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Abstract A class of one-way isothermal mass transfer processes is investigated in this paper. Based on
the definition of mass entransy, the entransy dissipation function, which reflects the irreversibility of
the mass transfer ability loss, is derived. The optimality condition for the minimum entransy dissipation
of the mass transfer process with a generalized mass transfer law is obtained by applying an optimal
control theory. Special cases for the linear [g ∝ �(µ)] and the diffusive [g ∝ �(c)] mass transfer
laws are obtained based on the general optimization results. The obtained results are also compared
with strategies of minimum entropy generation, constant concentration ratio and constant concentration
difference operations. The results obtained herein can provide some theoretical guidelines for optimal
design and operation of practical mass transfer processes.
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1. Introduction

There are two standard problems in finite time thermody-
namics: one is to determine the objective function limits and
the relations between objective functions for the given thermo-
dynamic system, and another is to determine the optimal ther-
modynamic process for given optimization objectives [1–11].
The latter belongs to functional extremum problems and needs
to use the optimal control theory. It not only shows the physical
limits of the optimization objectives, but also indicates the reg-
ulations or principles that the system should follow to achieve
the predefined optimum objective. Thus, its significance is
much more important for theoretical research and practical
engineering applications. Bejan [12] first analyzed least com-
bined entropy generation [13,14] induced by heat transfer and
fluid viscosity as an objective function to optimize the geome-
try of heat transfer tubes and to find optimum parameters for
heat exchangers. Berry et al. [3], Linetskii and Tsirlin [15], and
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(L. Chen).

Andresen and Gordon [16,17] showed that the temperature
ratio between high and low-temperature sides for minimum
entropy generation of the heat transfer process, using the New-
tonian heat transfer law [q ∝ �(T )], is a constant [3,15,16], and
further investigated optimal paths forminimumentropy gener-
ation of heat transfer processes with the generalized radiative
heat transfer law [q ∝ �(Tn)] [17]. Based on [16,17], Bade-
scu [18,19] further optimized heat transfer processes for the
minimum lost available work by choosing a high-temperature
heat bath as the reference environment. Irreversible thermo-
dynamics attribute various transfer processes to the results of
generalized forces, pushing corresponding generalized fluxes,
e.g., the driving force of heat flux q is the reciprocal temperature
difference, �(1/T ), and that of the mass flux, g , is the chem-
ical potential difference, �µ. The transfer processes produce
dissipation inevitably, and entropy generation is the physical
quantity used to measure the irreversibility of various transfer
processes, which is equal to the scalar product of various trans-
fer fluxes and the corresponding driving forces. Based on the
theory of irreversible thermodynamics, Nummedal and Kjel-
strup [20] showed that the reciprocal temperature difference
between high and low temperature sides for the minimum en-
tropy generation of the heat exchange process is a constant,
and demonstrated the principle of Equipartition of Forces (EoF)
for optimizing heat exchange processes. Based on [20], Johan-
nessen et al. [21] further showed that the heat exchange strat-
egy of the constant entropy generation rate operation produces
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less entropy generation than that of constant reciprocal tem-
perature difference operations, i.e. the principle of Equipartition
of Entropy Production (EoEP) is superior to that of the Equipar-
tition of Forces (EoF). For the classical Fourier’s heat transfer
law, the driving force of the heat flux is the temperature dif-
ference, i.e., heat transfer obeys Newtonian heat transfer law.
Balkan [22,23] showed that the principle of EoEP coincideswith
the heat exchange strategy of constant temperature ratio be-
tween high and low temperature sides of heat transfer pro-
cesses using Newtonian heat transfer law [22], and further ap-
plied it to optimize heat exchangers with variable heat transfer
coefficients [23]. Chen et al. [24] and Xia et al. [25] derived op-
timal paths of heat transfer processes with a generalized heat
transfer law [q ∝ (�(Tn))m] for minimum entropy genera-
tion [24] and minimum lost available work [25], respectively,
and showed that the principle of EoEP is not only valid for New-
tonian and linear phenomenological heat transfer laws but also
valid for the heat transfer law [q ∝ (�(T−1))m]. In real energy
transfer and conversion processes, the heat and mass trans-
fer processes always occur together. Berry et al. [3] and Tsirlin
et al. [26–32] showed that the chemical potential difference for
theminimumentropy generation of a one-way isothermalmass
transfer process using the linear mass transfer law [g ∝ �(µ)]
(where �(µ) is the chemical potential difference) is a con-
stant [3,26,27], and further extended this result to optimiza-
tion research of heat-driven and mechanical separations [28–
30], optimal separation sequences for multi-component mix-
tures [31] and binary distillation separation processes [32].

The irreversibility of heat/mass transfer processes is usually
characterized by entropy generation. However, the entropy
generation extremum is sometimes inconsistent with the best
performance of the heat transfer process. From the viewpoint of
thermodynamics, the performance of a heat exchanger should
be better for a smaller entropy generation number, i.e. smaller
heat transfer irreversibility. However, analyses of a balanced
counter-flow heat exchanger by Bejan [33,34] showed that
the entropy generation number increased firstly and then
decreased with an increase in effectiveness. The phenomenon
is often referred to as the ‘‘entropy generation paradox’’ [33,34].
Both Xu et al. [35] and Hesselgreaves [36] put forward different
methods ofmodifying entropy generation numbers to avoid the
‘entropy generation paradox’. Shah and Skiepko [37] analyzed
the relationship between the heat exchanger effectiveness and
entropy generation for 18 kinds of heat exchanger. It was
found that heat exchanger effectiveness can be maximum,
intermediate or minimum at maximum entropy generation.
Therefore, the minimum principle of entropy generation is not
always applicable to heat exchange analysis.

Guo et al. [38,39] introduced a new quantity called entransy,
which corresponds to electrical potential energy in a capacitor
based on the analogy between electrical and thermal systems,
and put forward the extremum principle of entransy dissipa-
tion for optimizing heat transfer processes. The entransy dis-
sipation extremum principle (i.e. the least dissipation of heat
transport potential capacity in [40])was applied to optimize the
volume-to-point access thermal conduction problem in [40].
With a fixed volume-averaged conductivity as the constraint, an
optimized thermal conductivity distribution was obtained that
greatly reduced the average temperature. Besides, the method
of entransy dissipation minimization is used to optimize per-
formances of various thermal systems [41–47]. Liu et al.
[48–50] and Guo et al. [51] put forward the effectiveness-
thermal resistance method for heat exchanger design and anal-
ysis, based on entransy dissipation [40,50,51], and discussed

the applicability of the extremum principles of entropy gener-
ation and entransy dissipation for heat exchanger optimization
[49,51]. The monotonic decrease of effectiveness by increas-
ing thermal resistance [51] showed that the heat exchanger
irreversibility could be described by its entransy dissipation-
based thermal resistance when evaluated from the transport
process viewpoint,while the so-called entropy generationpara-
dox occurred, if the irreversibility was measured by the en-
tropy generation number for a heat exchanger. Xia et al.
[52,53] showed that the temperature difference for the min-
imum entransy dissipation of the heat exchange process us-
ing Newtonian heat transfer law is a constant [52,53], and the
temperature ratio for the linear phenomenological heat transfer
law is a constant [53]. Xia et al. [54] further optimized the liq-
uid–solid phase change processes for minimum entransy dissi-
pation. Chen et al. [55] optimized the heat transfer in a thermal
network with two heat exchangers, and found that maximum
entransy dissipation corresponds to themaximumheat transfer
rate with prescribed wall temperatures of the heat exchangers,
while the minimum entropy generation does not.

Based on the analogy between heat- and mass-transfer pro-
cesses, Chen et al. [56–60] defined a mass entransy and put for-
ward the extremum principle of mass entransy dissipation (i.e.
dissipation of the mass transport potential capacity in [56]) for
optimizing mass transfer processes, such as laminar flow mass
transfer [56], photocatalytic oxidation reactors [57], decontam-
ination ventilation design in space station cabins [58] and evap-
orative cooling systems [59,60]. Xia et al. [61] investigated the
minimum entransy dissipation of the one-way isothermalmass
transfer process with the diffusive mass transfer law [g ∝

�(c)] (where �(c) is the concentration difference). Yuan and
Chen [62] further investigated the applicability of the two op-
timization criteria of the maximum exergy efficiency method
and the minimum entransy dissipation-based thermal resis-
tance method in flow and area distribution optimizations for
evaporative cooling systems, and found that when the entransy
dissipation-based thermal resistance reaches a minimum, the
cooling capacity of the system reaches amaximum, i.e. the opti-
mal evaporative cooling performance, but the exergy efficiency
does not achieve its maximum value at the same time. Based
on [3,26–32,56–62], this paper will further investigate the one-
way isothermal mass transfer process with a generalized mass
transfer law. The optimality condition for the minimum en-
transy dissipation of mass transfer processes will be obtained
by applying the optimal control theory, and the effects of heat
transfer laws will be also analyzed.

2. Physical model

Figure 1 shows a model of the one-way isothermal mass
transfer process. Both mixtures, at high and low concentration
sides, are binary. In order to distinguish the component that
participates in the mass transfer process from that which
does not (e.g. the mixture passes through a semi-permeable
membrane), the component that participates in the mass
transfer process is called the key component, while the other
is called the inert component. Attention should be paid to
the fact that the components in the mixtures are classified
into two species, only according to whether the component
participates in the mass transfer process or not, which is
independent of the detailed number of components in the
mixture. So, the results obtained in this paper are also valid for
cases in which the number of components is three or more.
The contact surface between the two mixtures only allows
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Figure 1: Model of one-way isothermal mass transfer process.

the key component to pass. c1 and c1(c1 > c2) are the key
component concentrations (expressed as the mass fraction or
mole fraction) corresponding to the mixtures at high and low
concentration sides, respectively. m1 and m2 are the amount
of flux rate (expressed as the mass flux rate or mole flux rate)
of the key components, and M1 and M2 are the total amount
of flux rates (expressed as the mass flux rate or mole flux
rate) of the mixtures. l is the total length of the mass transfer
equipment. The mass transfer flux rate between the high
and low concentration sides is g , which satisfies the relation,
g = −dm1/dx = dm2/dx.

According to [56–62], the mass entransy, E, of the key com-
ponent is given by:

E =
1
2
mc =

1
2
Mc2, (1)

where c is the key component concentration in the mixture.
When the concentration, c , is expressed as the mass fraction,
m andM are the mass of the key component in the mixture and
the total mass of the mixture, respectively. When the concen-
tration, c , is expressed as the mole fraction, m and M are the
mole numbers of the key component in the mixture and the to-
tal mole number of the mixture, respectively. The mole mass of
the key component only depends on its physical characteristic,
so the expression of the mass fraction is equivalent to that of
the mole fraction. The mass entransy, E, could be used to rep-
resent the ability of the key component in a mixture to transfer
the mass to the outside. From Eq. (1), one further obtains the
change of the mass entransy, E, as follows:

dE = d
(
1
2
mc

)
=

1
2
mdc +

1
2
cdm, (2)

where the first term on the right ride of the second equal sign is
the change of mass entransy due to the change in the key com-
ponent concentration, and the second term on the right ride of
the second equal sign is the change of mass entransy due to the
change in the amount of the key component. The mixture con-
sists of two parts, the key component and the inert component.
By allowing the amount of the inert component in the mixture
be m̃, one further obtains:

m̃ = M(1 − c) = m(1 − c)/c. (3)

Eq. (3) further gives:

m =
m̃c

(1 − c)
. (4)

Differentiating Eq. (4) with respect to concentration, c, yields:

dm =
m̃dc

(1 − c)2
. (5)

Substituting Eqs. (4) and (5) into Eq. (2) yields:

dE =

(
c −

c2

2

)
dm. (6)

FromEq. (6), one further obtains the entransy balance equations
corresponding to the high and low concentration sides of the
mass transfer process, respectively, as follows:

E1,inl − E1,out =
1
2
m1,inlc1,inl −

1
2
m1,outc1,out

=

∫ l

0

[
g

(
c1 −

c21
2

)]
dx, (7)

E2,inl − E2,out =
1
2
m2,inlc2,inl −

1
2
m2,outc2,out

=

∫ l

0

[
−g

(
c2 −

c22
2

)]
dx. (8)

Adding Eq. (7) to Eq. (8) yields:

(E1,inl + E2,inl) − (E1,out + E2,out) = Einl − Eout

= �E =

∫ l

0

[
h(c1 − c2)2

(
1 −

c1 + c2
2

)]
dx. (9)

Eq. (9) shows that the total entransy flux, Eout, of the high and
low concentration side mixtures at the outlet is smaller than
that at the inlet, and the difference between them is called the
entransy dissipation function, �E, of the one-way isothermal
mass transfer process.

Analogous to the equivalent thermal resistance, RE = �E/
Q 2, based on thermal entransy dissipation during heat transfer
processes [38–53], where Q is the amount of heat transfer, the
equivalent mass resistance, RE , based on the mass entransy dis-
sipation function, �E, during the mass transfer process, is:

RE =
�E
N2

=

∫ l
0 h(c1 − c2)2

(
1 −

c1+c2
2

)
dx

[∫ l
0 h(c1 − c2)dx

]2 , (10)

where N is the total amount of transferred material per unit
time during the mass transfer process. The entransy dissipa-
tion extremum principle for mass transfer processes [56–62]
states that maximum entransy dissipation leads to maximum
mass flux at given boundary concentrations, while minimum
entransy dissipation leads to minimum concentration differ-
ence at the given boundary mass flux. Both could be reduced
to the principle of minimum mass resistance, so that RE of
Eq. (10) measures the effectiveness of the mass transfer pro-
cess. The smaller RE is, the better the effectiveness of the mass
transfer process is. From Eq. (10), optimizing the mass transfer
process with the objective of minimum�E is equivalent to that
with the objective of minimum RE when the total mass transfer
amount, N , is fixed. For the one-way mass transfer process, as
shown in Figure 1, i.e. there is a transfer of the key component
only between two fluxes, one obtains:

dM1

dx
=

dm1

dx
= −g(c1, c2). (11)

Combining Eq. (5) with Eq. (11) yields:

dc1
dx

= −
h(1 − c1)2(c1 − c2)

m̃1
, (12)

where m̃1 is the amount of flux rate of the inert component at
the high-concentration side.

3. Average optimal control optimization

The problem now is to determine the optimal distributions
of the key component concentrations, c1 and c2, correspond-
ing to the high and low concentration sides for minimizing
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�E of Eq. (9), subject to the constraint of Eq. (12). Apparently,
this functional extremum is a typical optimal control problem.
One could solve Euler–Lagrange equations for optimal solu-
tions by constructing amodified Lagrange function. Tsirlin et al.
[27,63–65] and Mironova et al. [66] developed a more power-
ful optimization method introduced into thermodynamics, i.e.
averaged optimal control. The traditional theory requires spec-
ification of the behavior of the system at every point in time
along the process. Averaged optimal control relaxes that re-
quirement and is satisfied fixing these quantities, on average,
for the process as a whole. For the peculiarity of the optimiza-
tion problem considered herein and according to [3,27,63–66],
the solving process can be simplified by transforming this opti-
mal control problem to a class of averaged optimal control prob-
lems. It follows from Eq. (12) that:
∫ c1,inl

c1,out

m̃1

g(c1, c2)(1 − c1)2
dc1 = l. (13)

Substituting Eq. (12) into Eq. (9) yields:

�E =

∫ c1,inl

c1,out

[
(c1 − c2)

(
1 −

c1 + c2
2

)
m̃1

(1 − c1)2

]
dc1. (14)

The problemnow is to determine theminimumvalue of Eq. (14)
subject to the constraint of Eq. (13). Themodified Lagrangian, L,
is given by:

L =
m̃1

(1 − c1)2

[
(c1 − c2)

(
1 −

c1 + c2
2

)
+

λ

g(c1, c2)

]
, (15)

where λ is the Lagrangian multiplier, which is a constant to be
determined. From the extreme condition, ∂L/∂c2 = 0, one can
obtain:

g2(c1, c2)(c2 − 1) = λ
∂g
∂c2

. (16)

Eq. (16) is the optimality condition for the minimum entransy
dissipation of the mass transfer process. For the given mass
transfer law, g(c1, c2), the optimal, c1(x) and c2(x), are obtained
by combining Eqs. (12) with (16).

4. Special cases and other mass transfer strategies

The authors of [3,26,27] optimized the one-way isothermal
mass transfer process for minimum entropy generation with
linear [g ∝ �(µ)] and diffusive [g ∝ �(c)] mass transfer
laws. Besides the strategies of minimum entransy dissipation
(�E = min) and minimum entropy generation (�S = min),
there may be other mass transfer strategies in real mass trans-
fer processes, such as the strategies of constant concentration
difference (c1 − c2 = const) and constant concentration ratio
(c1/c2 = const). For research on thermodynamic optimization,
people always attributed various research results to some sim-
ple optimization principles that could provide effective theoret-
ical guidelines for practical thermodynamic processes, such as
Equipartition of Forces (EoF) [20], Equipartition of Entropy Pro-
duction (EoEP) [21,23], Equipartition of Temperature Difference
(EoTD) [22] and so on. For the diffusive mass transfer law [g ∝

�(c)], the driving force of the mass flux, g , is the concentration
difference, �(c). Thus, the mass transfer strategy of c1 − c2 =

const is equivalent to the principle of EoF corresponding to the
diffusive mass transfer law. Similarly, the driving force of the
mass flux, g , for the linear mass transfer law [g ∝ �(µ)] is the
chemical potential difference, �(µ), while the chemical poten-
tial,µ, of the component in themixture and its concentration, c ,

satisfy the relation, µ = µ0 + RT ln c, where µ0 is the standard
chemical potential of the component, and R and T are the uni-
versal gas constant and the temperature, respectively. So, the
strategy of c1/c2 = const is equivalent to that of µ1 − µ2 =

const, i.e., the principle of EoF corresponding to the linear mass
transfer law. The cases with linear and the diffusivemass trans-
fer laws will be analyzed in the following sections, respectively.

4.1. Linear mass transfer law [g ∝ �(µ)]

4.1.1. The strategy of the minimum entransy dissipation
When themass transfer process obeys the linearmass trans-

fer law in linear irreversible thermodynamics, one obtains:

g(c1, c2) = hµ(µ1 − µ2) = hµRT ln(c1/c2), (17)

where hµ is the phenomenological mass transfer coefficient.
Substituting Eq. (17) into Eq. (16) yields:

c2(1 − c2)[ln(c1/c2)]2 = λ/(hµRT ). (18)

Eq. (18) further gives:

c1 = c2 exp

(√
λ

hµRTc2(1 − c2)

)
. (19)

Differentiating Eq. (19) with respect to x yields:

dc1
dx

= exp

(√
λ

hµRTc2(1 − c2)

)

×

[
1 +

(2c2 − 1)

2c1/22

(1 − c2)3/2
√

λ

hµRT

]
dc2
dx

. (20)

Substituting Eqs. (19) and (20) into Eq. (12) yields:

dc2
dx

= −

hµRT
√

λ
hµRTc2(1−c2)

[
1 − c2 exp

(√
λ

hµRTc2(1−c2)

)]2

m̃1 exp
(√

λ
hµRTc2(1−c2)

) [
1 +

(2c2−1)

2c1/22 (1−c2)3/2

√
λ

hµRT

] . (21)

From the known boundary conditions, c1(0) = c1,inl and c1(l) =

c1,out, the unknown constant, λ, can be determined by combin-
ing Eq. (19) with Eq. (21), and, then, c1(x) and c2(x) are fur-
ther obtained. Theminimum entransy dissipation,�Emin, of the
mass transfer process is obtained by substituting c1(x) and c2(x)
into Eq. (9) and integrating it numerically.

4.1.2. The strategy of the minimum entropy generation
The entropy generation of the mass transfer process is:

�S =

∫ l

0

g(c1, c2)[µ1(c1) − µ2(c2)]
T

dx, (22)

where µ1(c1) and µ2(c2) are the chemical potentials of the key
component corresponding to high and low concentration sides.
According to [3,26,27], the chemical potential difference of the
key component between the high and low concentration sides
forminimumentropy generation is a constant, i.e. themass flux
rate, g , of the mass transfer process or the concentration ratio,
c1/c2, is a constant as follows:

µ1 − µ2 = RT ln(c1/c2) = a, (23)
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where a is an integration constant to be determined. Substitut-
ing Eq. (23) into Eq. (12) yields:

dc1
dx

= −
hµa(1 − c1)2

m̃1
. (24)

The boundary conditions, c1(0) = c1,inl and c1(l) = c1,out, are
known. From Eq. (24), the integration constants, a and c1(x),
respectively, are obtained as follows:

a =
m̃1(c1,inl − c1,out)

hµL(1 − c1,inl)(1 − c1,out)
, (25)

c1(x) =
(c1,inl − c1,out)x − Lc1,inl(1 − c1,out)

(c1,inl − c1,out)x − L(1 − c1,out)
. (26)

From Eqs. (23), (25) and (26), one further obtains:

c2(x) =
(c1,inl − c1,out)x − Lc1,inl(1 − c1,out)

(c1,inl − c1,out)x − L(1 − c1,out)

× exp
[
hµRTL(1 − c1,inl)(1 − c1,out)

m̃1(c1,inl − c1,out)

]
. (27)

Substituting Eqs. (26) and (27) into Eq. (22) yields:

�Smin =
m̃2

1(c1,inl − c1,out)2

hµLT (1 − c1,inl)2(1 − c1,out)2
. (28)

The entransy dissipation for minimum entropy generation of
the mass transfer process with the linear mass transfer law
is obtained by substituting Eqs. (26) and (27) into Eq. (9) and
integrating it numerically.

4.1.3. The strategy of constant concentration difference
When the concentration difference is a constant, one ob-

tains:

c1 − c2 = a, (29)

where a is a constant to be determined. Substituting Eq. (29)
into Eq. (12) yields:

dc1
dx

= −

hµRT (1 − c1)2 ln
(

c1
c1−a

)

m̃1
. (30)

Since boundary conditions c1(0) = c1,inl and c1(l) = c1,out are
known, the unknown constants, a and c1(x), are obtained from
Eq. (30). The entransy dissipation, �E, of the mass transfer pro-
cess is obtained by substituting c1(x) and c2(x) into Eq. (9) and
integrating it numerically.

4.2. Fick’s diffusive mass transfer law [g ∝ �(c)] [61]

4.2.1. The strategy of the minimum entransy dissipation
When the mass transfer process obeys Fick’s diffusive mass

transfer law, one obtains:

g = hc(c1 − c2), (31)

where hc is the diffusive mass transfer coefficient. Eq. (16)
further gives:

λ = hc(1 − c2)(c1 − c2)2. (32)

From Eq. (32), one can see that the optimal mass transfer
strategy for minimum entransy dissipation of the mass transfer
process is that the product of the square of the key component
concentration difference (c1 − c2)2 between the high and low

concentration sides and the inert component concentration,
(1 − c2), at the low-concentration side, should be a constant.
From Eq. (32), one further obtains:

c1 = c2 +

√
λ

h(1 − c2)
. (33)

Differentiating Eq. (33), with respect to x, yields:

dc1
dx

=

[
1 +

1
2

√
λ

h(1 − c2)3

]
dc2
dx

. (34)

Substituting Eqs. (33) and (34) into Eq. (12) yields:

dc2
dx

= −
h
m̃1




(
1 − c2 −

√
λ

h(1 − c2)

)2

×

√
λ

h(1 − c2)




/[
1 +

1
2

√
λ

h(1 − c2)3

]
. (35)

Integrating Eq. (35) by using the symbol-calculation function of
Matlab software yields:



(c2 − 1)
(1 − c2)3/2 −

√
λ/h

+
1
3
ln[

√
(1 − c2) − (λ/h)1/6]

(λ/h)1/6

−
1
6
ln[(1 − c2) +

√
(1 − c2)(λ/h)1/6 + (λ/h)1/3]

(λ/h)1/6

+

√
3 arctan

{
√
3
3

[
2
√

(1−c2)

(λ/h)1/6
+ 1

]}

3(λ/h)1/6




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2(x)

c2,out

=

√
λh

m̃1
x + a, (36)

where a is an integration constant. From boundary conditions,
c1(0) = c1,inl and c1(l) = c1,out, constants λ and a can be
determined by combining Eq. (33) with Eq. (35), and then c1(x)
and c2(x) are also obtained. Finally, the minimum entransy
dissipation, �Emin, of the mass transfer process is obtained by
substituting c1(x) and c2(x) into Eq. (9), and then integrating it
numerically.

4.2.2. The strategy of the minimum entropy generation
According to [3,26,27], the optimal relationship between

concentrations c1(x) and c2(x) forminimumentropy generation
of themass transfer process, using Fick’s diffusivemass transfer
law, is given by:

c1 = c2 +
√
ac2, (37)

where a is an integration constant to be determined. From
Eq. (37), one can see that the optimal mass transfer strategy
for minimum entropy generation is that the ratio of the square
of the key component concentration difference, (c1 − c2)2,
between the high and low concentration sides to the key
component concentration, c2, at the low-concentration side, is
a constant. Comparison between Eqs. (19) and (24) shows that
the strategy of minimum entransy dissipation is significantly
different from that of minimum entropy generation. Solving
Eq. (37) for c2 yields:

c2 = c1 +
a
2

−

√
c1a +

a2

4
. (38)
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Substituting Eq. (38) into Eq. (12) yields:

dc1
dx

=

h(1 − c1)2
(

a
2 −

√
c1a +

a2
4

)

m̃1
. (39)

With the known boundary conditions, c1(0) = c1,inl and
c1(l) = c1,out, the unknown integration constants, a and c1(x),
can be determined from Eq. (39), and then, c2(x) is obtained by
substituting a and c1(x) into Eq. (38). The entransy dissipation
for minimum entropy generation of the mass transfer process
is obtained by substituting c1(x) and c2(x) into Eq. (9) and then
integrating it numerically.

4.2.3. The strategy of constant concentration difference
When the concentration difference is a constant, i.e. g(c1, c2)

= const or c1(x) − c2(x) = const, the concentration gradient of
the mass transfer process is uniform. Let c1 − c2 = a; it follows
from Eq. (12) that:

dc1
dx

= −
ha(1 − c1)2

m̃1
. (40)

The known boundary conditions are c1(0) = c1,inl and c1(l) =

c1,out, and then a and c1(x) are obtained fromEq. (40), which are,
respectively, given by:

a =
m̃1(c1,inl − c1,out)

hl(1 − c1,inl)(1 − c1,out)
, (41)

c1(x) =
(c1,out − c1,inl)(x/l) + c1,inl(1 − c1,out)

(c1,out − c1,inl)(x/l) + (1 − c1,out)
. (42)

Since the concentrations, c1(x) and c2(x), satisfy the relation
c1 − c2 = a, then c2(x) is obtained from Eqs. (41) and (42) as
follows:

c2(x) =
(c1,out − c1,inl)(x/l) + c1,inl(1 − c1,out)

(c1,out − c1,inl)(x/l) + (1 − c1,out)

−
m̃1(c1,inl − c1,out)

hl(1 − c1,inl)(1 − c1,out)
. (43)

The entransy dissipation, �E, of the mass transfer process for
the strategy of the constant mass transfer flux rate is obtained
by substituting Eqs. (42) and (43) into Eq. (9), which is given by:

�E =
m̃3

1(c1,inl − c1,out)3

2(hl)2(1 − c1,inl)3(1 − c1,out)3

−
m̃2

1(c1,inl − c1,out)
hl(1 − c1,inl)(1 − c1,out)

ln
(1 − c1,inl)
(1 − c1,out)

. (44)

4.2.4. The strategy of constant concentration ratio
The concentration ratio of the key component between the

high and lowconcentration sides is a constant, i.e. c1(x)/c2(x) =

const. The chemical potential of the component in the mixture
and its concentration satisfy the relation µ = µ0 + RT ln c. So,
c1(x)/c2(x) = const coincides with the fact that the chemical
potential difference is a constant, i.e.�(µ) = const. Let c2/c1 =

a; it follows from Eq. (12) that:

dc1
dx

= −
h(1 − a)(1 − c1)2c1

m̃1
. (45)

The boundary conditions, c1(0) = c1,inl and c1(l) = c1,out,
are known, and then a and c1(x) are obtained from Eq. (45)

as follows:

a =
m̃1

hl

{
ln

[
c1,out(1 − c1,inl)
c1,inl(1 − c1,out)

]

+
c1,out − c1,inl

(1 − c1,out)(1 − c1,inl)

}
+ 1, (46)

ln
c1(x)

1 − c1(x)
+

1
1 − c1(x)

=
x
l

{
ln

[
c1,out(1 − c1,inl)
c1,inl(1 − c1,out)

]
+

c1,out − c1,inl
(1 − c1,out)(1 − c1,inl)

}

+ ln
c1,inl

1 − c1,inl
+

1
1 − c1,inl

. (47)

Eq. (47) determines the concentration, c1(x), at the high con-
centration side versus the position, x, for themass transfer strat-
egy of constant concentration difference. For the given values of
c1,inl, c1,out and l, the concentration, c1(x), versus the position, x,
can be obtained by using the nonlinear equation solving func-
tion ‘‘@fsolve’’ in the Matlab toolbox, and solving Eq. (47) nu-
merically. Since c2(x) = ac1(x), the entransy dissipation of the
mass transfer process for the strategy of a constant concentra-
tion ratio is obtained by substituting c1(x) and c2(x) into Eq. (9)
and integrating it numerically.

5. Numerical examples and discussions

As an illustrative example, the following calculation param-
eters are chosen reasonably. Assume that the mole flux rate
of the inert component at the high-concentration side is m̃ =

3.6 mol/s. The concentrations of the key component at the in-
let and the outlet are c1,inl = 0.8 and c1,out = 0.4, respectively.
The total length of the mass transfer equipment is l = 3 m.
According to [61], the mass transfer coefficient for the diffusive
mass transfer law is set to be hc = 20 mol/(m s). For differ-
ent mass transfer laws, the mass transfer coefficients must be
changed in order to generate mass transfer rates that are com-
parable to each other. So, the mass transfer coefficient for the
linearmass transfer law is set to be hµ = 4×10−3 J/(mol2·m·s).
Both mass transfer coefficients are assumed to keep constant,
along with the position. The mass transfer amount of the key
component per unit time in the mass transfer equipment is
N = m̃1/(1 − c1,inl) − m̃1/(1 − c1,out) = 12 mol/s. The uni-
versal gas constant is R = 8.3145 J/(mol/K). The temperature
in the mass transfer equipment is T = 298.15 K. The analysis
for the case with the diffusive mass transfer law was obtained
in [61]. Firstly, numerical examples for the linear mass transfer
law will be given herein, and then optimization results for the
linear and diffusive mass transfer laws will be compared with
each other.

5.1. Numerical example for the linear mass transfer law [g ∝

�(µ)]

Figures 2 and 3 show the key component concentrations, c1
and c2, versus the position, x, corresponding to the high and
low concentration sides for various mass transfer strategies
with the linear mass transfer law, respectively, which include
three different strategies of constant concentration difference
(c1−c2 = const), theminimumentropy generation (�S = min)
and the minimum entransy dissipation (�E = min). From
Figure 2, one can see that the key component concentrations,
c1, at the high-concentration side for various mass transfer
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Figure 2: Key component concentration, c1, versus position, x, for the linear
mass transfer law.

Figure 3: Key component concentration, c2, versus position, x, for the linear
mass transfer law.

strategies decrease nonlinearly along the flow direction of the
correspondingmixture. For the same position, x (except the two
endpoints), the concentration, c1, for the strategy of c1 − c2 =

const is the highest, and the concentration, c1, for the strategy
of�S = min is slightly lower than that for the strategy of�E =

min. This shows that the key component concentrations versus
the position, x, corresponding to the high-concentration sides,
for various mass transfer strategies, are significantly different
from each other. From Figure 3, one can see that the key
component concentrations, c2, at the low-concentration side,
for various mass transfer strategies, increase nonlinearly along
the flow direction of the corresponding mixture; both initial
and final concentrations (i.e. c1,inl and c1,out) for different mass
transfer strategies are equal (the strategy of �S = min is
the same as that of c1/c2 = const, and c1/c2 > 1). So, at
the inlet of the mixture (where concentration c1,out at the high
concentration side is relative lower), the concentration, c2,inl,
for the strategy of �S = min is slightly higher than that for
the strategy of �E = min, and both of them are higher than

Figure 4: Entransy dissipation density, d(�E)/dx, versus position, x, for the
linear mass transfer law.

that for the strategy of c1 − c2 = const. At the outlet of the
mixture (where concentration c1,inl at the high concentration
side is relative higher), the concentration, c2,out, for the strategy
of �E = min is slightly higher than that for the strategy of
�S = min; both of them are lower than that for the strategy of
c1−c2 = const. Figure 4 shows the entransy dissipation density,
d(�E)/dx, of themass transfer process versus the position, x, for
variousmass transfer strategies. From Figure 4, one can see that
with an increase in the position x, d(�E)/dx for the strategies
of c1 − c2 = const and �E = min increases and d(�E)/dx, for
the strategy of �S = min, increases firstly and then decreases.
Compared to the mass transfer strategy of c1 − c2 = const,
the distributions of d(�E)/dx for the strategies of both �S =

min and �E = min along position x are relatively uniformly.
The more uniform the distribution of the local mass entransy
dissipation rate along the position is, the smaller the entransy
dissipation rates, �E, of the mass transfer process are, and the
better the mass transfer effectiveness is.

Table 1 lists the calculation results of the key parameters for
mass transfer processes, with various mass transfer strategies.
For the case with the linear mass transfer law [g ∝ �(µ)],
the driving force of the mass flux, g , is the chemical potential
difference, �(µ). When the minimum entropy generation is
chosen to be the evaluation criterion, the strategy of �S =

min coincides with that of c1/c2 = const or �(µ) = const
(i.e. the principle of EoF), and the entropy generation for the
strategy of �E = min is closer to that for the strategy of
�S = min compared to the strategy of c1 − c2 = const.
When the minimum entransy dissipation is chosen to be the
evaluation criterion, the entransy dissipation for the strategy
of �S = min is closer to that for the strategy of �E = min
compared to the strategy of c1 − c2 = const. Since the strategy
of �S = min coincides with the strategy of �(µ) = const (or
c1/c2 = const), this shows that the principle of EoF is closer to
the optimal strategy of the minimum entransy dissipation, i.e.
the principle of EoF (�(µ) = const) is superior to the strategy of
c1−c2 = const. According to [61], when theminimumentransy
dissipation is chosen to be the evaluation criterion, the strategy
of c1 − c2 = const is superior to that of �(µ) = const for the
mass transfer process with the diffusive mass transfer law. This
also shows that the principle of constant driving force is closer
to the optimal strategy of the minimum entransy dissipation.
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Table 1: Calculation results of key parameters for various mass transfer
strategies.

Case c2,inl c2,outl m̃2 (mol/s) �S (W/K) �E (mol/s)

Linear mass transfer law [g ∝ �(µ)]

c1−c2 = const 0.1775 0.5755 13.8120 42.3641 1.1781
�S = min 0.2672 0.5344 9.3994 40.2482 1.1395
�E = min 0.2536 0.5375 9.8693 40.3038 1.1392

Diffusive mass transfer law [g ∝ �(c)] [61]

c1/c2 = const 0.2770 0.5539 10.3039 35.8949 1.0356
c1−c2 = const 0.2000 0.6000 15.0000 36.2543 1.0310
�S = min 0.2512 0.5749 12.1999 35.5925 1.0224
�E = min 0.2339 0.5767 12.6830 35.6639 1.0218

Figure 5: Optimal key component concentration, c1, versus position, x, for
different mass transfer laws.

5.2. Comparison of optimization results between different mass
transfer laws

Figures 5 and 6 show the key component concentrations,
c1 and c2, versus position, x, corresponding to the high and
low concentration sides for the minimum entransy dissipation
of the mass transfer process with two different mass transfer
laws. From Figure 5, one can see that the key component
concentration, c1, for the linear mass transfer law is larger
than that for the diffusive mass transfer law (expect the two
endpoints). From Figure 6, one can see that at the inlet of
the mixture, the key component concentration, c2,inl, for the
linear mass transfer law is higher than that for the diffusive
mass transfer law and at the outlet of the mixture, the key
component concentration, c2,out, for the diffusive mass transfer
law is higher than that for the linear mass transfer law. It is
evident that the optimal key component concentrations, c1 and
c2, versus position x for the minimum entransy dissipation of
the mass transfer process with different mass transfer laws are
significantly different from each other. There are two reasons
for this difference.

One is that themass transfer laws are different, and the other
is that the mass transfer coefficients change largely between
different mass transfer laws. This shows that mass transfer
laws have a significant effect on the optimal concentration
configurations of the key component corresponding to the high
and low concentration sides for minimum entransy dissipation.
From the theory of irreversible thermodynamics, the product
of the mass flux, g , of the mass transfer process and the

Figure 6: Optimal key component concentration, c2, versus position, x, for
different mass transfer laws.

chemical potential difference, �(µ), is equal to the product of
the entropy generation, �S, of the mass transfer process and
temperature, T , as shown in Eq. (22). Meanwhile, the results
in Table 1 show that the entropy generation for the strategy
of constant chemical potential difference (�(µ) = const) is
smaller than that for the strategy of constant concentration
difference (�c = const). This reflects that the driving force
of the mass flux for the mass transfer process characterized by
the entropy is the chemical potential difference. Based on the
definition of the mass entransy, E, the entransy dissipation of
the mass transfer process is derived in this paper, as shown in
Eq. (9). The results show that the entransy dissipation for the
strategy of constant concentration difference (�c = const) is
smaller than that for the strategy of constant chemical potential
difference (�µ = const). This reflects that the driving force
of the mass flux for the mass transfer process characterized
by the entransy is the concentration difference. For real mass
transfer processes, application of Fick’s diffusive mass transfer
law [g ∝ �(c)] is much more widely used than that of the
linear mass transfer law [g ∝ �(µ)]. Meanwhile, when the
mass transfer process is not involved in the energy conversion
process, the optimization principle should be the minimum
entransy dissipation.

6. Conclusion

On the basis of [3,26–32,56–62], this paper further investi-
gated a class of one-way isothermal mass transfer processes.
Based on the definition of mass entransy, the entransy dissipa-
tion function, which reflects the irreversibility of mass transfer
ability loss, is derived. The optimality condition for the mini-
mum entransy dissipation of the mass transfer process is de-
rived by applying the optimal control theory. Special cases for
linear [g ∝ �(µ)] and diffusive [g ∝ �(c)] mass transfer
laws are obtained based on general optimization results. The
obtained results are also compared with the strategies of mini-
mumentropy generation, constant concentration ratio and con-
stant concentration difference operations. The results show that
the optimal mass transfer strategy for the minimum entransy
dissipation of themass transfer process, with the diffusivemass
transfer law, is that the product of the square of the key com-
ponent concentration difference between the high and low con-
centration sides and the inert component concentration at the
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low-concentration side is a constant, and the optimization re-
sult for the linear mass transfer law is significantly different
from that for the diffusive mass transfer law. The mass transfer
strategy of constant driving force operation is closer to the op-
timal mass transfer strategy. Entropy generation and entransy
dissipation represent different physical meanings, and selec-
tion between the two optimum criteria (i.e. entropy generation
minimization and entransy dissipation minimization) depends,
of course, on the particular implementation of mass transfer
processes. According to the Gouy–Stodola theorem [12], lost
available work is directly proportional to entropy generation.
When the mass transfer process is involved in the energy con-
version process, and the objective is to maximize work output
orminimize lost available work, such as distillation and separa-
tion processes [3,26–32], isothermal chemical engines [67–71]
and so on, the optimization principle should be minimum en-
tropy generation. When the pure mass transfer process is not
involved in the energy conversion process, such as decontami-
nation ventilation in space station cabins [58], evaporative cool-
ing processes [59,60,62] and so on, the optimization principle
should be minimum entransy dissipation (with a fixed mass-
flux boundary). The results obtained in this paper can provide
some theoretical guidelines for optimal design and operation of
practical mass transfer processes.
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