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Finite size correction on the surface width of random deposition
with surface relaxation model
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Abstract

In this research the Kardar-Parizi- Zhang equation for surface growth has been analyzed in
the regime where the nonlinear coupling constant, 4, is small (Edwards-Wilkinson equation)
and also by using Fourier Transformations the finite size correction on the mean-square width
has been calculated. It has found that the calculated interface width for t—0 behaves as

2+d 6-d

2 ~ 2
W(L,t)~ t# +t|_Td and for t—w behavesas W (L;t) ~ L* _LT'

Keywords: Surface width, Random deposition, Surface relaxation, K ardar-Parizi-Zhang,
Edwards- Wilkinson, Langevin

1 Introduction

Recently the scientists have become more interesting in studying surface and interface
growth. They would like to investigate the dynamics of interface growth by introducing
different mathematical equations and solving them with analytical methods to obtain the
surfaces and interfaces parameters. Some examples of these interfaces are: liquid flow in a
tissue that is stispendedin water ® | snowing on the ground surface ® and surface growth in
thin film technology ©?. The surface width in one-dimensional substrate with length equal to
L is calculated from the following equation ©:

L —
W (Lt) =\/%Z[h(i,t>—h<t)]2 (1)
i=1

Where h(i,t) is the height of one site of the substrate and h (t) is mean height of the surface.
For very short times the surface width behaves like®:
W(Lt) =t” [t<<ty] )
Where g is growth exponent, and ty is cross overtime. Also, for very long time the surface
width equation is®:
Wsa(L)=L" [t>> 1] 3
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In which, « isaroughening exponent and L is length of substrate. The surface width for
times around the crossover timeiis equal to ©:

WLt ~L f(%) (4)

z =E (5

In which, z is a dynamic exponent. In order to hydrodynamical description of surfaces and
interfaces rou?heni ng motion, a continuum Langevin equation proposed by Kardar, Parizi and
Zhang (KPZ)

M:vvzh+§(vh)2+n(x,t) (6)

Where, h isthe height of one site of interface, v isthe surface tension, 4 isthe velocity and
n is the random function with Gaussian distribution which has the following mean value and

correlation:
(n(x,))=0 ™
(n(x,n(x' 1)) =2Ds" (x—x)s(t=t) (8

2 The liner Langevin equation

Considering the nonlinear coupling constant, 2, in equation (6) very smal, @ the
continuum Langevin equation will be:

%:vvzhm(x,t) [EW] 9)

The noise, 7, follows (7) and (8) equations. Edwards and Wilkinson derived this equation
from a lattice model of sedimentation.in the ‘continuum limit for the first time ©. This
equation also describes the deposition dynamics of an equilibrium surface in the capillary
regime by the evaporation method % that is described by Random deposition with surface
relaxation model. While the characterizing exponents, «,4 and z of this equation are well

known by a dynamic scaling method as®:

2-d 2-d
=—, z2=2 = 10
S B== (10)

It is sometimes desirable to determine the amplitude of various quantities in the scaling
regime. These amplitudes are related to each other through the parameters v and D of the
continuum model. Consider‘a growth process initiated under periodic boundary conditions at
t > —o. Because of linear characteristics of equation (9), it can be solved by the Fourier
transformation:

h(k, w) :% 1y

Where n(k,w) is the Fourier transformation of 7(x,t) (see Appendix A). Now to obtain the
correlation function(h(k,w)h(k',w")), first the correlation relation of (n(k,w)n(k',w')) shall be
obtained:

(W w)) = 2D(2a)? 50 (k+k)| dree™ W ()
0

Then, the correlation relation of (h(k,w)h(k',w")) can be found:

1
(vk 2 —iw)(vk'®=i'w)

With reverse Fourier transformation on w:

(h(k,w)h(k',w")) =

2D(27)¢ 5¢ (k+k')j e/ (WW)T 47 (13)
0
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—iw(t-7) 2
——d 14
2w WJ (14)

By applying the Koushi integral theorem and residue calculation on equation (14) and
performing the integral, it can be seen that previous equation will be resulted to:

(h(k,t)h(k",t)) =WD2(27¢)d Sk +k)L-e ) @s)

(h(k,t)h(k",t)) = 2D(27) §d(k+k)JdrU

Let usfirst consider the mean-square width of a surface of liner size L.

W 2(L,t)= <N > [h(x t)——z h(x', t)J > (16)
Itisequal tothe performance of inverse Fourier transformation on k in equation (15):
d°k d% k {h(k,H)h(k',t))e"*e™™ a7

2n)" @2n)°
That N is the total number of substrate sites and the integral will be limited to 2—[[< k and
%> k' in required to the momentum space. By performinginverse Fourier transformation on k

in equation (15):

(h(k, (K", 1)) =W 2(L,t) = jd K D(1 —kazt)j d°k — 2 5%k +k")e™e®™ (18)
(27)*
For performing integral (18) momentum/integration shall be performed over a spherical
shell. For this purpose, j d9% 6%k +k") and Bm+1n+1) must be known. After performing
integral (18):

T
a

d k D —2Vk 2[ ) (19)

2r

Where

Kg = : (20)

2d-1;z5r(92)
Integrating by parts the right hand side of equation (19) and applying change of
variabley = 2vk %t ;

K D —2n2vt K D —87zzvt
w9 DTz, K Dias ks Dfyeag 2 K D22
d-2v a 2-d)@2r)<° v d-2v a 2-d)@2r)<° v

E d
kg D ogf8z%vt) 2 7 1.
— a4 = 2 e7Vdy (21
C(2-d)2nZ 0 v [ L2 ] Ly y (@)
87 vt
L2

In this equation, because the lattice spacing is very small, the upper limit of the integral

will be «. Finally the mean-square interface width will be:

-2 2Vt

2

D

W2(L,t) = A+—|_2 dfd(—) Ole 2 (22)
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Ki D 742
= (= 23
T2V (a) (23
_27r2Vt K d—2 727r2Vt
ole @ =—d2[5J e @ (24)
d-2via
d
2 Mt - 0 d
vt Kqg B (8rAvt) 2 >
fy| = |=——F——|1-¢ L + y2 e Ydy| (25)
“[sz (2-d)(27)** [ L® Iz
8z vt
L2
d o d
k 2 1-— —1
fy(x)=——3——|1-e® X+ (8z%x) 2 | y2 edy|(26)
(2-d)(@2r)*° BﬁLX
vt
e

By comparing equations (4) and (22) the critical exponents of EW equation can be
obtained:

1=2, a= ,
2 4

3 Result and Discussion

Now, it is desirable to understand the shape of EW equation interface width for
t > 0(x — 0) . Therefore, the limit of f,(x) andfollowing that, the EW interface width shall be

obtained for x — 0 .For this purpose, the terms included e will be expanded and the terms
included in the first and more orders, O(x) , will be omitted, also the integral existingin f(x)

will moveto F(%) ,and finaly fu(x) will beasfollows:

d o d

1 ) I —1
fy (X) = - 121+ 0(x) + (872x) 2 j y2 e Vdy
2(2—d)7r2_§l"(d§) 87°x<0
[x<<7]] (28)
48 d
22 2 ¢
fd(x)=TZ)x 2 [x << 1] (29)
43 d
M = 22 g2 (30)
(2-d)
And for interface width:
2-d —27[2V'[

WALt) = A+2129x 2 4+0/e a2 | [x<<I]
\'

2-d

W(Lt)~t 4 =t” [x <<1] (31
It can be seen that equation (31) is exactly the same as equation (2) that has been obtained
from experimental results. Now, it is also desirable to understand the shape of EW equation
interface width fort — «o(x - «). Therefore, the limit of f,(x) and following that, the EW

interface width shall be obtained for x — « .For this purpose, the asymptotic relation for e
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is used and the terms included in the first and more orders will be omitted, also the integral
existing f,(x) will moveto zero andfinaJIy'
1

e > Y ax" +—+ (32)
x?

e 87X ~ 0 [x>>1] (33)
fa ()= ks

chonstantzp [X>>1] (34)
And for the interface width:
—27r2vt
D 2-d 2
W2(L,t) = A+ L“"P+0QO|e @ [x>>1]

2-d
W(L~L2 =17 [x>>1] (35)

It can be seen that equation (35) is exactly the same as equation (3) that has been obtained
from experimental results. Again it is desirable to know behavior of the interface width
function for t——0 (x——0). Therefore, the limit of *f,(x) and following that, the EW
interface width shall be obtained for x——0. For this purpose, the terms including e ™ will
be expanded and the terms including the second and more orders, 0(x?), will be omitted, also

theintegral existingin f,(x) will moveto F(%) with acceptable approximation, and finally:

2—d o
Fy () = L 1-1+872x~0(x2) ¥ (872x) 2 j y2 "o Vdy (36)
X

2(2- d)zszr(ﬂ)
2

4-3d —d D
2@ Mgy 4
fd(X):Wx 2 ++dx O(x?) (37)
(2- d);z2r( ;)
D 2? % ﬂ 4 _2”2\“
W2(L,t)= Ar— L1 B ’;) X 2 4 - x—0(x2)|+0| e @° (39)
Vv - -
(2-d)z 212
2
D 2d
WZ(L,t):A+—L2‘d[Mx 2 +Nx} (39)
Vv
Where
43 —d
2 2 g2 4
M=~ N=— ——*
(2-d) ~d
(2- d);z2r( )
DY; L2924 oo 2+dt%
W(L,t)z(vj M2y 4t 4 +(Vj M 2Ny 4 X (40)
2+d
D~ At
W (L,t) ~ At? (41)

A and B have constant values, which are defined as follows:
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1 4 2d
Az[Rszzv“ , B=(Dj21|v| 2Ny 4
v) 2
It can be seen that in this case, the interface width is not only a function of t but aso a
correction term which is a function of L and added to the interface width equation. Againiitis

desirable to know behavior of the interface width function for t—— w(x—— ). Therefore
the limit of f,(x) and following that, the EW interface width shall be obtained for x—— o .
For this purpose, in the asymptotic relation for e, all of the terms except for the first one

(i.e%) shall be omitted:

e > ax™" +i+
x2
e’ —>1 (42)
X

Then, relations of f,(x) and interface width can be written‘as follows:
d o d

! 1 2055 [ y2 iy
fy(X)= - 1-———+(87%%) jy e Vdy | (43)
2— d 87X 2
22-d)z" 21() 8r°x
1 1 4

fd (X) = d - d X (44)
2— d 4 4— d
22-d)r °T() 2@=d)r ()

fi(x)=H-Ix? (45)
Where H and | have constant values:
H = L : | = L (46)
2-— 4 44—
2(2-d)z 21“(5) 2°2-d)x 2F(E)

and for the interface width:

—27[ Vt
W2(L,t) = A+DL2d[H IxY+0|e @ J

1

= 2
W (L,1) ~ (5) L 2 H{l——x

1
l 2

N

(47)
H

Because the:second term inside the bracket is small, it can be expanded, and finally the
interface width will be found anO”OWS'

St (2

W(L,t)~CL* — D"T (49)

1 6-d

= 2

2 1L
\'

" (48)

l\)||—‘

Where

N
N

1 -1
C:(Ej H 2 , D:(Rj H2|£
v 14 v

It can be seen that in this case, the interface width is not only a function of L but also a
correction term that is function of t and added to the interface width equation.
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4 Conclusion
By exact solution of Edwards- Wilkinson equation, the interface width, for very long and
very short times, has been calculated: w(L,t) ~t# and W, (L) ~ L* respectively. These relations

are exactly the same as those, which had been mentioned before in part | of this article. In

addition, the Edwards- Wilkinson interface width for times a bit more than zero was
2+d
2

L2d '

calculated: w(L,t) ~t* + 1 It can be seen that in thisrelation, the interface width function is

2+d
not only the function of t but also the term tl_% which isafunction of L, and is added to the

relation. Also the Edwards- Wilkinson interface width for times a few less than « was
6-d
calculatedw (L,t) ~ L* —%. It can be seen that in this relation, the interface width function is

6-d

not only the function of L but also the term % which'is a function of t, and added to the

relation.

Appendix A

In this section the detail calculation of the Edwards Wilkinson interface width has been
written. The Fourier transformation and inverse Fourier transformation can be written as
follows:

h(k,w) = | dt[/dxh(x,te " (50)
h(x,t) = j de. ddkh(k, wye' (e (51)
By performing Fourier transformation on EWequation (9):

+00 +o0 +o0 2 400 +o0 400
oh(X,1) it sikk g~ [ 97X 1) ik iwt ~i(kx—wt)
j e dti e dx_j — dx:[o e dt+j j n(x,t)e dtdx (52)

— —0 —00 —00

By part integration of equation (52) it can be found:

T (—iw)h(x, w)e ™dx = T v(ik) 2h(k,t)e™dt + 7(k, w)

—00 —0

h(k, _ nk,w) 53
() vk? —iw 3

wheren(k,w) isthe Fourier transform of 7(x,t). Before calculating the correlation function of

h(k,w) , the correlation function of 7;(k,w) shall be obtained. For this purpose the following

figures of deltafunction and equation (7) and (8) shall be used:
' 1 ix(k+k'
5d(k+k)=wj k) g dy

S(W+w') = @) 22) _[ gltwsw) gt

(i w) = (| e g xet] e, v)e o 0atvde) ()
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(n(k, wyn(k',w)) = j d 9 xdte (-0 j dx dt'e ) (n(x,)n(x',t)) (55)

The bracket shall act over the noise function, therefore the other terms will be outside the
bracket.

(n(k,w)n(k',w'»:zoj d9xe KO 54 (x —x)d9x’ j dte" WSt —t')  (56)

(n(k,wyp(k',w))=2D(27) 5° (k +k')(27)S(W+W') (57)
(n(k,wyn(k', w))=2D(27)* 6 (k + k')T dze'(Wrw)r (58)
0

Most of the quantities below can be expressed in terms of the amplitude of modes h(k,t) at
time t,therefore this amplitude can be obtained after performing the w integral. By performing
the inverse Fourier integral over w :

1

ek wih(k'w)) = e

2D(27)% 69 (k + k')jdzei(W“V')f (59)
0

<j dwe—‘Wth(k,w)j dw'e‘i‘”"h(k',w')> =2D(2)%5% (k + k')

o iwt o vt °
j > dW'J' . dwj el (W7 g (60)
(VK" —iw") (Vk* —iw) 5

e
d
(vk'2—iw") WI (vk? = iw)

—iWt-7) o-iw(t-r)

dw (61

(h(k,Hh(k',1)) = 2D(27)* 59 (k + k')T de|
0

D p 4 N - W(t—7) 2
{h(k,H)h(k',1)) = 2D(27)* 5 (k+k)£ d{j W dwj (62)

In equation (62) it shall be known that the (t-z) value is less or more than zero. For this

© t ©
purpose, [dr isbrokeninto twoparts, [dz+ [ dr:
0 0 t

o W(t=r)

t 2 » “iw(t-r) 2
' . €
(h(k, (K ,t)>=2D(2n)"5“(k+k)hdr[j i dw] - ! d{j i de ](63)

So, it can be clearly found that the value of (t-7) in the second integral is more than zero

and in the fourth integral is less than zero, by applying the Koushi integral theorem that is
expressed as follows:

§ fwdw=27> a (64)
Where a_, isresidue, and is calcul ated:
1 d m-1 n
a;= (! W[(W_WO) FOW)]w-wg (65)
In the above equation w, is unique point and equal to w, = —ivk? therefore:
a, =ie k) (66)

Now tow contour shall be assumed for these two integrals:

—iw(t-r)

€
[ dw——mr
. f W K2 —iw)
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eiw(t—z-)
I, =| dw———— 67
=] W KZ—iw) ()
It can be understand that the amount of 1, integral is zero, and by the use of Koushi integra

theorem, I, can be found:
o W(t-7) 5
I, = dw = 27" (77) 68
1= (vk?2 — iw) (68)

Whit the use of equations (63) and (68):
: D d od . —2k?t
(h(k,t)h(k ,t)>:vk—2(27z) 5%k +k')(1-e ) (69)

Like equation (16), the mean-square width of surfaceis:

2
W 2(L,t) = <N2{h(xt)——z h(x' t)}> (70)
dk dk |kx|kX
W 2 (L,t h(k, t)h(k',t 71)
()j(z)(2)<()()> (7

To obtain equation (71) the inverse Fourier transformation in d dimensions on of k is
required, therefore:

(h(x,Hh(x',)) =W 2(L,t) = j d°k D(1—e‘2Vk2‘)j %ﬁd (k +k"e™e™™*  (72)
T

Integral (72)shall be performed in spherica coordinates system, for this purpose 59 (k +k')
and d’k in spherical coordinate system shall be known:

d—l
j ik =2 j dkkd-lj sn® 2 @o (73)
(7) 0
d S(k+ k')a‘(e)r(d?"l)
59 (kak') 2 —— (74)

27 2 (—k)%tsin®2¢
In addition the B function isrequired:

2
B(m+Ln+1) = 2j cos?™ 9sin?t a9 (75)

mint  T(n+)I'(m+1)
(M+n+l) T(h+m+2)

For calculating the second integral in right hand of equation (73), the equation (76) shall be
used:

B(m+Ln+1) = (76)

1 d-3

m= _E , n= T (77)
With using equations (77) and (76):
1
- ﬂEF(E)
[ sind‘26d¢9=—dz (78)
0 F(E)

Now the mean-square width of the surface can be expressed:
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10
W2 (L) = 1d & 2(1-e-2vk2‘)j 8¢ (k+k)d ke O (79)
d k34 v
2d-1;r2r(5)

Now it can be shown that the amount of integral j 5% (k+k)d%k'e™ ) js equal to 1 for this
intention the equations (73),(74) and (78) shall be interest:

 skeks@rhes
[ 6% (rkyd ke - —— 2 dk'kd
27 2 (—k)%gnd2 ar(dT‘l)

a1
2

J Sind—z m&ix(k-%—k') -1 (80)
0
Therefore:
2 gk D 2
W2(L,t) =k — (1-e~2%t 81
(L.1) dzj” iy ¢ ) (81)
i
Where:
1
kKg =—73— (82)

For comparison with a lattice model, a is identified with a lattice spacing. This
identification, as well as replacing a discrete set of modes by a continuum, is not exact. In this
sense the numerical factors of terms involving a and L depend on the substrate lattice
structure.performing the integration by part (81) can be written:

V3 T z
d-2 |5 d-2 — a d-2
W2(Lt) = kg2 Ty DI (aua + K~ ke >k | (83)
v d-212 vid-2 2_7r o d-2
L L ©

Theintegral j kd-%e=2%’ could be explained by part integration:

d-2 d-2
.[ kd—3e—2vk21dt — l; 5 e—Zszt +J. E 24l/k Zte—2vk2tdk (84)

2
d_p _27°vt
W2(Lty——Ks _Dmyaz, ki Dy2a_ ke D 5) 2e a®
T d-2) v a (2-d)(27)%% v d-2via
871'2Vt z
_ a d-1
ks Dieg, 2 +4detj K ety (gm)
(2-d)@2r)> " v 5, -2

L

By applying the following change of variable in the remaining integral in equation (85):
1
y = 2kt = dk = (8vty) 2dy

2 872vt
= =

k B
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V4 27wt
k== y= > ~ 00
a a
1
2
- (ﬁj (86)
By placing equations (86) the remaining integral of equation (85) it can be expressed:
2 .y
4(|j(d_[;t J‘ kd—le—2vk21dk _ 2|Zd Dt J' y 2 1e_ydy (87)
Z (2vt) 2 (d -2) BHTEW
By multiplying and then dividing the term vL.>% (27)%¢ to equation (87):
€q
4k 4 Dt % 2 872 17% k o d
d_J‘ 4123 gy = 7r2vt d : D 24 J‘ y2 eVdy (89)
d-2 2z L (d - 2)(2”) v 8722vt
m 2
and finally:
k, D(x)"2 k D k a2 2
W2(L,t) =_d_(£j g% P2 __dE[EJ e a2
d-2vla (2-d)@r)*? v d-2vla
—8r vt 1_9 s
_ Kg Dioag 2 _ Kg b 2 8rvt | 2 J ydE_lefydy (89)
(2-d)(2r)** v (2-d)(27) > v L? ey

2
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