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Abstract 

A quantitative structure-activity relationship (QSAR) study is suggested for the 

prediction of retention time of volatile organic compounds in waste water. Modeling of the 

retention time of volatile compounds as a function of molecular structures was established by 

means of the chemometrics methods such as partial least squares (PLS) and least squares 

support vector machines (LS-SVM). These models were applied for the prediction of the 

retention times of these compounds, which were not in the modeling procedure. The 

predictive quality of the QSAR models were tested for an external prediction set of 8 

compounds randomly chosen from 59 compounds. The resulted model showed high 

prediction ability with root mean square error of prediction of 0.0335 for LS-SVM.  
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Introduction  
An important property that has been extensively studied in quantitative structure 

activity relationship (QSAR) is the chromatographic retention time. A quantitative structure 

retention relationship (QSRR) study involves the prediction of chromatographic retention 

parameters using molecular structure. QSRR studies we widely investigated in gas 

chromatography (GC) and high-performance liquid chromatography (HPLC). The 

chromatographic parameters are expected to be proportional to a free energy change that is 

related to the solute distribution on the column. Chromatographic retention is a physical 

phenomenon that is primarily dependent on the interactions between the solute and the 

stationary phase. Molecular group contribution methods are widely employed to estimate gas 

chromatographic retention parameter.  

The anthropogenic pollution of environmental water goes into the global scales, thus 

representing significant public health risk. Volatile organic compounds (VOCs) have been 

shown to affect a wide number of biological and environmental systems, they influence 

various atmospheric processes, some are carcinogens and/or mutagens, while others are 

persistent and show bioaccumulation effects. 
[1]

 In addition, many VOCs exhibit toxic effects 

on aquatic organisms. As regards the water, VOCs are  among the most commonly found 

contaminates in groundwater. Their volatility is the reason they are not often found in 

concentrations above a few µg L
-1

 in surface waters, but in groundwater their concentrations 

can be hundreds or thousands of times higher.
[2].

  

Among the investigation of QSAR, one of the most important factors affecting the 

quality of the model is the method to build the model. Many multivariate data analysis 

methods such as multiple linear regression (MLR)
 
, 

[3]
 partial least squares (PLS) 

[4, 5]
 and  

artificial neural network (ANN) 
[6]

 have been used in QSAR studies. MLR, as most 
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commonly used chemometrics method, has been extensively applied to QSAR investigations. 

However, the practical usefulness of MLR in QSAR studies is rather limited, as it provides 

relatively poor accuracy. ANN offers satisfactory accuracy in most cases but tends to overfit 

the training data. The support vector machine (SVM) is a popular algorithm developed from 

the machine learning community. Due to its advantages and remarkable generalization 

performance over other methods, SVM has attracted attention and gained extensive 

applications 
[7, 8].

 As a simplification of traditional of SVM, Suykens and Vandewalle 
[9, 10]

 

have proposed the use of least-squares SVM (LS-SVM). LS-SVM encompasses similar 

advantages as SVM, but its additional advantage is that it requires solving a set of only linear 

equations (linear programming), which is much easier and computationally more simple.
[11-13]

 

In the present study, the PLS and LS-SVM methods were applied in QSAR for modeling the 

relationship between the retention time of 59 volatile organic compounds by using structural 

molecular descriptors.  

Materials and computational methods 
   Data set and methods 

The QSRR model fro the estimation of the retention times of various volatile organic 

compounds is established in the following steps: the molecular structure input and generation 

of the files containing the chemical structures is stored in a computer-readable format; 

quantum mechanics geometry is optimized with a semi-empirical (AM1) method; structural 

descriptors are computed; and the structural-retention time model is generated by the 

chemometrics methods and statistical analysis. The retention time of 59 volatile organic 

compounds was collected from.
[14] 

 

Computer hardware and software  

All calculations were run on a Pentium IV personal computer with windows XP 

operating system. ChemDraw Ultra version 9.0 (ChemOffice 2005, CambridgeSoft 

Corporation) software was used to draw the molecular structures and optimization by the 

AM1. Descriptors were calculated utilizing Dragon software (Milano Chemometrics and 

QSAR research group, http://www.disat.unimib.it/chm/). These descriptors are calculated 

using two-dimensional representation of the molecules and therefore geometry optimization is 

not essential for calculating these types of descriptors. 

 

Results and discussion 
Retention times of 59 volatile organic compounds including halogenated was taken 

from the literature,
[14]

 and are presented in Table 1. A major step in constructing QSAR 

models is finding one or more molecular descriptors that represent variation in the structural 

property of the molecules by a number. A wide variety of descriptors have been reported to be 

used in QSAR analysis.
[15]

 

  

No. Substance Retention 

time (s) 

No. Substance Retention 

time (s) 

1 
t
 d1-Chloroform 5.05 31 

t
 Chlorobenzene 12.98 

2 
t
 1,1-Dichloroethene 1.75 32 

t
 Ethylbenzene 13.07 

3 
t
 Dichloromethane 2.49 33 

t
 m-/p-Xylene  13.35 

4 
t
 trans-1,2-Dichloroethene 2.57 34 

p
 o-Xylene  13.07 

5 
p
 1,1-Dichloroethane 3.28 35 

t
 Styrene  14.29 

6 
t
 2,2-Dichloropropane 3.94 36 

t
 1,1,1,2-Tetrachloroethane  13.38 

7 
t
 cis-1,2-Dichloroethene 4.23 37 

t
 Isopropylbenzene  15.06 
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Table 1continued…   

8 
t
 1,1,1-Trichloroethane 4.68 38 

t
` Bromoform  15.37 

9 
t
 Carbon tetrachloride 4.72 39 

t
 Bromobenzene  15.93 

10 
t
 Bromochloromethane 4.81 40 

t
 Propylbenzene  15.99 

11 
t
 1,1-Dichloropropene 4.96 41 

p
 2-Chlorotoluene  16.26 

12 
t
 Chloroform 4.99 42 

t
 1,3,5-Trimethylbenzene  16.44 

13 
t
 1,2-Dichloroethane 6.29 43 

t
 4-Chlorotoluene  16.59 

14 
t
 d-Benzene 5.56 44

 t
 1,2,3-Trichloropropane  16.77 

15 
t
 Benzene 5.61 45 

t
 1,1,2,2-Tetrachloroethane  16.88 

16 
t
 Pentafluorobenzne 5.24 46 

t
 tert-Butylbenzene  17.13 

17 
t
 Trichloroethene 6.89 47 

t
 1,2,4-Trimethylbenzene  17.30 

18 
p
 1,2-Dichloropropane 7.85 48 

t
 sec-Butylbenzene  17.59 

19 
t
 Dibromomethane 8.29 49 

p
  4-Isopropyltoluene  17.99 

20 
p
 Dibromodichloromethane 8.72 50 

t
 d4-1,4-Dichlorobenzene  18.28 

21 
t
 Tetrachloroethene 10.51 51 

t
 1,3-Dichlorobenzene  18.01 

22 
t
 cis-1,3-Dichloropropene  9.56 52 

t
 1,4-Dichlorobenzene  18.30 

23 
t
 trans-1,3-Dichloropropene  11.05 53 

t
 1,2-Dichlorobenzene  19.19 

24 
t
 1,1,2-Trichloroethane  11.49 54 

t
 Butylbenzene  18.97 

25 
t
 1,3-Dichloropropane 11.71 55 

t
 1,2,4-Trichlorobenzene  22.45 

26 
t
 Dibromochloromethane  12.20 56 

t
 1,2,3-Trichlorobenzene  23.30 

27 
t
 1,2-Dibrommethane  12.22 57 

t
 Naphthalene  22.98 

28 
t
 d8-Toluene  9.64 58 

p
  Hexachlorobutadiene 22.45 

29 
p
 Toluene  9.74 59 

t
 1,2-Dibrom-3-

chloropropane 

21.48 

30 
t
 d5-Chlorobenzene  12.95 

t
 training set, 

 p
 prediction set 

Table 1 Retention time of volatile organic compounds in the present study. 

 

A pool containing molecular descriptors is derived to property characterize the chemical 

structure of the VOCs, involving variables of the type Constitutional, Topological 

Geometrical, Charge, GETAWAY (GEometry, Topological, Atoms-Weighted AssemblY), 

WHIM (Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE (3D-Molecular 

Representation of Structure based on Electron diffraction), Molecular Walk Counts, BCUT 

descriptors, 2D-Autocorrealtions, Aromaticity Indices, Randic molecular profiles, Radial 

Distribution Functions, Functional Groups and Atom-Centered Fragments. These variables 

are calculated by means of the software Dragon version 5.4. For the evaluation of the 

predictive ability of a different model, the root mean square error of prediction (RMSEP) and 

relative standard error of prediction (RSEP) can be used. 
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PLS analysis 
The factor-analytical multivariate calibration method is a powerful tool for modeling, 

because it extracts more information from the data and allows building more robust models. 

According to retention time data (Table 1), data randomly classified to training and prediction 

sets. The optimum number of factors to be included in the calibration model was determined 

by computing the prediction error sum of squares (PRESS) fro cross-validated models using a 

high number of factors (half of the number of total training set + 1). The cross-validation 

method employed was to eliminate only one compound at a time and then PLS calibrated the 

remaining of training set. The retention time of the left-out sample was predicted by using this 

calibration. This process was repeated until each compound in the training set had been left 

out once. According to Haaland suggestion 
[16]

, the optimum number of factor was selected.  

 

LS-SVM analysis 
The all descriptors were used as the input to develop nonlinear model by LS-SVM. 

The quality of LS-SVM for regression depend on γ and σ
2
 parameters. In this work, LS-SVM 

was performed with radial basis function (RBF) as a kernel function. To determine the 

optimal parameters, a grid search was performed based on leave-one-out cross-validation on 

the original training set for all parameter combinations of γ and σ
2 

from 1 to 100 and 1 to 100, 

respectively, with increment steps of 1. Table 2 shows the optimum γ and σ
2
 parameters for 

the LS-SVM and RBF kernel, using the calibration sets. 

-Prediction of retention time of volatile organic compounds 

The predictive ability of these methods (PLS and LS-SVM) were determined using 8 

retention time (their structure are given in Table 1). The results obtained by PLS and LS-SVM 

methods are listed in Table 2.  

 

 

Substance 

Actual 

retention 

time (s) 

Predicted retention time (s) 

PLS Error (%) LS-SVM Error (%) 

1,1-Dichloroethane 3.28 3.12 -4.88 3.27 -0.30 

1,2-Dichloropropane 7.85 8.14 3.69 7.88 0.38 

Dibromodichloromethane 8.72 8.32 -4.59 8.69 -0.34 

Toluene 9.74 9.24 -5.13 9.75 0.10 

o-Xylene  13.07 12.46 -4.67 13.05 -0.15 

2-Chlorotoluene  16.26 16.59 2.03 16.21 -0.31 

4-Isopropyltoluene 17.99 18.61 3.45 18.04 0.28 

Hexachlorobutadiene 22.45 22.06 -1.74 22.41 -0.18 

NF 
a
  9    

PRESS  1.2364    

γ    5  

σ
2
    10  
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Table 2 continued… 

Q
2 b

  0.9137  0.9842  

RMSEP  0.4383  0.0335  

RSEP (%)  3.1947  0.2445  

a
 Number of factor (PLS), 

b 
Q

2
 coefficient for the model validation by leave-one-out 

Table 2  Actual and predicted values of retention times of VOCs using PLS and LS-SVM 

models 

 

Table 2 also shows Q
2
, RMSEP, RSEP and the percentage error for prediction of retention 

time of volatile organic compounds. As can be seen, the percentage error was also quite 

acceptable only for LS-SVM. Good results were achieved in LS-SVM model with percentage 

error ranges from -0.34 to 0.38 for retention time of VOCs. Also, it is possible to see that LS-

SVM presents excellent prediction abilities when compared with other regression. According 

to the results, structural descriptors are suitable descriptors for describing the retention time of 

VOCs. When LS-SVM method with all descriptors is used, prediction of retention time in test 

step, with a small error is possible; this is improved in comparison with other method (PLS). 

This shows that by using all structural descriptors and also LS-SVM method, the retention 

time of VOCs is predicted with satisfactory results. 

 

Conclusion 

A least squares-support vector machine (LS-SVM) model was established to predict 

the retention time of some volatile organic compounds in waste water. A proper model with 

high statistical quality and low prediction errors was obtained. The model could predict the 

retention time of organic compounds not existed in the modeling procedure accurately. The 

structural and topological descriptors concerning to the whole molecular properties and those 

of individual atoms in the molecule were found to be important factors controlling the 

retention time behavior.  
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