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Abstract ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave–
assisted co-precipitation. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR),
Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used for the
structural, morphological and magnetic investigation of the product. SEM micrographs of ZnFe2O4
nanopowder also reveal that nanoparticles have spherical shape. Average particle size was obtained as
12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has
been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation
of alcohol and phenol in acetic anhydride.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Nanocrystalline spinel ferrites belong to a family ofmagnetic
materials that can be used in many areas, such as magnetic
devices, permanent magnets, hard disc recording media,
read–write heads, active components of ferro fluids, color
imaging, magnetic refrigeration, detoxification of biological
fluids, magnetically controlled transport of anti-cancer drugs,
Magnetic Resonance Imaging (MRI) contrast enhancement
and magnetic cell separation [1–8]. Recently, some composite
oxides such as spinel AB2O4 were found to be more attractive
than single-metal oxides for their better selectivity and/or
sensitivity to certain gases. In particular, the spinel-structured
ZnFe2O4, in which the transition metal cation Zn2+ was
incorporated into the lattice of the parent structure of
(Fe2+Fe3+2 O4), was established to be a promising material in
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detecting reducing gases such as CO, CH4 and in the chemistry
as catalyst [9–12]. Zinc ferrite has long attracted interests
because of its intriguing magnetic properties compared with
other spinel ferrites. The traditional bulk ZnFe2O4 belongs to the
normal spinel type with antiferromagnetic properties below
theNeel temperature of about 10.5K andbehaves paramagnetic
at room temperature. All Zn2+ ions reside in the tetrahedral
sites (A sites) and Fe3+ ions are in the octahedral sites (B sites).
In 1961, Neel suggested that small antiferromagnetic particles
can exhibit super-paramagnetism and weak ferromagnetism
due to uncompensated spins in the two sublattices.
In recent years, ZnFe2O4 nanoparticles prepared using var-

ied methods, such as traditional ceramic synthesis, [4] aero-
gel procedure, [3] low-temperature hydroxide co-precipitation
and hydrothermal synthesis, [13,14] have been studied and
observed to be ferrimagnetic or super-paramagnetic. Develop-
ment of new routes for the synthesis of solids is an integral as-
pect of materials chemistry and physics. Some of the important
reasons for this are the continuing need for fast and energy-
efficient techniques, and the necessity to avoid competing
reactions in the known processes. Recently, a new deposition
technique has reported:microwave activated chemical bath de-
position (MW-CBD). This technique is based on the microwave
heating of a precursor solution in which the substrate is im-
mersed [15–17]. Microwave-hydrothermal synthesis is gener-
ally quite faster, simpler and more energy-efficient. The exact
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nature of microwave interaction with reactants during the syn-
thesis ofmaterials is somewhat unclear and speculative. Energy
transfer from microwave to the material is believed to occur
either through resonance or relaxation, which results in rapid
heating. This knowledge is widely used as the basis in the dis-
cussion of the reaction mechanism.
In our previous works, we have reported the synthesis of some

nanoparticles and their application in organic reactions [18–20]
and have explored potential ability of microwave as an energy
source for synthesis in our laboratory [21,22]. Herein, we com-
bined co-precipitation method with microwave technique
(thereafter named microwave co-precipitation) and synthe-
sized uniform ZnFe2O4 nanoparticles. This technique involves
nucleation and growth from homogeneous solution. In this
method, processes such as coarsening and aggregation can
compete with nucleation and growth in modifying the parti-
cle size distribution. The micelles, [23] capping agents [24] and
polymer stabilization [25] could be used to arrest the growth.
We used sodium dodecylsulfate to create the micelles. The cat-
alytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol
and phenol has also been studied.

2. Experimental

2.1. General

The microwave-assisted reactions were performed in a
single-modemicrowave cavity (Ethos,MR, 2.45 GHz,maximum
power 1000 W), producing controlled irradiation. Reaction
temperatures were determined and controlled via the built-in,
on-line sensor. The microwave synthesis reactor was equipped
with a water-cooled condenser. X-ray diffraction was pre-
formed with a Siemens D5000 X-ray diffractometer using
graphite-monochromatized high-intensity Cu Kα radiation.
Scanning electron microscopy images were obtained using a
Vega Tscan. Fourier transform infrared spectroscopy was per-
formed using a Nicollet (Magna 500). The magnetic measure-
ments were carried out with a Superconducting Quantum
Interference Device (SQUID) magnetometer.

2.2. Synthesis of ZnFe2O4 nanoparticles

ZnFe2O4 nanoparticles were synthesized via a controlled
microwave-assisted co-precipitation. The microwave co-preci-
pitation process was similar to the conventional co-preci-
pitation. In a typical synthesis procedure, Fe(NO3)3 · 9H2O
(1.25 mmol), Zn(NO3)2 · 6H2O (0.625 mmol) were dissolved
in 10 mL water. Sodium dodecylsulfate (SDS, 7.5 mmol) was
dissolved in 20mLwater andwas added to the solution. After 10
min stirring, the PH 11 of the solution was adjusted by adding
the solution of sodium hydroxide 2 M. The final mixture was
heated in a controlled microwave cavity for 20 min. During the
microwave irradiation in the first 5 min, the temperature of the
solution reached to 90 °C, then the temperature is maintained
at 90 °C for further 15 min. The resulting solid product was
collected by filtration, washed several times with deionized
water and ethanol, then powders calcined at 400 °C for 4 h.

2.3. General procedure for O-acylation alcohol and phenol in acetic
anhydride

In a general experimental procedure, to amixture of ZnFe2O4
nanoparticles (12mg) and acetican hydride (2mmol), alcohol or

Figure 1: XRD powder pattern of ZnFe2O4 .

Figure 2: The FT-IR spectra of ZnFe2O4 nanoparticles.

phenol (1 mmol) was added. The reaction mixture was stirred
for the required period of time at 55 °C. The progress of the
reaction was followed by TLC or GC. After completion of the
reaction, the product was extracted with CH2Cl2 and filtered to
remove ZnFe2O4. The organic phase was treated with saturated
sodium bicarbonate solution and dried over anhydrous sodium
sulfate. The solvent was removed under vacuum to afford the
pure product. The products are characterized on the basis of 1H
NMR and GC-MS.

3. Results and discussion

3.1. X-ray analysis

The XRD powder pattern of the synthesized ZnFe2O4 is
shown in Figure 1. All the diffraction peaks can be indexed to the
cubic structured ZnFe2O4with cell constant a = 8.350±0.02 Å.
The average crystallite size was estimated by the Scherrer
equation, L = 0.9λ/β cos θB, from the X-ray peak broadening
(full-width at half maximum, FWHM) of the most intense peak
(4 4 0), where λ is the wavelength = 1.7889 Å, θB is the angle
of Bragg diffraction, and β = B − b. B is the full FWHM and
b represents the instrumental line broadening [26]. Crystallite
size of synthesized ZnFe2O4 powder, based on this equation,
was calculated as about 12 nm.

3.2. Fourier transform infrared spectroscopy

Two main broad metal-oxygen bands are seen in the FT-IR
spectra of all spinels and ferrites in particular [27]. The band,
observed at around 559 cm−1 for ZnFe2O4 can be assigned to
tetrahedral Zn2+ stretching and the band observed at 405 cm−1
involves the Fe3+ vibration at the octahedral site (Figure 2).
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Table 1: The results of O-acylation of alcohol and phenol using ZnFe2O4
nanopowder in acetic anhydride.

ROH+ AC2O
Catalyst (5 mol%)
−−−−−−−−→
Solven-free,55 °C
R=Ph,n-Bu,Benzyl

ROAc+ AcOH

Entry R Catalyst Reaction time (min) Yield (%)

1 N-butyl ZnFe2O4 150 ≥96
2 Benzyl ZnFe2O4 150 ≥96
3 Phenyl ZnFe2O4 240 ≥96

3.3. SEM observations

The morphology and particle sizes of the prepared sample
were determined by SEM. The SEM micrograph of ZnFe2O4
is shown in Figure 3. It indicates that sphere-like ZnFe2O4
nanostructures obtained by this method are uniform in both
morphology and particle sizes. The regular distribution of
nanoparticles is attributed to the uniform temperature gradient
maintained on the substrate by controlled microwave heating.

3.4. Magnetic studies

Magnetization measurement of the prepared sample was
carried out using a SQUID magnetometer with a magnetic field
up to 8 kOe. The section of hysteresis loops of ZnFe2O4 are
shown in Figure 4. As shown in Figure 4, the magnetization
curves at 300 K show the absence of hysteresis, immeasurable
remanence and coercivity. This is a typical characteristic
of nano-sized particles that are superparamagnetic at room
temperature and present finite coercivity below the blocking
temperature.

3.5. Evaluation of catalytic activity of ZnFe2O4 nanoparticles for
o-acylation alcohol and phenol

The surface of metal oxides exhibit both acid and base
character [28]. This is the characteristic of many metal oxides,
especially TiO2, Al2O3, ZnO, etc.. We report herein, our results
onthe O-acylation of alcohol and phenol using catalytic amount
of ZnFe2O4 nanopowder at 55 °C under solvent-free conditions.
In any metal oxide, surface atoms make a distinct contribution
to its catalyst activity. In powder particles, the number of
surface atoms is a large fraction of the total. Therefore, catalytic
activity of nanopowder is more than bulk powders. As a result,
ZnFe2O4 nanopowder is coordinated better than bulk one,while
the ZnFe2O4 nanopowder hasmore surface atoms, participating
at the reaction (see Table 1).
A brief comparison of catalytic activity of some recently re-

ported catalyst for acetylation of phenol with Ac2O is given in
Table 2. It is obvious from the data that the ZnFe2O4 nanopar-
ticles prepared in the present work exhibit a good catalytic ac-
tivity for acetylation of phenol. Easy magnetic separation of the

Figure 3: SEMmicrograph of the ZnFe2O4 nanoparticles in the presence of SDS.

Figure 4: Hysteresis loops of the ZnFe2O4 nanoparticles at 300 K.

catalyst eliminates the catalyst filtration process after comple-
tion of the reaction, which is an additional suitable aspect of our
catalyst.
The reusability of catalyst (ZnFe2O4 nanoparticles) was

checked in the acetylation of benzyl alcohol with acetic anhy-
dride. The obtained results showed that after using the catalyst
for several times (three consecutive times were checked), the
corresponding acetatewas obtainedwithout any decrease in its
yield.

Table 2: Acetylation of phenol with Ac2O catalyzed by ZnFe2O4 nanoparticles prepared in the present work in comparison with that of some recently reported
catalyst.

Catalyst Condition Amount of catalyst Solvent Time (min) Yield
(%)

Bi(TFA)3 [29] Reflux 5 (mol%) CH3CN 120 90
SiO2-ZnCl2 [30] 80 °C 0.4 g CH3CN 3.5 h 83
CuSO4 · 5H2O [31] rt 2 (mol%) – 90 92
(NH4)2 · 5H0.5PW12O40 [32] rt 0.5 (mol%) CH3CN 120 40
RuCl3 [33] 40 °C 5 (mol%) [bmim][PF6] 120 89
ZnFe2O4 55 °C 5 (mol%) – 240 ≥96
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4. Conclusions

ZnFe2O4 nanoparticles were successfully prepared by a
controlled microwave–assisted co-precipitation. According to
the results, the microwave co-precipitation inclined to form
homogeneous particles which are about 12 nm in size. ZnFe2O4
nanoparticles have strong catalytic activity for O-acylation of
alcohols and phenols.
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