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Abstract 
Molecular similarity and quantitative structure property relationship (QSPR) analyses 

have been used to develop compact, robust, and definitive models for essential oils 

compounds. The QSPR models have been sought to provide an interpretation and 

characterization of retention index of essential oils. A training set of 66 structurally diverse 

compounds were selected to be representative of a parent set of 86 compounds and range in 

measured retention index. In order to evaluate the models, we chose another set with 20 

molecules as a prediction set.  Descriptors derived from semiempirical (AM1) molecular 

orbital calculations have been used to construct a QSPR for the retention index, RI, of a series 

of essential oils. Root mean square error of prediction (RMSEP), average relative error (REP 

%) and R
2
 of prediction set for were about 0.011, 0.372 and 0.976, respectively.  
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Introduction  

The life force of a plant is called the essential oil, or 'essence.'
[1]

 Essential Oils are 

highly concentrated substances the subtle, aromatic and volatile liquids extracted from the 

flowers, seeds, leaves, stems, bark and roots of herbs, bushes, shrubs and trees through 

distillation.
[2]

 They are obtained from the plant in various ways, depending upon the nature of 

the part in which they occur-by compression, by distillation with steam, by dissolving the oils 

out (extraction) or absorbing them, and by pressure and maceration.  There are basically 3 

types of essential oils. Steam distilled oils and solvent extracted absolutes.
[3]

 These aromatic 

plants and oils have been used for thousands of years dating back to ancient civilizations that 

used them to heal, enhance, soothe and excite the body and spirit
[1]

. Essential oils are natural 

mixtures of hydrocarbons (terpenes), oxygen- (alcohols, aldehydes, ketones, carboxylic acids, 

esthers, lactones) and sulfur-containing (sulfides, disulfides, trisulfides) organic substances of 

plant and animal origin.
 [4] 

 

 

 

*
 Correspondence Author: Jahan.ghasemi@gmail.com 

www.SID.ir



Arc
hi

ve
 o

f S
ID

88                                                    QSRR modeling for retention time …                     Ghasemi and co-workers 

  

The use of essential oils is largely widespread in foods, flavours, deodorants,   

pharmaceuticals, drinks, cosmetics and medicine and embalming antiseptics especially with 

aromatherapy becoming increasingly popular.
[5]

 They include whole industries (paint, 

petroleum, mining and manufacturing), food (processing and flavouring), drink  

(alcoholic and nonalcoholic flavourings), pharmaceutical products, perfumes and toiletries, 

hygiene products, and pesticides. The end uses of essential oils are determined by their 

chemical, physical, and sensory properties, which differ greatly from oil to oil.
 [6]

 

Jean Claude Lapraz and Paul Belaiche, found that essential oils have antibacterial, 

antifungal, antiviral, and antiseptic properties, and that the oils are powerful at oxygenating 

and carrying nutrients into cells.
 [3]

 

The quality and price of some oils are based on the percentage content of a single 

chemical component, so separation and measurement of individual components is very 

important. This is usually done using some form of chromatography; the most powerful is gas 

chromatography using capillary columns. Rigorous identification of components commonly 

employs a form of spectroscopy (mass, UV, IR, NMR) to indicate the molecular structure.
 [6]

 

The classical methods of chromatographic identification of compounds were based on 

calculation of retention indices by using different stationary phases. The aim of the work was 

to differentiate essential oils extracted from different plant species by identification their 

retention indexes. The method of identification was based on the calculation of new retention 

indices of essential oils compounds fractionated on a polar and non polar chromatographic 

column with temperature programming system. Several methods using relative retention 

indices were developed in order to reproduce the identification of compounds in gas 

chromatography. Generally, the retention values were expressed in relation to standards not 

present in material characteristics.
[5]

 

A further benefit is that linear retention indices and retention time locked mass 

spectrometry libraries can be used as additional filters. This approach offers an accessible and 

powerful tool for characterizing complex mixtures of essential oils in a cost-efficient 

manner.
[7]

 

C and GC–MS are the main methods for identification of these volatile plant oils. The 

compounds are identified by comparison of retention indices with those reported in the 

literature and by comparison of their mass spectra with libraries or with the published mass 

spectra data. Chromatographic retention for capillary column gas chromatography is the 

calculated quantity, which represents the interaction between the stationary phase and gas-

phase solute molecule. This interaction can be related to the electronic, geometric and 

topological properties of the molecule. Mathematical modeling of these interactions helps 

chemists to find a model that can be used to obtain a deep understanding about the mechanism 

of interaction and to predict the retention indices of new or even unsynthesized compounds. 

QSPRs, mathematical equations relating chemical properties such as acidity, 

electrochemistry, reactivity and chromatographic behavior to a wide variety of structural, 

topological and electronic features of the molecules, have been widely used in the field of 

chromatographic sciences. Quantitative structure–retention relationships (QSRRs) represent 

statistical models which quantify the relation between the structure of the molecule and 

chromatographic retention indices of the compound, allowing the prediction of retention 

indices of novel compounds.
[8]

 In this paper we report a QSPR model to predict the retention 

indices of some essential oils using molecular structural descriptors. 
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Materials and Experimental Detailes 

Data set 

  The data sets of the retention indices were taken from the values reported in some 

articles.
[9-11]

 Name and the retention indexes (RI) of the compounds that used in this study are 

listed in Table 1. 

No. Compound LOG RI No. Compound LOG RI 

1 Tricyclene 2.967 44 Methyl geranate 3.116 

2 a-Pinene 2.969 45 Nonylbenzene 3.118 

3 Camphene 2.972 46 Hexyl tiglate 3.124 

4 6-Methyl-5-hepten-2-one 2.981 47 Neryl 3.127 

5 Sabinene 2.983 48 (Z)-b-Damascenone 3.131 

6 b-Pinene 2.984 49 (Z)-3-Hexenyl 3.132 

7 3-Octanol 2.99 50 Eugenol 3.132 

8 b-Myrcene 2.991 51 Geranyl 3.134 

9 Myrcene 2.996 52 b-Bourbonene 3.137 

10 a-Terpinene 3.002 53 Dodecyl 3.137 

11 Limonene 3.008 54 4-Nonylphenol 3.138 

12 β-Phellandrene 3.009 55 2-nonyl-phenol 3.139 

13 p-Cymene 3.011 56 Alpha-Copaene 3.139 

14 (Z)- b-Ocimene 3.013 57 b-Elemene 3.139 

15 1,8-Cineole 3.014 58 cis-Jasmone 3.144 

16 (E)- b-Ocimene 3.016 59 n-Tetradecane 3.146 

17 γ-Terpinene 3.019 60 (-)-Caryophyllene 3.146 

18 trans-Sabinene 3.02 61 Myristic 3.155 

19 Terpinolene 3.031 62 a-Humulene 3.156 

20 cis-Sabinene 3.032 63 Benzyl 3.156 

21 Linalool 3.033 64 Alloaromadendrene 3.158 

22 1-Octen-3-yl 3.039 65 Hexahydrofarnesyl 3.158 

23 trans-p-2-menthen-1-ol 3.041 66 Dibutylphthalate 3.159 

24 n-Undecane 3.041 67 Hexadecanoic 3.162 

25 neo-Alloocimene 3.047 68 Di-iso-octyl 3.163 

26 pinocarvone 3.052 69 Seychellene 3.164 

27 Terpinen-4-ol 3.062 70 Phytol 3.165 

28 Myrtenal 3.064 71 acoradiene 3.166 

29 a-Terpineol 3.066 72 Germacrene D 3.166 

30 Borneol 3.066 73 Bicyclogermacrene 3.168 

31 Lavandulol 3.067 74 Germacrene A 3.171 

32 Verbenone 3.068 75 Neryl isobutanoate 3.173 

33 p-Cymen-8-ol 3.07 76 (+)-zigma-Cadinene 3.176 

34 Cumine 3.08 77 alpha-Bisabolene 3.177 

35 Neral 3.085 78 cis-Nerolidol 3.186 

36 Geraniol 3.091 79 Spathulenol 3.189 

37 Thymol 3.092 80 Geranyl n-butyrate 3.194 

38 Geranial 3.094 81 trans-Nerolidol 3.194 

39 Bornyl 3.101 82 10-epi- g-Eudesmol 3.204 

40 Piperitenone 3.102 83 cis-Methyl 3.217 

41 Perilla 3.103 84 Heptadecane 3.23 

42 (+)-p-Menth-1-en-9-ol 3.104 85 (E,E)-Farnesol 3.237 

43 Methyl 3.11 86 Eicosane 3.301 

Table 1. Essential oils and their retention index value 
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Analytical gas chromatography was carried out using a Thermoquest 2000 GC system 

with a DB-1 capillary column (30 m m, 0.25 mm; 0.25 mm film thickness). The carrier gas 

(Mobile Phases), ionization energy performed, injector temperature, flow rate and temperature 

programming for three capillary columns are reported in Table 2.  

 

  A B C 

1 Mobile Phases Helium Helium Helium 

2 Flow rate 1.5 mL/min 1 mL/min 1 mL/min 

3 Column DB-1 capillary column CP-Sil 8 CB 

SGE-BPX5MS 

fused silica 

4 

Temperature 

programming 

50-260°C with a 2.5°C/min 

rate  

50-150°Cat 

3 °C/min rate 

5 Detector FID MS 

DSQ/A1300,(E.I 

Quadrapole) 

6 

Data processing 

system Thermoquest 2000 GC 

HP5971mass 

spectrometer 

Thermofinnigan 

Trace GC/Trace 

7 

Ionizationenergy 

performed at 70 eV at 70 eV at 70 eV 

8 

Injector 

temperature  250 ºC 220 °C 

  
A
Ref. 9, 

B
Ref. 10, 

C
Ref. 11    

 

Table 2. Details of used three capillary column chromatography 

 

 Computer Hardware and Software 

All calculations were done by the following software’s:  

ChemDraw Ultra version 9.0 (ChemOffice 2005, CambridgeSoft Corporation) software was 

used for drawing the molecular structures.
[12]

 Conversion of 2D structures into 3D structures 

was performed with chem3D of ChemOffice Ultra version 9.0 and optimizations of molecular 

structures were done by the same software with MM2 and MOPAC by theory method AM1 

with minimum RMS Gradient 0.100. ChemOffice linked to Excel for generating structural 

descriptors. SPSS ver. 11.5 software was used for variable selection and other calculations 

were done in the MATLAB (version 7.0, Mathworks, Inc.) environment. 

Calculation of Descriptors 

Due to the diversity of the molecules studied in this work, 44 different descriptors are 

chosen and listed in Table 3. These parameters encode different aspects of the molecular 

structure, and consist of twenty three steric (1-23), fifteen thermodynamic (24-38), and six 

electronic (39-44) descriptors. To avoid from the standard error in geometry optimization of 

each molecule during optimizing process we optimize them with MOPAC and MM2 

techniques several times from different starting point geometry, until root mean square (RMS) 

gradient values becomes smaller than 0.001 kcal mol
−1

. Then the conformation with the 

lowest energy of each molecule was considered for calculation of the electronic properties. 
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No. Descriptors Notation  Group 

1 Balaban Index Bindx Steric 

2 Cluster Count ClsC Steric 

3 Connolly Accessible Area SAS Steric 

4 Connolly Molecular Area MS Steric 

5 

Connolly Solvent-Excluded 

Volume SEV Steric 

6 Diameter Diam Steric 

7 Exact Mass  Mass Steric 

8 Molecular Topological Index  Tindx Steric 

9 Molecular Weight MW Steric 

10 Number Of Rotatable Bonds NRBo Steric 

11 Ovality Ovality Steric 

12 Polar Surface Area PSAr Steric 

13 Principal Moment of Inertia – X PMIX Steric 

14 Principal Moment of Inertia – Y PMIY Steric 

15 Principal Moment of Inertia –Z PMIZ Steric 

16 Radius Rad Steric 

17 Shape Attribute ShpA Steric 

18 Shape Coefficient ShpC Steric 

19 Sum Of Degrees Sdeg Steric 

20 Sum Of Valence Degrees  SVDe Steric 

21 Total Connectivity Tcon Steric 

22 Total Valence Connectivity TVCon Steric 

23 Wiener Index Windx Steric 

24 Boiling Point BP Thermodynamic 

25 Critical Pressure Pc Thermodynamic 

26 Critical Temperature Tc Thermodynamic 

27 Critical Volume Vc Thermodynamic 

28 Heat of Formation  HF Thermodynamic 

29 Henry's Law Constant H Thermodynamic 

30 Ideal Gas Thermal Capacity Cp Thermodynamic 

31 LogP LogP Thermodynamic 

32 Melting Point  MP Thermodynamic 

33 Molar Refractivity MR Thermodynamic 

34 Molar Refractivity MR1 Thermodynamic 

35 Partition Coefficient (Octanol/Water) CLogP Thermodynamic 

36 Standard Gibbs Free Energy G Thermodynamic 

37 Vapor Pressure VP Thermodynamic 

38 Water Solubility  Sol Thermodynamic 

39 DipoleLength DPLL Electronic 

40 ElectronicEnergy  ElcE Electronic 

41 HOMO Energy  Homo Electronic 

42 LUMO Energy  Lumo Electronic 

43 Repulsion Energy NRE Electronic 

44 Total Energy TotE Electronic 

Table 3 . Descriptors categories 
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 Selection of Descriptors 
All descriptors with zero and/or constant values for all the molecules in the data set 

were eliminated. The correlation matrix was calculated for all of descriptors, one of the two 

descriptors which has the pair wise correlation above 0.94 (R
2
 >0.94) and it has a large 

correlation with the other descriptors was eliminated. By the correlation matrix 15 descriptors 

was eliminated from primary ones. The stepwise regression method was used as the variable 

selection method to select the suitable descriptors among 29 theoretical descriptors generated 

by Chemoffice software. The number of variables retained in the model is based on the levels 

of significance assumed for inclusion and exclusion of variables from the model.
[13, 14]

 The 

descriptors that were remained including boiling point (BP) standard Gibbs free energy (G) 

and lowest unoccupied molecular orbital (LUMO). The numerical values of these descriptors 

are reported in Table 4.  

 

No. Compands BP Lumo G 

1 a-Pinene 430.425 1.265 149.85 

2 b-Pinene 423.978 1.325 182.6 

3 Myrcene 429.399 0.492 272.12 

4 p-Cymene 451.514 0.527 133.66 

5 gama-Terpinene 442.539 1.239 103.7 

6 Linalool 477.226 1.186 58.85 

7 Terpinen-4-ol 485.022 1.369 -66.65 

8 a-Terpineol 483.155 0.804 -20.5 

9 p-Cymen-8-ol 501.948 0.502 2.12 

10 Nonanoic 535.53 1.296 -319.01 

11 Perilla 514.367 1.232 20.57 

12 Decanoic 551.922 1.295 -310.59 

13 2-nonyl-phenol 515.255 1.275 242.55 

14 (-)-Caryophyllene 536.655 1.487 161.93 

15 Alloaromadendrene 517.222 1.418 257.93 

16 Acoradiene 526.696 1.29 234.94 

17 Germacrene A 543.026 1.04 171.42 

18 alpha-Bisabolene 545.014 1.064 236.49 

19 trans-Nerolidol 565.089 1.166 172.62 

20 Heptadecane 565.834 3.29 92.26 

Table 4. The numerical values of descriptors for the prediction set. 

 

Ordinary Least Squares Regression modeling  
The calculated descriptors were collected in a data matrix X with a dimension of 

(m×n), where m and n are the number of molecules and the number of descriptors, 

respectively. The linear relationship between RI and calculated descriptors was obtained 

through multiple linear regression analysis using more molecules as the calibration samples. 

The stepwise selection and elimination of variable procedure of SPSS software was employed 

to select the most relevant set of descriptors. It should be noted that through a typical stepwise 

regression run, SPSS produces many models ranking them based on calibration correlation 

coefficient where some of them may be over-fitted.
[8]

 In order to test the final model 

performances, 20 molecules out of 86 molecules were selected as external test set molecules. 

These samples were selected based on the both property and descriptors spaces. To do so, the 
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data matrix joining descriptors and retention index was subjected to principal component 

analysis (PCA). The first three principal components, explained 76.3% of variances. 

Distribution of this value between these three PC are in this manner; PC1=53.69, PC2=12.87 

and PC3=9.72. 

 

 Results and discussion 
Retention in GC is the result of competitive solubility of the solute between the mobile 

and the stationary phases. The molecular structure and chemical properties of the solute 

determine the type and the extent of the interaction of the solute with these phases. The 

differences between these properties govern the retention behavior through the column
[8]

. Aim 

of the work is the development of a mathematical model that uses molecular descriptors, xj 

with j = 1 . . . p, as input variables (features) and is capable of producing an output, I, that is a 

good estimation of the corresponding experimental retention index, I. A linear model is given 

by: 

I = b0 + b1x1 + b2x2 +· · ·+bpxp                                    (1) 

with bj being the regression coefficient for descriptor j, and b0 the intercept. The regression 

methods compared are, multiple linear regression, (MLR: ordinary least squares regression), 

and partial least squares regression. (PLS)
[15]

 PLS decreases the number of independent 

variables in a special way. This technique constructs a set of linear combinations of the input 

variables for regression and has been developed primarily for prediction.
 [16]

 

    Van den Dool and Kratz proposed a generalization of the retention index system including 

linear temperature-programmed gas chromatography as follows:  

 

 

 

where Ix is the temperature-programmed retention index, tn, tn+1 and tx the retention time (in 

minute) of the two n-alkanes containing n and n + 1 carbons and of the compound of interest, 

respectively. This relation show direct relationship between retention index and retention time 

and number of carbons too (n) .
 [5]

 

 

Evaluation of regression models 
Model development and validation is a critical problem in QSPR studies.  Because of 

the great effort required to measure the RI of a large  number of compounds, a variety of 
methods have been proposed to estimate or predict the RI, either directly from physical 

properties or from quantitative structure–property relationship (QSPR) models.  
Calibration model is built by using known property data, which in some instances 

need to select the most relevant set of descriptors from the pool of calculated descriptors. The 

calibration model is then evaluated for prediction and generalization. A successful calibration 

model must have an ability to predict not only the property of calibration molecules (internal 

validation) but also of the external sources (external validation). To do so, the data are 

generally splitted into two sets including calibration set (or training) and prediction set (or 

validation).    

Sometimes an extra data set, named external test set, is also used. The calibration and 

prediction sets are used in the model development steps and the overall prediction ability of 

the model is evaluated by application to predict the property of the external test set. Cross-

validation is another tool to evaluate the model performance and generalization. Therefore, 

QSPR models are derived from the initial partitioning of compounds, and consequently data 

splitting influences the performances of the developed model.
[8]

 

Root mean square of errors (RMSEs), that calculated for the prediction sets, are 

reported to indicate the predicted accuracy of models, which is calculated by the root square 
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of the sum of squared errors in prediction divided by their total number. The orthogonality of 

the descriptors in the model was established through variance inflation factor (VIF)
[17, 18]

. The 

VIF is defined as 1 / (1 - ri
2
) where ri is the multiple correlation coefficient for the ith variable 

regressed on the p -1 others, p is being the number of variables contributed to the model. VIF 

value larger than 5 indicates that the information of the descriptors may be hidden by the 

correlation of the other descriptors. 
[19]

 

The predictive power of the regression model developed on the selected training set is 

estimated on the predicted values of prediction set chemicals, by the internal Q
2
 that is 

defined: 

 

 

 

         where 
i

y and
i

ŷ  are the measured and predicted (over the prediction set) values of the 

dependent variable, respectively. 
trŷ  is the averaged value of the dependent variable for the 

training set; the summations cover all the compounds in the prediction set
[20]

. 

To Comparison between calculated log RI values for external prediction set with 

experimental data we calculate their residuals and REP in order to signification stability of 

models (MLR, PLS) that are shown in  

  

    MLR 

Model     

   PLS 

Model 

No. Exp.        

  

(log RI) 

     Pred.  

(log RI) 

Residual REP 

(%) 

     Pred. 

(log RI) 

Residual REP 

(%) 

1 2.969 3.014 0.045 1.516 2.992 0.023 0.789 

2 2.984 3.01 0.025 0.871 2.988 0.004 0.132 

3 2.996 3.02 0.024 0.801 2.997 0.001 0.026 

4 3.011 3.033 0.022 0.731 3.012 0 0.013 

5 3.019 3.024 0.005 0.166 3.004 -0.015 -0.485 

6 3.033 3.061 0.028 0.923 3.051 0.017 0.568 

7 3.062 3.059 -0.003 -0.098 3.047 -0.015 -0.488 

8 3.066 3.058 -0.008 -0.261 3.042 -0.024 -0.778 

9 3.07 3.081 0.011 0.358 3.07 0 0 

10 3.087 3.095 0.008 0.259 3.088 0.001 0.025 

11 3.103 3.103 0 0 3.104 0.001 0.023 

12 3.104 3.116 0.011 0.387 3.115 0.01 0.324 

13 3.139 3.126 -0.013 -0.414 3.138 -0.001 -0.022 

14 3.146 3.145 -0.001 -0.032 3.163 0.017 0.525 

15 3.158 3.131 -0.028 -0.855 3.145 -0.013 -0.411 

16 3.166 3.139 -0.026 -0.853 3.155 -0.011 -0.339 

17 3.171 3.151 -0.02 -0.631 3.167 -0.004 -0.117 

2
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PLS

 (b)

y = 0.9762x + 0.0738

R2 = 0.9762
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p
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d
)

 

Table 5continued…   

18 3.177 3.16 -0.017 -0.535 3.18 0.003 0.089 

19 3.194 3.179 -0.016 -0.47 3.204 0.009 0.291 

20 3.23 3.185 -0.045 -1.393 3.225 -0.004 -0.136 

Table 5. Experimental and calculated log RI values for external prediction set. 

 

Retention index in GC is the result of competitive solubility of the solute between the 

mobile and the stationary phases. The quality of retention index is depending on the molecular 

structure and chemical properties of the solute and the differences between these properties 

govern the retention behavior through the column. Molecular descriptors define the molecular 

structure and physicochemical properties of molecules by a single number. A wide variety of 

descriptors have been reported for using in QSAR/QSPR analyses. The electronic descriptors 

such as EHOMO, ELUMO and dipole moments have been derived from AM1 calculations. 

This type of descriptors will help to identify the specific interactions between polar stationary 

phase and different fragments of the molecules. More than 44 descriptors were calculated for 

each molecule. After preprocessing of the data and elimination of constant or collinear 

variables, 29 descriptors were remained and used for future analyses. The co-linearity 

threshold in QSAR/QSPR studies is usually considered 0.9, i.e. descriptors with R
2
 > 0.94 are 

selected as collinear. The model with the highest Q
2
 was selected as optimum. The prediction 

ability of the models was measured by relative error of prediction (REP) using Eq. (4).
[8]

 

                      

  

 

 

MLR Analysis   
MLR method provides equation linking the structural features to the property of the 

compounds for predicting the property of interest is in the form of the following equation:  

  

 

 

where Pj is the predicted value of the property for a given compound j, P0 is the intercept 

coefficient, ci are the descriptor coefficients, Xij are the descriptor values and n is the number 

of descriptors. P0 and Pj are determined by using the least-squares method the residual error 

terms (ei) are the differences between the predicted and observed logRI. 

In Figures 1a and 1b, we draw predicted log RI versus experimental log RI obtained 

by the MLR and PLS modeling. These plots show clearly that distribution of data is normal 

without systematic error because they distribute from the straight trend quite randomly. 

Figures 2a and 2b draw the residuals as a function of the experimental data (log RI). 

 

 

 

 

 

 

 

 

. 

 

i

n

i

ijioj eXcPP ++= ∑
= 1

(5) 

   (4) ]
)(

)ˆ(
[100(%)

1

2

1

2

∑

∑ −
×=

=

=

N

j j

N

j jj

y

yy
REP

www.SID.ir



Arc
hi

ve
 o

f S
ID

96                                                    QSRR modeling for retention time …                     Ghasemi and co-workers 

  

MLR

 (a)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

2.95 3 3.05 3.1 3.15 3.2 3.25

log RI(exp)

R
e
s
id

u
a
ls

PLS

 (b)

-0.04

-0.02

0

0.02

0.04

2.95 3 3.05 3.1 3.15 3.2 3.25

log RI(exp)

R
e

s
id

u
a

ls

Fig.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 

 

The agreement observed between the predicted experimental values in Fig. 1a and b 

and the random distribution of residuals about zero mean in Figures 2a and 2b confirms the 

good predictive ability of MLR and PLS modeling. Figures 3a and 3b show the standardized 

regression coefficient reveals the significance of an individual descriptor presented in the 

regression model. This plot shows the strength of selected descriptors found in a model. The 

greater the absolute value of a coefficient, the greater the weight of the variable in the model. 
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PLS
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Fig. 3. 

 

Correlation between these variables and response as correlation matrix of measured 

data are given in Table 6. It is found that BP has a high correlation to the response with the 

correlation coefficient equal to 0.88. Applying MLR to the data, gave a model with R
2
= 0.973 

REP%=0.15661 SEP=0.02223 and Q
2

int=0.915. The corresponding figures for PLS were 

R
2
=0.976 REP%= 0.0832 SEP= 0.0118 and Q

2
int=0.976. The model parameter value, 

standardized coefficient and mean effect of MLR model are presented in Table 7. The 

mathematical model that generated by multiple linear regression (MLR) is : 

  

  LOG RI BP Lumo G 

LOG RI 1    

BP 0.882 1   

Lumo 0.295 0.117 1  

G 0.014 -0.347 0.007 1 

Table 6. Correlation matrix for the dependence of log 

 

     . 

 Model parameters Standardized 

coefficients 

VIF 

Source Value Standard 

error 

Value value 

Intercept 2.4687 0.0409   

BP 0.00121 7.70E-05 0.9957 1.3095 

LUMO 0.0064 0.00045 0.0803 1.0531 

G 9.89E-05 2.78E-05 0.2223 1.2934 

Table 7. Model parameters value and standardized coefficients and mean effect for MLR 

model 

 

Log (RI) = 2.4686 + 0.00121 BP + 0.0063 LUMO + 9.894e-05 G                            (6) 

The agreement between experimental and predicted values, high correlation 

coefficient, low RMSEP in both model (PLS, MLR), and random distribution of residuals 

about zero confirms the good predictive ability of MLR and PLS modeling. All of these 

statistical parameters and their values are present in Table 8. 
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Parameter MLR PLS 

RMSEP 0.022 0.012 

SEP 0.022 0.012 

REP% 0.157 0.083 

R
2
pred 0.973 0.976 

Q int
 ٢
 0.916 0.976 

N LV
١
 _ 2 

N DS
2
 3 3 

1
Number of latent variables.  

2
Number of descriptors.   

Table 8. Statistical parameters of MLR and PLS models 

 

In Figure 4 we plot PREES (The optimum number of factors was concluded as the 

first local minima) versus PC number. This figure shows number of principle component 

through the sharply deviation seen in curve.  
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Fig. 4. PRESS vs. number of factors for the PLS model. 

 

Interpretation of Descriptors  

Retention is a phenomenon that is primarily dependent on the interactions between the 

solute and the stationary phase molecules. The forces associated with these interactions can be 

related to the geometric and topological structures and electronic environments of the 

molecule. Quantitative structure–property relationships (QSPRs) have been demonstrated to 

be a powerful tool for the investigation of the chromatographic parameters. QSPRs have been 

used to obtain simple models to explain and predict the chromatographic behavior of various 

classes of compounds.
 [13]

 The lowest unoccupied molecular orbital energy (LUMO) is 

electronic descriptor. In particular, electronic parameters are considered important in the 

establishment of QSAR models and are helpful to quantify different types of intermolecular 

and intramolecular interactions, as these interactions are usually responsible for properties of 

chemical and biological systems. The transfer of a pair of electrons from the HOMO to the 

LUMO is, by definition, a reaction between a Lewis acid and a Lewis base. Thus, the 

parameter LUMO is a measure of the ability of a molecule to interact with the π and n-

electron pairs of the other molecules. The reduction in energy in molecular orbital is the 

driving force for chemical bond formation
[21]

 According to Frontier Orbital Theory, the 

shapes and symmetries of the highest-occupied and lowest unoccupied molecular orbitals 
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(HOMO and LUMO) are crucial in determining the chemical reactivity of a species and the 

stereochemical and regiochemical outcome of a chemical reaction. The energies of the 

highest-occupied and the lowest-unoccupied molecular orbitals (HOMO/LUMO energies) are 

frequently used quantum chemical descriptors. As a consequence, the derived QSAR models 

will include information regarding the nature of the intermolecular forces involved in 

determining the biological activity of the compounds in question. HOMO energy in particular 

has been identified as being of significant value to QSAR studies.
[22]

 Molecules with low 

LUMO energy values are more able to accept electrons than molecules with high LUMO 

energy values. The LUMO energy value is increased with the presence of electron donating 

groups (EDGs).this remark also agrees with Kemnitzer et al. who recommended the 

introduction of EDGs such as NMe2, NH2, NHEt, and OMe.
 [23]

 The boiling point (BP) of a 

compound is predetermined by the intermolecular interactions in the liquid and by the 

difference in the molecular internal partition function in the gas phase and in the liquid at the 

boiling temperature. Therefore, it should be directly related to the chemical structure of the 

molecule. Various rules and formulas were proposed early on to correlate boiling points of 

homologous hydrocarbons with the number of carbon atoms or molecular weight.
 [24]

 The 

normal boiling points of liquids reflect the strength of the intermolecular forces (among other 

forces present) that hold them together. The stronger the intermolecular forces, the more 

tightly the atoms will be held together and, therefore, the higher the normal boiling point. The 

boiling point can be directly correlated to the chemical structure of a molecule. Quantitative 

structure–property relationships (QSPR) and quantitative structure–activity relationships 

(QSAR) methodology has been reported quite extensively in the literature to predict many 

physicochemical properties, such as vapor pressures, chromatographic retention and capillary 

electrophoretic mobilities, aqueous solubility  and boiling points
[25]

. The column temperature 

is an important factor and variable that must be controlled with a precision about 1/10 C°. 

Optimum column temperature is depending on sample boiling point and degree of desired 

separation and resolution. In general, optimum separation is relevant to minimum 

temperature. In spite of this, use low temperature makes increasing in time elution. So we 

need more time to complete the analysis.
 [26]

   

It seems that retention index and boiling point have a direct relationship with each 

other. As we see in the Table 5 boiling point have a high correlation with retention index 

(Figure 5). It means that boiling point has an important and major effect on the retention index 

and retention index will increase if boiling points increase. b-Pinene is cyclic and myrcene has 

a  linear structure.  Compounds with a linear structure because of their more available surface 

for interaction with each other have a high boiling point and retention index's too in 

comparison with cyclic ones. We have an increasing of boiling point with increasing in 

molecular weight and number of carbon atoms. Whatever molecules with high molecular 

weight and big volume, the retention index increase respectively. Another parameter that has 

an important effect on boiling point is polarizability and functional groups. p-cymen-8-ol has 

a –OH group and polarized in comparison with p-cymene. Because of strong interaction and 

H-bonding between these kinds of molecules they have high boiling point and therefore high 

retention index. The strictures of these two molecules are show in Figure 6. In comparison 

between p-Cymene and perilla alcohol  molecules we see that in perilla alcohol because of it's 

–OH functional group, molecule is polar and if interaction with stationary phase was more 

important it must be exit faster than p-cymene because the stationary phase (DB-1) is non 

polar.
 [27]

 But in reality we see that perilla alcohol exit later and has a high retention index 

because it has a high boiling point and intermolecular interaction is more important rather 

than interaction with stationary phases (Figure 7). So we can conclude that boiling point has a 

more effect and importance in comparison with kind of stationary phases and their 

interactions that is according to reality. Boiling point (BP) is perhaps the best one from among 
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the physicochemical properties in describing chromatographic retention.
 [16]

 In general the 

most important parameter in GC is boiling point. 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Correlation between Log (RI) and Boling Point. 

 

                                     

 

 

 

 

 

 

 

Fig. 6      p-Cymene             p-Cymen-8-ol. 

 

  

 

 

 

 

 

 

 

                   

 

             

                    Fig. 7        p-Cymene                                Perilla alcohol 

 

The empirical characterization of the temperature dependence of the retention index 

has been reported in a number of studies 
[28-33]

. These studies incorporate thermodynamic 

models of retention into the retention index equation. Since the retention index system is 

entirely thermodynamic in origin, small departures from temperature independent behavior 

are typically explained through the temperature dependence of the individual enthalpic and 

entropic terms which make up the retention index equation. Although basic understandings of 

the governing principles of retention exist for GC, there is an incomplete understanding of 

how changes in physical conditions affect relative retention. For the case of partitioning of 
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non-polar solutes between a vapor phase and a non-polar solvent, it is well known that the 

Gibbs free energies for the transfer from the vapor phase to the liquid phase increase with 

increasing temperature, but may do so at different rates. 

The partition coefficients for the gas-to-liquid transfer of the analytes can be 

determined directly from the ratios of the average analyte number densities in the coexisting 

phases:                                    

                                                                                  

 

 

 

where R and T are the molar gas constant and absolute temperature, respectively. The number 

densities are mechanical properties, and hence the partition coefficients and Gibbs free 

energies of transfer can be determined more precisely following the Gibbs ensemble route 

than using standard free energy evaluation techniques. 

The Gibbs free energy of transfer can be separated into enthalpic and entropic 

contributions. The enthalpy of transfer itself contains two terms: the internal energy of 

transfer and the pressure-volume term. 

Since the enthalpy of transfer is calculated independently from the partition 

coefficients, the entropy of transfer at every specific temperature can be determined from the 

usual thermodynamic relation: 

  ∆G (T) =∆H−T ∆S                                    (8) 

In chromatography experiments, absolute free energies are rarely measured, since the 

phase ratio is very difficult to determine, and varies significantly from column to column and 

also with temperature. Relative free energies, though, do not depend on the phase ratio, and 

are very reproducible. The calculation of the enthalpic and entropic contributions to the Gibbs 

free energies of transfer allows us to rationalize the observed temperature dependence for the 

retention indices of the compounds. Using the standard thermodynamic equation for the 

Gibbs free energy given in Eq. (8), and  assuming that the enthalpy and entropy are constant 

(see below), the temperature dependence of the Gibbs free energy is larger for molecules with 

larger entropies of transfer. 
[34]

 

 

Conclusion 

In this study we used multiple linear regression (MLR) and PLS with leave-one-out 

cross-validation techniques to model and predict retention index of a large set of   essential 

oils like a-pinene, camphene, sabinene. Both methods resulted in useful models with good 

generalization and prediction ability to predict the retention indices of a separate test set 

compounds. The method presented here enables an automatic estimation of retention indices 

from the molecular structure, using a model derived from about 66 relevant compounds. The 

identification of unknowns in GC–MS analyses can be supported by excluding hit list 

structures which give predicted retention indices very different from the experimental values; 

thus the identification of unknown RI is facilitated. This model is making up four descriptor 

including boiling point (BP) standard Gibbs free energy (G) and lowest unoccupied molecular 

orbital energy (LUMO). The linear model produced by MLR and PLS methods could 

reproduce more than 97% of variances in the retention data with prediction error as low as 

0.0832%.  
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