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Abstract
The massive, negatively charged dust grains are considered as discrete particles, while 
the electrons and ions assume to be distributed by Boltzmannean with the same 
temperatures. Assuming the grains to be conductors and charge of grain depend on the 
surface potential of the grain. The Poisson equation for small potentials takes then the 
form of the Helmholtz equation. The spatial distribution of the potential in the lattice 
includes the effect of whole system of dust particles. Such a self consistent description 
gives the dispersion relation for the dust lattice waves. It is shown that for the 
existence of ideal lattice the dusty plasma parameters must satisfy the definite relation. 
The calculations are carried out for two dimensional hexagonal lattice putting the 
cyclic boundary condition on dust grains. New relation for potential is found and there 
is a comparison with Yukawa system. 
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Introduction
Lattices with a reduced dimensionality are an interesting class of soft condenses 

matter. These lattices consist of particles which arrange themselves in a crystalline 
structure in the presence of external and inter particles forces. Typical examples of 
two-dimensional (2D) systems are colloidal suspensions(1), electrons in liquid 
helium(2), and Longmuir monolayer(3). A number of interesting physical processes 
have been studied in these lattices ,e.g., solid liquid phase transition, phonon 
propagation, and sublimation. Typical examples of 1D systems are quantum wires(4).
Another way of preparing a lattice with reduced dimensionality  is to use a plasma 
crystal, in which micro-size charged particles interact with each other via a Yokawa or 
screened-coulomb potential. 

Several investigation(5-8) have dealt with the lattice oscillations in the dust plasma 
crystal. In Ref. (8) most consistent construction of the dust-lattice wave (DLW) theory 
has been presented. In the mentioned paper the interaction only between nearest dust-
grain is taken into account. Furthermore, the charge of dust-grain is assumed being 
fixed. Under this assumption the main Eq. (8) of Ref. (8) has obtained the form of an 
inhomogeneous equation, that restrict the application of methods, known from the 
solid physics, for the description of oscillatory phenomenon in dust lattice. 

In this paper we investigate potential of grains in hexagonal lattices on the basis of 
Kroning-Penny model (9). The charge of dust grain is connected with its surface 
potential, which depends on the potential in plasma (10). We assume grains being 
spherical conductors with the radius nma , thus the grain charge nmQ  is  proportional  to  
its potential. Such a dependence of grain charge on its potential charge the type of 
main equation, obtained from the Poisson equation. For small value of potential it 
becomes the form of the Helmholtz equation for potential. The calculations are carried 
out for the two dimensional lattice putting the cyclic boundary condition on the chain 
of dust grains. The spatial distribution of potential along the lattice chain is found. 

Dusty plasma model 
A two dimensional dusty plasma in which extremely massive, negatively charged dust 
grains are considered as discrete particles, while the electrons and ions assume to be 
distributed by Bultzmannean with the same temperatures, TTT ie .

]/exp[0 Tkenn Be ,                                                                                                   (1) 

]/exp[0 Tkenn Bi ,                                                                                                 (2) 

where 0n  is the number density of electrons and ions at 0 , and e is the magnitude 
of the electron charge. The potential should be satisfies Poisson's equation 

n
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where on the right-hand side of eq. (3), summation over the dust grains is carried out. 
The charge density, corresponding to the single spherical grains of radius a, can be 

represented as ))(()(
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the grain, rn the radius-vector  of the grain's center and n is unit vector, perpendicular 
to the surface element. And Qn denotes the total charge of the grain. Assuming the 
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grains to be conductors, we have nmnmnm aQ  , where nm  is the potential on grain's 

surface. When the grain's size is smaller than the grains separation distance, danm ,

the grains position ),( mn yx  can be described by  function, as: 

)()()(),( nnnn rrrarrQrq . Below we consider the two –dimensional 

case only. This approximation looks rather artificial, however its results can give some 
notion for the more general, three-dimensional case.  The equation (3) can be simplify 
to

n
nnD ak )()()sinh(22 rrr ,                                                           (4) 

where Tke B/ (5)
and Dk  is the inverse of Debye length D ,

2/1
0

2 )/8(/1 Tknek BDD (6)

For equal charge and size of grains, and in the linear limit )1(  we obtain 

n
nD ak )(0

22 rr (7)

Equation (7) is often used in the solid state physics for the description of the lattice 
waves in the one dimensional approximation. This approximation looks rather 
artificial, although its results can give some notion for the more general three 
dimensional case.  
In two dimensional hexagonal lattice (figure 1), we will obtain potential from 
boundary value problem. 
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Figure 1: hexagonal lattice.
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where mm KI ,  are modified Bessel functions, respectively. Due to condition 

)()( , all coefficients mC  and mD  should be set equal to zero. The other 
boundary conditions are: 

0),(rar                                                                                                          (9)
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On the surface of grain, the potential is 0  and independent of angle , so close to 

grain only 0m , with 00A  and )(/ 000 akKB D  satisfies all conditions. 
Conditions (10), (11) and (12) come from symmetry[11]. One can obtain coefficients 

),( mm BA   by using all conditions. 

By using of boundary conditions, and determination of all coefficients,  the complete 
form of the potential function of grains to be obtained. So have plotted the potential 
function versus r, for a definite value of , and Yukawa potential simultaneously for 
comparison, in figure 2.   
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Figure 2: Comparison of grain’s potential (solid line) with 
Yukawa potential (dashed line). 

Figure (2) shows )0,(r  as a function of normalized rkD  up to 12m . The 
potential is compared with Yukawa potential form. 
The potential function of grains have plotted in two dimensional coordinate as a 
function of ,r  in figure 3. 

Figure 3: The potential of grains as a function of ,r .
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Dispersion relation for DLW 

Let us assume the dust particles to execute small oscillations around their equilibrium 
position. The grain are assumed to have the same potential (and charge) and a uniform 
separation distance. We consider the case, when the dust particles maintain their 
equilibrium potential (and charge) during oscillations. It means we assume the 
oscillation frequency to be larger than the characteristic frequency of dust particles 
charging. By using the potential (8), we can write the expression of total electrostatic 
energy of interaction for the dust grain's system, which yields: 
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  (13)                                 

Waves can propagate along an arbitrary direction, denoted by angle , which 
represents the angle between the wave vector k and a primitive translation vector 
(along the x axis). But for simplicity we assume that the longitudinal waves propagate 
in the x direction. 
The grains execute small oscillations nnn xx 0 , around their equilibrium position.

Figure 4. the relation between onnnonn rr ,,,,

Figure 4 shows the relation between fluctuations of radial and tangential coordinates of 
displacement versus n  . As usually, the wave train solution ))(exp( tkndiAnn  is 

used. Under the condition 1nDk , we obtain the longitudinal dispersion relation . 
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Figure5: The normalized longitudinal frequency OL /  is depicted as a 

function of the normalized wave number kd , for  wave propagation in the 

x-direction. The lattice parameter, Dd /  here is 5.2 .(a) : (1)-For the 

Yukawa-type interaction, (2)-for a dressed potential energy, (3)-for proposed 
potential energy, eq(13). (b) : Here kd  have smaller values. 

Figure (5) shows the normalized frequency  as a function of the normalized wave 
number kd for longitudinal wave. The frequency of wave on the basis of our potential 
is larger than the frequency which is found on the basis of Yukawa potential or dressed 
potential (reported in Ref. 12). This dispersion relation is the experimental result. 

Conclusion

In this paper, we have calculated the potential function of grains in hexagonal dusty 
plasma crystal, as a function of ,r  in linear case. The comparison of our calculation 
and the Yukawa potential is given in figure 3. Also we have investigated the frequency 
dependence on the wave number (dispersion law) in x-direction. The normalized 
frequency in our case is larger than the normalized frequency which is found on the 
basis of Yukawa potential or dressed potential. The transversal dispersion relation will 
be the next work.
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