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Abstract. In this paper, the Mixed Discrete Least Squared Meshless (MDLSM) method is
used for solving quadratic Partial Di�erential Equations (PDEs). In the MDLSM method,
the domain is discretized only with nodes, and a minimization of a least squares functional
is carried out. The least square functional is de�ned as the sum of the residuals of the
governing di�erential equation and its boundary condition at the nodal points. In MDLSM,
the main unknown parameter and its �rst derivatives are approximated independently with
the same Moving Least Squares (MLS) shape functions. The solution of the quadratic
PDE does not, therefore, require calculation of the complex second order derivatives of
MLS shape functions. Furthermore, both Neumann and Dirichlet boundary conditions can
be treated and imposed as a Dirichlet type boundary condition, which is applied using a
penalty method. The accuracy and e�ciency of the MDLSM method are tested against
three numerical benchmark examples from one-dimensional and two-dimensional PDEs.
The results are produced and compared with the irreducible DLSM method and exact
analytical solutions, indicating the ability and e�ciency of the MDLSM method in e�cient
and e�ective solution of quadratic PDEs.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, meshless methods have been widely
developed for solving Partial Di�erential Equations
(PDEs). These methods do not need any element
nor any certain connectivity, leading to a numerical
method with reduced discretization costs [1]. Some
familiar meshless methods include: the Smoothed
Particle Hydrodynamic (SPH) method [2], the Element
Free Galerkin (EFG) method [3,4], the Meshless Local
Petrov{Galerkin (MLPG) method [5-8], the Reproduc-
ing Kernel Particle Method (RKPM) [9], the Local
Boundary Integral Equation (LBIE) method [10,11],
the hp-Meshless cloud method [12] and the Finite
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Point Method (FPM) [13]. The Discrete Least Squares
Meshless (DLSM) method was also proposed by Arzani
and Afshar [14].

Meshless methods are categorized in two ma-
jor forms: weak and strong. In contrast to the
strong form that uses an original form of governing
di�erential equation, the weak form uses an integral
form obtained by the weighted residual method. A
numerical integration procedure is, therefore, required
for meshless methods using weak forms, such as EFG
and MLPG, imposing noticeable computational cost.
Furthermore, this requires the use of a background
mesh for numerical integration, leading to the fact
that the methods using the weak form are not truly
meshless methods. The use of strong forms, however,
removes the need for numerical integration and the
use of background mesh, making these methods more
e�cient.

Minimization of the least squares functional is the
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basis of the DLSM method, which is de�ned as the sum
of the residuals of the governing di�erential equation
and its boundary condition at the nodal points. Since
the DLSM method uses the strong form of govern-
ing equation, time consuming numerical integration
computation is avoided. This method has shown to
possess some important abilities in the solution of
uid and solid mechanics problems. After the work of
Arzani and Afshar [14], for the solution of Poisson's
equations, the DLSM was used for the solution of
elliptic partial di�erential equations [15], hyperbolic
problems [16] transient and steady-state [17,18] and
planar elasticity [19] problems. Recently, adaptive
versions of DLSM have been used for the e�cient
solution of uid ow [20] and solid mechanics [1,21]
problems. More lately, the MDLSM method was
proposed by Amani et al. [22] and used for the solution
of elasticity problems.

The concept of irreducible and mixed formula-
tions has its origin in �nite element methods. The basis
of these formulations depends on the set of di�erential
equations from which we start the discretization pro-
cess. If we start with an equation system from which
none of the unknown parameters can be eliminated,
still leaving a well-de�ned problem, the formulation will
be termed irreducible. With irreducible formulation,
the gradients of the main unknown parameter are
obtained via a post-processing of the main unknown
parameters, once these parameters are calculated. If
this is not the case, the formulation will be called a
mixed one, in which both main unknown parameters
and their gradients are approximated simultaneously
and independently, leading to more accurate results.
This is, in particular, for gradient type parameters,
such as stresses, in elasticity problems. Furthermore,
the use of mixed formulation reduces the order of
shape function derivatives to half, with twofold merit.
First, the order of basic functions for the construction
of MLS shape functions is reduced and, second, the
costly operation of constructing the complex higher
order derivatives of the MLS shape function is elimi-
nated.

In the �nite element method, Zienkiewicz et
al. [23,24] used mixed formulation for patch test
analysis. Papadopoulos and Taylor [25] applied this
formulation for contact problems. Pitkaranta and
Stenberg [26] discussed the use of mixed formulation
for plane elasticity problems. Raviart and Thomas [27]
used a mixed method for elliptic problems. Tchonkova
and Strue [28] developed the mixed least square �nite
element method for solving linear elasticity problems.
In the context of meshless methods, Atluri et al. [29]
was the �rst to suggest the meshless local Petrov-
Galerkin mixed method for elasticity problems. The
mixed meshless formulation was also applied by Soric
and Jarak [30] for the analysis of shell-like structures.

More recently, Amani et al. [22] proposed the MDLSM
method for planar elasticity problems.

The MDLSM method is used in this paper for
the e�ective solution of quadratic Partial Di�erential
Equations (PDEs). In the MDLSM method, the do-
main is discretized only with nodes, and a minimization
of a least squares functional is carried out. The
least squares functional is de�ned as the sum of the
residuals of the governing di�erential equation and its
boundary conditions at the nodal points. In MDLSM,
the main unknown parameter and its derivatives are
approximated independently with the same Moving
Least Squares (MLS) shape functions. Furthermore,
both the Neumann and Dirichlet boundary condi-
tions can be treated and imposed as a Dirichlet type
boundary condition, which is applied using a penalty
method. The accuracy and e�ciency of the MDLSM
method are tested against three numerical benchmark
examples from one-dimensional and two-dimensional
PDEs. The results are produced and compared with
the irreducible DLSM method and exact analytical
solutions, indicating the ability and e�ciency of the
MDLSM method for the e�cient and e�ective solution
of quadratic PDEs. This paper is organized as follows:
In Section 2, the MLS approximation used for shape
function construction is de�ned. In Section 3, MDLSM
formulation for solving quadratic partial di�erential
equations is formulated. Numerical examples are
solved in Section 4. Finally, some signi�cant conclu-
sions are summarized in Section 5.

2. Moving least square approximation method

Construction of the shape functions for approxima-
tion of unknown parameters is the main idea in
meshless methods. Several approximation and in-
terpolation methods are used for construction of
the shape functions, such as Radial Basis Function
(RBF) [31], Moving Kriging (MK) [32], Partition of
Unity (PU) [33], Maximum Entropy (Max-Ent) [34],
Local Maximum Entropy (LME) [35] and Moving Least
Squares (MLS) [36]. MLS is the most popular approx-
imation method for construction of shape functions in
meshless methods [21]. Construction of the MLS shape
function starts with the following approximation of the
function, de�ned as:

u(X) =
kX
i=1

pi(X)ai(X) = PT(X)a(X); (1)

P(X)

=[1; x; y; x2; xy; y2; � � � ; xm; xm�1y; xym�1; ym];(2)

where, ai(X) is the vector of coe�cients and P(X) is
the basis function; m is the order of basic function
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and k is the total number of the basic function terms.
In this paper, the basis function of the form P(X) =
[1; x; x2] (m = 2 and k = 3) is used for one-dimensional
problems and P(X) = [1; x; y; x2; xy; y2] (m = 2 and
k = 6) is used for two-dimensional problems. Weighted
discrete L2 norm function is de�ned by:

J =
nsX
j=1

wj(X�Xj)(PT (Xj)a(X)� uhj )2; (3)

where, uhj is the nodal value of the function to be
approximated of point j, ns is the total number of
nodes in the support domain of point j, and wj is the
weighted function. In this paper, a cubic spline weight
function is used, as follows:

wj(d) =

8><>:
2
3 � 4d2 + 4d3 d � 1

2
4
3 � 4d+ 4d2 � 4

3d
3 1

2 � d � 1
0 d � 1

(4)

where d = kX �Xjk=dwj and dwj is the radius of the
support domain of point j. The vector of coe�cients
can be calculated by minimizing Eq. (3) as follows:

u(X) = PT(X)A�1(X)B(X)uh; (5)

where uh is the vector of nodal values of the functions
to be approximated, as follows:

uh = [uh1 ; u
h
2 ; � � � ; uhns ]; (6)

and A(X) and B(X) are de�ned as:

A(X) =
nsX
j=1

wj(X�Xj)P(Xj)PT(Xj); (7)

B(X) = [w1(X�X1)P(X1);

w2(X�X2)P(X2); � � � ;
wns(X�Xns)P(Xns)]: (8)

Eq. (5) is rewritten in the following form:

u(X) = NT(X)uh; (9)

where NT(X) is named as the MLS shape function. In
the solution of partial di�erential equations, it is often
necessary to obtain the shape function derivatives. The
�rst order derivatives of the MLS shape function can
be obtained as follows:

dN
dx

=
dP
dx

A�1B + PT dA�1

dx
B + PTA�1 dB

dx
;

dN
dy

=
dP
dy

A�1B + PT dA�1

dy
B + PTA�1 dB

dy
; (10)

while the second order derivatives of the MLS shape
functions, which are only required when second order
derivatives are present in the governing di�erential
equations, are obtained as follows:

d2N
dx2 =

d2PT

dx2 A�1B + PT d2A�1

dx2 B

+ PTA�1 d2B
dx2 + 2

�
dPT

dx
dA�1

dx
B

+
dPT

dx
A�1 dB

dx
+ PT dA�1

dx
dB
dx

�
;

d2N
dy2 =

d2PT

dy2 A�1B + PT d2A�1

dy2 B

+ PTA�1 d2B
dy2 + 2

�
dPT

dy
dA�1

dy
B

+
dPT

dy
A�1 dB

dy
+ PT dA�1

dy
dB
dy

�
;

d2N
dxy

=
d2PT

dxy
A�1B + PT d2A�1

dxy
B

+ PTA�1 d2B
dxy

+
dPT

dx
dA�1

dy
B

+
dPT

dx
A�1 dB

dy
+
dPT

dy
dA�1

dx
B

+ PT dA�1

dx
dB
dy

+
dPT

dy
A�1 dB

dx

+ PT dA�1

dy
dB
dx

: (11)

3. Mixed discrete least square formulation for
solving quadratic PDE equations

In this section, the MDLSM method for the solution of
quadratic PDEs is formulated. Consider the following
two-dimensional quadratic PDE equation:

a
�
@2T
@x2

�
+ b(

@2T
@x@y

) + c
�
@2T
@y2

�
+ d

�
@T
@x

�
+ e

�
@T
@y

�
+ f(T ) = g on 
; (12)

where, a, b, c, d, e, f and g are functions of x and y,
and 
 is the domain of the problem. The equation
is subject to the following Dirichlet and Neumann
boundary conditions:

T = �T on �u; (13)
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@T
@n

= �q on �t; (14)

in which T and q are prescribed Dirichlet and Neu-
mann boundary conditions on �u and �t boundaries,
respectively.

Using the following de�nition of derivatives,(
@T
@x = qx
@T
@y = qy

(15)

Eq. (12) can be written using Eq. (15) as follows:

a
�
@qx
@x

�
+ b

�
@qx
@y

�
+ c

�
@qy
@y

�
+ d(qx)

+ e(qy) + f(T ) = g on 
: (16)

Eqs. (15) and (16) can now be used as a substitute
for the original quadratic PDE, which is written in
compact form as:

L(u)�H = 0; (17)

where L(:) is the �rst order di�erential operator,
de�ned as:

L(:) = A(:)x + B(:)y + C(:): (18)

u and H are the vectors of unknowns and right hand
side, respectively, which are de�ned as:

u = [T; qx; qy]T ; (19)

H = [0; 0; g]T : (20)

And A, B and C are coe�cient matrices as follows:

A =

241 0 0
0 0 0
0 a 0

35 ; B =

240 0 0
1 0 0
0 b c

35 ;
C =

240 �1 0
0 0 �1
f d e

35 : (21)

The Dirichlet and Neumann boundary conditions orig-
inally de�ned by Eqs. (13) and (14) can also be written
in a compact form, in terms of the new vector of
unknowns, u, as:

Du� �u = 0; (22)

where, D and u are de�ned as:

D =
�
1 0 0
0 nx ny

�
; �u =

� �T �q
�T : (23)

nx and ny are direction cosines of the outward unit
normal vectors to the boundaries of the body at

boundary points. Now, the residuals of the di�erential
equation and the corresponding boundary condition at
a typical node, k, are de�ned as:

(R
)k = Lk(uk)�HK on 
; (24)

(R�)k = Dkuk � �uK on �; (25)

where R
 and R� are the domain and boundary
residuals, respectively.

Using a penalty approach for the satisfaction of
the boundary condition leads to the following least
squares functional, de�ned as:

I =
ntX
K=1

�
RT



�
k (R
)k + �

nbX
k=1

�
RT

�
�
k (R�)k (R�)k;

(26)

where nd is the number of nodes in the domain, nb
is the number of boundary nodes, and nt = nd +
nb. � is the penalty coe�cient de�ned as a positive
scalar constant with a large enough value in order
to impose the essential boundary condition with the
desired accuracy. The proper value of the penalty
parameter is determined prior to the main calculation,
via a trial and error process.

Minimizing the least square functional of Eq. (26),
with respect to nodal parameters, U, leads to:

KU = F; (27)

where:

Kij=
ntX
k=1

[L(Ni)]Tk [L(Nj)]k+�
nbX
k=1

[DNi]
T
k [DNj ]k ;

(28)

Fi =
ntX
k=1

[L(Ni)]TkHk + �
nbX
k=1

[DNi]Tk �Uk: (29)

And U is the vector of unknown nodal parameters.
The �nal sti�ness matrix K is sparse, square, sym-
metric and positive de�nite, which can be e�ciently
solved using proper solvers. Since the least squares
functional constructed by the MDLSM method is a
saddle-point problem, its solution method does not
require satisfying the Ladyzhenskaya-Babu�ska-Brezzi
(LBB) condition [37]. This means that the same
MLS shape functions of the same order can be used
to solve the problem without stability issues. Also,
the order of required shape function derivatives is
decreased by one order, thus, complex and costly
second derivative calculation of the MLS functions
(Eq. (11)) is avoided. In addition, the unknown
gradients are obtained simultaneously, removing the
need for some post processing. Furthermore, both the
original Dirichlet and Neumann boundary conditions
can now be enforced as a Dirichlet-type boundary
condition requiring the speci�cation of a single penalty
parameter.
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4. Numerical examples

In this section, the accuracy and e�ciency of the
MDLSM for the solution of one-dimensional (1-D)
and two-dimensional (2-D) quadratic PDEs are tested
against three benchmark examples, and the results are
compared with the exact results and those of the DLSM
method. The polynomial basis, P, for the construction
of MLS shape functions is considered as P = [1; x; x2]
for 1-D problems and P = [1; x; y; x2; xy; y2] for 2-
D problems. The radius of the inuence domain
is calculated by dw = �dk, where � is a constant
coe�cient between 2 to 3, determined by trial-and-
error procedures [12-20], dk is the distance of the kth
nearest point to the node under consideration and k is
the number of terms in the polynomial basis, P, used.
A constant value of � = 108 is used as the penalty
coe�cient in all benchmark examples for enforcing the
boundary conditions.

An error indicator is also used to calculate the
accuracy and convergence rate of the MDLSM and
irreducible DLSM method, de�ned as:

Error Norm=

s
(Uexact�Unum)T (Uexact�Unum)

(Uexact)T (Uexact)
;

(30)

where Uexact and Unum are the vector of exact ana-
lytical and numerical solutions, respectively. A regular
distribution of nodes is used to solve all benchmark
problems. The e�ect of the irregularity of nodal distri-
bution on the accuracy of the solution has already been
discussed by Amani et al. [22] in elasticity problems.
This experience shows that while the MDLSM method
yields a better solution on regular nodal distribution,
its accuracy and e�ciency are marginally a�ected by
irregular nodal distribution.

4.1. One-dimensional PDE
As a �rst example, the 1-D PDE is solved using the
MDLSM method, and the solution is compared with
the results of the irreducible DLSM method and the
exact analytical solution. Consider the following 1-D
PDE as follows:

A
d2T
dx2 + F (x) = 0; 0 � x � 1; (31)

where, A = 1 and F (x) = �(3:4�)2 sin(3:4�x). The
boundary conditions are de�ned as:(

�T (x) = 0 on x = 0
�T (x) = � sin(3:4�) on x = 1

(32)

The exact analytical solution for this problem can be
found to be:

T exact(x) = � sin(3:4�x): (33)

Figure 1. Numerical and analytical solutions for 1-D
PDE.

The problem is solved on three di�erent uniform nodal
con�gurations, using 21, 41 and 81 nodes. Figure 1
compares the results of the MDLSM and the irreducible
DLSM methods with the exact analytical solutions
for two of the nodal con�gurations, while Figure 2
compares the �rst derivatives. It is clearly seen that
the result obtained by the MDLSM method is more
accurate than the irreducible DLSM method for the
case considered. Table 1 compares the error norms
obtained from MDLSM and irreducible DLSM methods
on three nodal con�gurations. Also, to quantify
the improvements made on the results of the mixed
procedure, the convergence rate of the MDLSM method
is compared with that of the irreducible DLSM method
in Figure 3, indicating an increase of 0.06 and 1.11 in
the rate of convergence for the solution and its �rst
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Table 1. Comparing error norms of DLSM and MDLSM methods for 1-D PDE.

Number of
nodes

DLSM method
(solutions)

MDLSM method
(solutions)

DLSM method
(�rst derivatives)

MDLSM method
(�rst derivatives)

21 1.3474 0.1110 0.6494 0.0567
41 0.0869 0.0286 0.1150 0.0126
81 0.0293 0.0033 0.0379 0.0010

Figure 2. Numerical and analytical �rst derivative of the
solution for 1-D PDE.

derivatives, respectively. These results also show that
the errors of the MDLSM method are always less than
those of the DLSM method by two orders of magnitude,
emphasizing the higher accuracy of the method.

4.2. Two-dimensional Poisson PDE
As a second example, the Poisson PDE is considered:

@2T
@x2 +

@2T
@y2 = sin(�x) sin(�y); 0 � x; y � 1:

(34)

Figure 3. Convergence rate for 1-D PDE.

Subject to the following boundary conditions:

�T (x; y) = 0 on x = 0 and y = 0; (35)(
@T
@x = 1

2� sin(�y) on x = 1
@T
@y = 1

2� sin(�x) on y = 1
(36)

The exact analytical solution of the problem can be
de�ned as:

T exact(x; y) = � 1
2�2 sin(�x) sin(�y): (37)
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Figure 4. Nodal distribution for 2-D Poisson PDE.

Table 2. Comparison of error norms of DLSM and MDLSM methods for 2-D Poisson PDE.

Number of
nodes

DLSM method
(solutions)

MDLSM method
(solutions)

DLSM method
(�rst derivatives)

MDLSM method
(�rst derivatives)

36 0.4302 0.1810 0.2598 0.0800
121 0.1697 0.0475 0.2088 0.0201
441 0.0339 0.0120 0.0656 0.0050

The domain is discretized using 36, 121and 441 nodes,
as shown in Figure 4. The solution obtained us-
ing MDLSM and its �rst and second derivatives is
compared with irreducible DLSM and exact analytical
methods in Figures 5-9 for nodal con�gurations of
121 and 441 nodes, indicating the higher accuracy
of the MDLSM method. The convergence rate of
the MDLSM method is compared with that of the
irreducible DLSM method in Figure 10, using the
error norms that are presented in Table 2, showing
an increase of 0.14 and 1.1 in the convergence rate of
the MDLSM method in comparison with an irreducible
DLSM method for the solution and its �rst deriva-
tives, respectively. It is again seen that the solutions
obtained by the MDLSM method are more accurate
than those of the DLSM method, by one order of
magnitude.

4.3. Two-dimensional Laplace PDE
The Laplace equation is considered in the quarter circle
domain of radius R with a quadrant hole of radius R0,
as shown in Figure 11.

@2T
@x2 +

@2T
@y2 = 0: (38)

The boundary conditions considered are of the Dirich-
let type, de�ned as:8>>>>>>><>>>>>>>:

�T = A on r = R
and x = 0

�T = A+B
�
R2

x � x
�

on y = 0

�T = A+B
�
R2

R0
�R0

�
cos(�) on r = R0

(39)
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Figure 5. Numerical and analytical solutions for 2-D Poisson PDE on y = 0:3.

Figure 6. First derivative of solutions in x direction on y = 0:3 for 2-D Poisson PDE.

Figure 7. First derivative of solutions in y direction on y = 0:3 for 2-D Poisson PDE.

The exact analytical solution of the problem can be
shown to be:

T exact = A+B
�
R2

r
� r
�

cos(�); (40)

in which the values of the parameters, A and B, are
set equal to unity. In this example, values of R = 5
and R0 = 1 are used. Three nodal distributions with

29, 79 and 359 nodes, as illustrated in Figure 12,
are used to solve the problem. Contours of solutions
obtained by the MDLSM method are compared with
those of the DLSM method and the exact analytical
solutions (see Figure 13). The convergence rate of
the MDLSM method is compared with that of the
irreducible DLSM method in Figure 14, using the
error norms listed in Table 3. The results show an
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Figure 8. Second derivative of solutions in x direction on y = 0:3 for 2-D Poisson PDE.

Figure 9. Second derivative of solutions in y direction on y = 0:3 for 2-D Poisson PDE.

Figure 10. Convergence rate for 2-D Poisson PDE.

increase of 0.45 and 0.96 in the convergence rate of the
MDLSM method in comparison with the irreducible
DLSM method for the solution and its �rst deriva-
tives, respectively; the solutions of MDLSM being
more accurate than those of DLSM by 1.5 orders of
magnitude.

5. Conclusion

In this paper, the MDLSM method was used for the
solution of quadratic partial di�erential equations. The
MDLSM method was formulated based on minimiza-
tion of the least square functional, formed as the sum

Arc
hive

 of
 S

ID

www.sid.ir


www.SID.ir

S. Faraji et al./Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 492{504 501

Figure 11. Quarter circle domain with a quadrant hole.

Figure 12. Nodal distribution for 2-D Laplace PDE.

Figure 13. Contours of MDLSM and DLSM methods for
2-D Laplace PDE.

of the residuals of the di�erential equation and its
boundary conditions at nodal points. The penalty
approach was used to impose the Dirichlet- type bound-
ary conditions. The main unknown parameter and its
�rst derivatives were approximated independently and
simultaneously with the same MLS shape functions,
without requiring satisfying the LBB condition. Also,
the required order of MLS shape functions derivatives
was decreased by one order, removing the need for
complex and costly second derivative calculation of
the MLS shape functions. Three benchmark examples
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Table 3. Comparison of error norms of DLSM and MDLSM methods for 2-D Laplace PDE.

Number of
nodes

DLSM method
(solutions)

MDLSM method
(solutions)

DLSM method
(�rst derivatives)

MDLSM method
(�rst derivatives)

29 1.3141 0.2965 2.7453 0.6601

79 0.9670 0.1458 1.6032 0.4122

359 0.301 0.0377 1.1592 0.1168

Figure 14. Convergence rate for 2-D Laplace PDE.

from quadratic PDEs were solved, and the results were
produced and compared with those of the irreducible
DLSM method and the exact analytical solutions. The
results indicated the higher accuracy of the MDLSM
method compared with the irreducible DLSM method,
represented by an increase in the convergence rate of
the MDLSM method. While the MDLSM method was
used to solve linear PDEs in this paper, the method can
be easily extended to solve nonlinear problems with no
special treatment. In nonlinear cases, the �nal linear
system of equations would be replaced by nonlinear
ones which can be easily solved using iterative methods.
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