f ′ + 2f ′2 − ff ′′)dtdtdt. (15)

With the help of boundary conditions (9) and (11), we canwrite
Eq. (13) as:

f = s− η +
α

2
η2

+

(
γ

1+ γ

)
{(M2)L−1(f ′)+ 2L−1(f ′2)− L−1(ff ′′)}, (16)

where α = f ′′(0) is to be determined, s is suction/injection
at the wall. In ADM, the nonlinear terms in Eq. (16) can be
decomposed as:

f ′2 =
∞∑
k=0

Ak, ff ′′ =
∞∑
k=0

Bk. (17)

Adopting the algorithm for the Adomian polynomials proposed
by Adomian [23], we defined:

Ai =
i∑
k=0

f ′k f
′

i−k Bi =
i∑
k=0

fkf ′′i−k ∀i = 0 · · · n. (18)

Substituting Eq. (17) into Eq. (16) yields:

f = s− η +
α

2
η2 +

(
γ

1+ γ

)

×

{
(M2)L−1(f ′)+ 2L−1

∞∑
k=0

Ak − L−1
∞∑
k=0

Bk

}
. (19)

Hence, adopting the modified technique, we have a simple
recursive Adomian Algorithm for generating the individual
terms of the series solution of Eqs. (8)–(10):

f0 = s− η, (20)

f1 =
α

2
η2 +

(
γ

1+ γ

)
{(M2)L−1(f ′o)+ 2L

−1Ao − L−1Bo}, (21)

fk+1 =
(

γ

1+ γ

)
{(M2)L−1(f ′k)+ 2L

−1Ak − L−1Bk}

∀k = 1 · · · n. (22)
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Figure 1: Shows the variation of velocity and boundary layer thickness for
various values of Casson fluid parameter γ for s = 1 andM = 2.

For practical numerical computations, we shall use the finite
j-term approximation of f (η):

φj(η) =

j−1∑
i=0

fi. (23)

The algorithm (20)–(22) is coded in the computer algebra pack-
age, Maple, and we employMaple’s built-in Padé approximants
procedure. To achieve reasonable accuracy, we obtain the
41-term approximation of f (η), i.e. φ41(η) =

∑40
i=0 fi, where

the first four terms are given as follows:

fo = s− η, (24)

f1 =
1
2
αη2 +

1
6
γ (−M2 + 2)
1+ γ

η3, (25)

f2 = −
1
6
γ sαη3

1+ γ
+

(
−
1
12

γ 2s
(1+ γ )2

−
1
8
γα

1+ γ
+
1
24
γM2α
1+ γ

+
1
24

γ 2sM2

(1+ γ )2

)
η4 +

(
1
30

γ 2M2

(1+ γ )2
−
1
30

γ 2

(1+ γ )2

−
1
120

γ 2M4

(1+ γ )2

)
η5, (26)

f3 =
1
24
s2γ 2αη4

(1+ γ )2
+

(
1
60

γ 3s2

(1+ γ )3
−
1
120

γ 3s2M2

(1+ γ )3

+
1
40

γα2

1+ γ
+
1
24

γ 2sα
(1+ γ )2

−
1
60
γ 2M2sα
(1+ γ )2

)
η5

+

(
19
720

γα2

(1+ γ )2
−
7
20

γ 3sM2

(1+ γ )3
+
1
120

γ 3s
(1+ γ )3

+
1
360

γ 3sM4

(1+ γ )3
−
1
60

γ 2M2α
(1+ γ )2

+
1
720

γM4α
(1+ γ )2

)
η6

+

(
−
1
5040

γ 3M4

(1+ γ )3
+
1
420

γ 3M2

(1+ γ )3

−
1
140

γ 3M2

(1+ γ )3
+
2
315

γ 3

(1+ γ )3

)
η7. (27)

4. Results and discussion

In this section, we discuss the different physical parameters,
such as fluid parameter γ , Hartmann number, M , and suction
injection parameter s. Here, we use the diagonal Padè
approximant for the valid convergent. Figure 1 shows that the

Figure 2: Shows the variation of velocity and boundary layer thickness for
various values of shrinking parameter s for γ = 1 andM = 2.

Figure 3: Shows the variation of velocity and boundary layer thickness for
various values of Hartmann numberM for s = 1 and γ = 3.

Table 1: Numerical values of α = f ′′(0) for
s = 1, M = 2 and γ = 1.

Pade α

[5/5] 1.36569
[10/10] 1.36668
[15/15] 1.36668
[20/20] 1.36668
[25/25] 1.36668

influence of fluid parameter γ . It shows that the magnitude
of velocity and boundary layer thickness decreases with an
increase in fluid parameter, γ . It is noticed that when the fluid
parameter approaches infinity, the problem in the given case
reduces to a Newtonian case. Figures 2 and 3 shows that the
boundary layer thickens and the magnitude of the velocity
decreaseswith an increase inHartmannnumber,M , and suction
injection parameter, s. Tables 1–3 gives the numerical values of
α = f ′′(0) for different order of approximations (Pade).
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Table 2: Numerical values of α = f ′′(0) for
s = 0.5,M = 2 and γ = 1.

Pade α

[5/5] 1.215482
[10/10] 1.215503
[15/15] 1.215503
[20/20] 1.215503
[25/25] 1.215503

Table 3: Numerical values of α = f ′′(0) for
s = 1,M = 3 and γ = 1.

Pade α

[5/5] 2.185549
[10/10] 2.184183
[15/15] 2.184183
[20/20] 2.184183
[25/25] 2.184183

of Korea (NRF) funded by theMinistry of Education, Science and
Technology R31-2008-000-10049-0.
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