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Abstract

The motion of relativistic test electron in a free electron laser can be altered
significantly by an ideal coaxial wiggler field and uniform axial guide field. We have
investigated group I, Il and Il orbits and finally have found that electron motion
become chaotic at sufficiently high beam density and at sufficiently high amplitude of
wiggler field. The threshold value of the wiggler amplitude for the onset of chaos is
estimated analytically and confirmed by computer simulation. It is shown that the
electron dynamic is nonintegrable. There is evidence for chaos from numerical
calculation of Poincare maps and nonzero Lyapunov exponent using different
approaches of Benettin's method which are described and compared. Moreover, it is
shown that the particle motion become chaotic on a time scale comparable with the
beam transit time through a few wiggler periods.
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Introduction

Hamiltonian chaos has been an active area of research in physics and applied
sciences.The work of Kolomogrov, Arnold, and Moser (KAM) show that the phase
space of integrable classical Hamiltonian systems. Subject to small perturbations,
contains three types of orbits: stable periodic orbits, stable quasi periodic orbits, and
chaotic orbits.

Riyopoulos and Tang have analyzed side band induced chaos in the electron motion
in the field configuration consisting of an ideal helical-wiggler field, the
electromagnetic signal wave field, and the side band wave field®. Chen and Schmidt
have shown that the electromagnetic signal wave can also cause chaotic electron
motion in the combined helical-wiggler and axial guide field configuration®. Then
Billardon has observed evidence of chaotic behavior in the radiation field in a
modulated storage rugfel. Chen and Davidson have found the electron dynamics in the
self-magnetic field produced by the non-neutral electron beam in the field
configuration consisting of a constant amplitude helical-wiggler magnetic field, and
uniform axial magnetic field become chaotic®®. The motion of an electron in a
Iirgg:)arly polarized wiggler with an axial guide field investigated by Michel-Lours et
al™.

In this paper, we analyzed the motion of a relativistic electron in the field
configuration consisting of a coaxial wiggler, and uniform axial magnetic fields. It is
shown that the motion is nonintegrable. Poincare surface of section plots and nonzero
Lyapunov exponents are generated to demonstrate the nontegrability and choaticity of
the motion.

The organization of this paper is as follows. In Sec. 11, theoretical formulation of the
problem is analyzed. In Sec. Ill, the results of numerical computations and some
conclusions are presented.

Theoretical formulation
The motion of one electron in a free electron laser (FEL) with coaxial wiggler B,
and a guide field B, is considered. The self-field produced by the electron beam are

neglected. The motion of the electron takes place in the coaxial wiggler. The total
magnetic field inside a coaxial wiggler will be taken to be of the form

B=B,f+B,32 1)
B, =B,F,(r,z) (2)
B, =B, +B,F,(r,2), (3)

where B, is a uniform static axial guide field, 7, and F, are known functions of
cylindrical coordinates rand z.

F, = F.sin(k,z)+ Fsin(3k,,z), 4)
F, = F,, cos(k,z)+ F,5 cos(3k,,2), (5)
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where
Fn = G;l[sn Il(nkwr)+Tn Kl(nkwr)]v (6)
Fan :GrTl[SnIO(nkwr)_TnKO(nkwr)]v (7)
G, = IO(nkaout )Ko(nkain )_ I O(nkain )KO(nkaout )v (8)
Sn = nism(nﬂlz)[KO(nkain)'i' KO(nkaout )]’ (9)
T
Tn = nisin(nﬂ/Z)[Io(nkWRm)+ IO(nkaout )]’ (10)
T

where n=13 ; R, and R, are the inner and outer radii of the coaxial waveguide,
k, =27/4, Where 2, is the wiggler (spatial ) period, and 1,, 1, , K, , and K, are

modified Bessel functions.
Vector potential associated with B is

A= [:TW F,, cos(nk,,z) + %}6 (11)

w

where F,, has radial dependency for (n=213) first and third harmony. The
corresponding Hamiltonian is

1/2

2
H :c!pf+ri2(p9 +Z B, F .Cos(nk z)] +pf+m2c2} . (12)

n=l, 3

As the Hamiltonian is not an expllcit function of time, H is a constant of motion,
and also H is independent of &, so it follows that p, = Const.

For numerical calculation, dimensionless variables are introduced:
pi=p;/mc , i=k,z , F=k,r , Q.=Q./ck, With Q. =eB,/m , a,=eB,/mck, ,
y=HImc? , r=ck,t .
In the new variables, one obtains

1/2

~ 2
A . . 1. a, rQ,
7=H=[pf+pf+f—2[pg+aw " 3 5 ] +1} (13)

We tried to find a canonical transformation, for finding two other constants, but
having failed in finding all constants of motion. We have plotted the trajectory of an
electron. The motion looks chaotic for some initial conditions. Chaos, in fact
confirmed by performing Poincare section and calculating nonzero Lyapunov
exponents. For this purpose, the following normalized equations of motion derived
from Eq. (13), have been solved numerically
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L_OH 4 oH  oH
o o op, (14)

oM s 0 p, =M

Pr="r PR BTy

The plane (r,p,) with z=0mod27 is chosen to be the Poincare surface of section.

The numerical method for solving differential equations is a fourth order Runge-
Kutta.

The existence of chaotic trajectories is confirmed by calculating nonzero Lyapunov
exponents by two approaches. The first consists in considering two nearby trajectories
with an initial tangential vector of norm d,. The distance d, between those trajectories

is calculated numerically, and as soon as d, /d, is greater than a quantity between 2
and 3, we renormalize d to d,. The Lyapunov exponent corresponding to the Poincare
map is given by

.18 (d,
o=lim-2 'OG(d—j (15)
tn—_>)c>8 n 1

0
do

Numerical results and conclusions
A numerical computation is conduced to investigate the properties of the
equilibrium orbits of electrons inside a coaxial wiggler. Wiggler wavelength 27/,

and lab-frame electron density n, were taken to be 3 cm and 10”cm™, respectively.
The wiggler magnetic field B, were taken to be 3745 G which corresponds to the
relativistic wiggler frequency Q, /ck, =0.442. Electron-beam energy (y, —1)m,c> was
taken to be 700 keV, corresponding to a Lorentz factor y, =237 and the axial
magnetic field B, was varied from 0 to 25.3 kG corresponding to a variation from 0 to
3 in the normalized relativistic cyclotron frequency Q,/ck, associated with B,. The
inner and outer radii of the coaxial wiggler were assumed to be R, =15 cm and
R, =3 cm, respectively[7].

Figure 1 shows the variation of o (the largest Lyapunov exponent) with the
normalized time ¢ for three classes of solutions, group | orbits for which
0<Q,/ck, <v,/c, group Il orbits with v,/c<Q,/ck, <3v,/c, and group Il orbits

with Q,/ck, >3v,/c. The existence of group Il orbits is due to the presence of the

third spatial harmonics of the wiggler field, which also produced the second
magnetoresonance at Q,/ck,, ~ 3v,/c. Growth of group Il orbits is larger than group |
and group Il orbits. As the figure shows the Lyapunov exponent are larger than zero
and all group become chaotic. In this figure two near conditions in space-phase are:

rn=r,=2r,

0,=6,=0,

2,=2,=7r12,
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P =P, =0,

Py=0P,, =03,

Por = (Ho2 - pzzl - przl _1)r2’

psz = (0.0001x HE — p2, — p7, ~1)2,

where the initial distance is d,. After time t,, the perturbation grows and distance
between two trajectories will be d,. We used Eq. (15) for finding the Lyapunov

exponents.
Figure 2 shows the typical phase-space structure for group | orbits. We have
chosen surface p, =0 as a Poncare map section.

Figure 3 and 4 show the typical phase-space structure for group Il and group 11
orbits, respectively.

List of figures
Fig. 1. Lyapunov exponents for group I, group IlI, and group Il orbits with
a, =211r/3.

Fig. 2. Nonintegrable surface of section plot in the (z, p,) plane at p, =0 for group |
orbits with parameters a, =2.117/3, Q_ =1.46, and y =2.37.
Fig. 3. Nonintegrable surface of section plot in the (z, p,) plane at p, =0 for group I
orbits with parameters a, = 2.11z/3, Q, =3.55, and y = 2.37.
Fig. 4. Nonintegrable surface of section plot in the (z, p,) plane at p, =0 for group IlI
orbits with parameters a, = 2.117/3, Q, =6.63, and y =2.37.
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