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Chaotic particle dynamics in free-electron laser 
 with coaxial wiggler 
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Abstract 
The motion of relativistic test electron in a free electron laser can be altered 

significantly by an ideal coaxial wiggler field and uniform axial guide field. We have 
investigated group I, II and III orbits and finally have found that electron motion 
become chaotic at sufficiently high beam density and at sufficiently high amplitude of 
wiggler field. The threshold value of the wiggler amplitude for the onset of chaos is 
estimated analytically and confirmed by computer simulation. It is shown that the 
electron dynamic is nonintegrable. There is evidence for chaos from numerical 
calculation of Poincare maps and nonzero Lyapunov exponent using different 
approaches of Benettin's method which are described and compared. Moreover, it is 
shown that the particle motion become chaotic on a time scale comparable with the 
beam transit time through a few wiggler periods. 
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Introduction 
Hamiltonian chaos has been an active area of research in physics and applied 

sciences.The work of Kolomogrov, Arnold, and Moser (KAM) show that the phase 
space of integrable classical Hamiltonian systems. Subject to small perturbations, 
contains three types of orbits: stable periodic orbits, stable quasi periodic orbits, and 
chaotic orbits. 

Riyopoulos and Tang have analyzed side band induced chaos in the electron motion 
in the field configuration consisting of an ideal helical–wiggler field, the 
electromagnetic signal wave field, and the side band wave field(1). Chen and Schmidt 
have shown that the electromagnetic signal wave can also cause chaotic electron 
motion in the combined helical-wiggler and axial guide field configuration(2). Then 
Billardon has observed evidence of chaotic behavior in the radiation field in a 
modulated storage rugfel. Chen and Davidson have found the electron dynamics in the 
self-magnetic field produced by the non-neutral electron beam in the field 
configuration consisting of a constant amplitude helical-wiggler magnetic field, and 
uniform axial magnetic field become chaotic(4,5). The motion of an electron in a 
linearly polarized wiggler with an axial guide field investigated by Michel-Lours et
al(6).

In this paper, we analyzed the motion of a relativistic electron in the field 
configuration consisting of a coaxial wiggler, and uniform axial magnetic fields. It is 
shown that the motion is nonintegrable. Poincare surface of section plots and nonzero 
Lyapunov exponents are generated to demonstrate the nontegrability and choaticity of 
the motion. 

The organization of this paper is as follows. In Sec. II, theoretical formulation of the 
problem is analyzed. In Sec. III, the results of numerical computations and some 
conclusions are presented. 

Theoretical formulation 
The motion of one electron in a free electron laser (FEL) with coaxial wiggler wB

and a guide field 0B  is considered. The self-field produced by the electron beam are 
neglected. The motion of the electron takes place in the coaxial wiggler. The total 
magnetic field inside a coaxial wiggler will be taken to be of the form 

,ˆˆ zrB zr BB                                                                          (1) 
,, zrFBB rwr                                                                        (2) 

,,0 zrFBBB zwz                                                                 (3) 

where 0B  is a uniform static axial guide field, rF  and zF  are known functions of 
cylindrical coordinates r and z .

,3sinsin 31 zkFzkFF wrwrr                                         (4) 

,3coscos 31 zkFzkFF wzwzz                                        (5) 
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where
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     where 3,1n  ; inR  and  outR  are the inner and outer radii of the coaxial waveguide, 

wwk /2  where w  is the wiggler (spatial ) period, and 0I , 1I  , 0K  , and 1K  are 
modified Bessel functions. 
Vector potential associated with B is

A ˆ
2

)cos( 0rB
znkF

nk

B
wrn

w

w                            (11) 

where rnF  has radial dependency for )3,1(n  first and third harmony. The 
corresponding Hamiltonian is
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As the Hamiltonian is not an explicit function of time, H is a constant of motion, 
and also H is independent of , so it follows that .Constp

      For numerical calculation, dimensionless variables are introduced: 
mcpp ii /ˆ  , zkz wˆ  , rkr wˆ  , wcc ck/ˆ  with meBc /0  , www mckeBa /  , 

2/ mcH  , tck w  . 
In the new variables, one obtains 
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We tried to find a canonical transformation, for finding two other constants, but 
having failed in finding all constants of motion. We have plotted the trajectory of an 
electron. The motion looks chaotic for some initial conditions. Chaos, in fact 
confirmed by performing Poincare section and calculating nonzero Lyapunov 
exponents. For this purpose, the following normalized equations of motion derived 
from Eq. (13), have been solved numerically 
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The plane rpr,  with 2mod0z  is chosen to be the Poincare surface of section. 
The numerical method  for solving differential equations is a fourth order Runge-
Kutta.

The existence of chaotic trajectories is confirmed by calculating nonzero Lyapunov 
exponents by two approaches. The first consists in considering two nearby trajectories 
with an initial tangential vector of norm 0d . The distance nd between those trajectories 

is calculated numerically, and as soon as 0/ ddn  is greater than a quantity between 2 

and 3, we renormalize nd to 0d . The Lyapunov exponent corresponding to the Poincare 
map is given by  

n
n

n
d
t d
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0

log
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lim
0

                    (15) 

Numerical   results and conclusions 
A numerical computation is conduced to investigate the properties of the 

equilibrium orbits of electrons inside a coaxial wiggler. Wiggler wavelength w/2

and lab-frame electron density 0n  were taken to be cm3  and 31210 cm , respectively. 

The wiggler magnetic field wB were taken to be G3745  which corresponds to the 

relativistic wiggler frequency 442.0/ ww ck . Electron-beam energy 2
00 1 cm  was 

taken to be keV700 , corresponding  to a Lorentz factor 37.20  and the axial 

magnetic field 0B  was varied from 0 to kG3.25  corresponding to a variation from 0 to 

3 in the normalized relativistic cyclotron frequency wck/0  associated with 0B . The 
inner and outer radii of the coaxial wiggler were assumed to be cmRin 5.1  and 

cmRout 3 , respectively[7]. 

Figure 1 shows the variation of  (the largest Lyapunov exponent) with the 
normalized time  for three classes of solutions, group I orbits for which 

cvckw //0 ||0 , group II  orbits with cvckcv w /3// ||0|| , and group III orbits 

with cvckw /3/ ||0 . The existence of group III orbits is due to the presence of the 

third spatial harmonics of the wiggler field, which also produced the second 
magnetoresonance at cvckw /3/ ||0 . Growth of group III orbits is larger than group I 

and group II orbits. As the figure shows the Lyapunov exponent are larger than zero 
and all group become chaotic. In this figure two near conditions in space-phase are: 

221 rr ,
021 ,

2/21 zz ,
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021 rr pp ,
3.021 zz pp ,
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01 1 rppHp rz ,

22
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2
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2
02 10001.0 rppHp rz ,

where the initial distance is 0d . After time nt , the perturbation grows and distance 

between two trajectories will be nd . We used Eq. (15) for finding the Lyapunov 
exponents.

       Figure 2 shows the typical phase-space structure for group I orbits. We have 
chosen surface 0rp  as a Poncare map section.

       Figure 3 and 4 show the typical phase-space structure for group II and group III 
orbits, respectively.

List of figures 
Fig. 1. Lyapunov exponents for group I, group II, and group III orbits with 

3/11.2wa .

Fig. 2. Nonintegrable surface of section plot in the zpz,  plane at 0rp  for group I 

orbits with parameters ,46.1ˆ,3/11.2 cwa and 37.2 .

Fig. 3. Nonintegrable surface of section  plot in the zpz,  plane at 0rp  for group II 

orbits with parameters ,55.3ˆ,3/11.2 cwa and 37.2 .

Fig. 4. Nonintegrable surface of section  plot in the zpz,  plane at 0rp  for group III 

orbits with parameters ,63.6ˆ,3/11.2 cwa and 37.2 .
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