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Abstract

In this paper we introduce Euler method for solving one dimensional fuzzy differential
inclusions. Fuzzy reachable set can be approximated by Euler method with complete analysis.
The method is illustrated by numerical example:
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Introduction

Knowledge about the behavior of differential equation is often incomplete or vague.
For example, values of parametet, functional relationships, or initial conditions, may
not be known precisely. The initial value problem for fuzzy differential equation
(FDE) is studied in™® with possibilistic irreversibility property. See®" for further
information. Recently Hiillermeier ® suggested a different formulation of fuzzy initial
value problem FIVPs based on a family of differential inclusions at each r-level,

0<r<i,

Xelfa,x)], x0)ex],

where [f(.,.)]:lo,TIXR" =k, and x is the space of nonempty convex compact
subsets of R";. .also it is shown that the solution has the property that
diam (supp x(t)) = 0 ast — oo, '

This paper is organized as follows. In Section 2, the definition of fuzzy differential
inclusion is given. The numerical method for fuzzy differential equation is discussed
in Section 3. The proposed algorithm is illustrated in Section 4 and the conclusions are
in Section 5.

Preliminaries
Prior to introduce fuzzy differential inclusion we must denote fuzzy sets and fuzzy

numbers as follows. We place a tilde over a symbol to denote a fuzzy set so X, A4, ...,
all represent fuzzy subsets in R. We write X (r) for the membership function of X
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evaluated at 7€ R . An a-cut of X written [X],, is defined as {t:f (t)Za} , for
O<a<1and

[Xl,= JIX],.
ae(0,1]
A triangular fuzzy number N is defined by three numbers a, <a,<a, where the
graph of N(r) is triangle with base on the interval [a,,a,] and vertex at ¢ = a, where
N(a,)=N(ay)=0, N(a,)=1 and we write N=(a,/ a, / a;), ""'*.

For xe R" and A,B c R" let

px,A)= inf{|x - a|, ae A},

B(A,B) =sup{p(a,B), ac A},
d, (A, B)=max{B(A,B),B(B,A)}.

The Hausdorff distance d,, defines a metric on the nonempty and compact subsets
of R". For two fuzzy sets A, B the Hausdorff metric is defined as

d,(A,B) = sup dy([Al,.[B],).

ae(0,1]

We can replace functions and initial'values in the problem

{ x(t)=f(#,x@1)),

x(0)=x,, M

by set-valued functions which leads to the following differential inclusion (DI), **

{ x(t)e F(t,x(1)),

x(0)e X,, @)

where F:[0,T]XR" — 2" \{¢} is a set-valued function and X,cR" is compact and
convex. A function x:[0,T] — R" is a solution of (2) if it is an absolutely continuous
and satisfies (2) almost everywhere. Let y denote the set of all solutions of (2), the
reachable set X () at time ¢ € [0,T] is defined as, "

X(0)={x(n|xe x}.

The set X (¢) is the set of all possible solutions of (1) at time .
A reasonable generalization of this approach which takes vagueness into account is
to replace sets by fuzzy sets, i.e. (2) becomes the fuzzy differential inclusion, ¥

{ i(t) e F(t,x(1)), -

x(0)e X,,
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on [0,7] with a fuzzy function F:[0,T]1XR" —E" , where fuzzy set )?0 e E" and E"

is the set of normal, upper semi-continuous, fuzzy convex, and compactly supported
fuzzy sets on R". Also x(t) is the usual crisp derivative of the crisp differentiable

function x(r) with respect to ¢. In this paper we introduce a numerical method for
finding reachable set X(¢) that are based on the theoretical consideration of the
following theorem.

Theorem 1. "V Suppose the fuzzy function F:[0,T1XR" — E" to be continuous in t
and also satisfies Lipschitz condition

JH (ﬁ(t’x)’ﬁ(t,)))) < L|x—y|

on R" with Lipschitz constant L>0 . Consider the set } of solutions to (3). The
reachable set X (1) associated with ¥ is a normal, upper semi-continuous, and

compactly supported fuzzy set for all te[0,T] . If F-is also concave, i.e.,
aF (t,x)+ BF(t,y) c F(tsax+ fy),

For all a, >0, a+ =1, then X (1) € E".
Now, consider the initial value problem (3) with n=1, i.e.

{ i) e F(t,x1)); @

x(0)e X,

on J=[0,T] with a fuzzy concavefunction F:J xR — E where fuzzy set X € E
and the hypotheses of Theorem 1.are satisfied. We call a function x,:J/ — R an -
solution to (4), if it is absolutely continuous and satisfies

{ i, (1VE F,(t,x(1)),

~ ®)
x,(0) € [X,],,

almost everywhere on J , where F,(z,x(¢)) is the «a- cut of the fuzzy set F(t,x(1)).
The set of all"@-solutions to (5) is denoted by y,, and the «-reachable set X, (7) is
defined as X _(1)={x(r): xe g,}. In this paper, the «-reachable set X,(r) is
approximated by Euler method.

Euler method
One of the basic question in numerical approximation of the « -reachable set X, (¢)

is the follow: Given an « -reachable set X ,(z,) of possible state at time
t,, what does the interval X,(z,,) look like? Suppose Atr=t, —t,. Our first
approximation step is to characterize upper bound of «-reachable set X, (z,,) and

second is to characterize lower bound of it. The Euler scheme is set valued
generalization as
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X, ()= |Jx, ) +AF, (1, x,(1)), (6)

Yo ()€ X o ;)

then we take y e X,(z,), hence there exists a trajectory as x,(t)e y, where

X, () =Y.

Also, x,(¢) is absolutely continuous on [0,7], then x, () is bounded variable on
[0,T], i.e., for each partition O0=17,<t <..<t, =T, where Ar=t, —t,, there exists
M >0 such that

i=n

lx ) = x, (1) <M

i=1

AAAAA

the other word let X (#,)=[x,,,x,] then distance between «x,_,, and x,,, by x,, and
x,, is respectively small. Therefore, it is better that y, be selected as x,,, 1.e., y, =x,,.
Refer to (5), if x,(r) be an & -solution then

Ao (ti+1 )~ Ao (ti )

X, (1) = A

and hence

xa(ti-H) — Xy (ti)

e I (t,x,(t)),
AL a(t,x, (1))

T
where Ar=—
n

Now since y, =x,(,) , we have

X (ti) — ¥
At
therefore x,(7,,,)—y, €ArF,(t,,y,), or x,(t,)€ AtF,(t,y,), therefore in due to (6),
x,(t,)e X, (). Wecan select

€ Fa(tivyl‘):[E(tnyi)’F(ti’yi)]’

yi+1 € [yi+AfE(fi, y,-),y,-*‘AtF(f,-, y,-)],

randomly, but in good choice we take y, =y, +AtF(x,,y,) and is denoted by y'.

Now we take y» =y +¢, where £€>0. If y" € X _(t.,,) there exists a trajectory in g,

i+l i+1
such that x,(z,,)=y" and Xx(t,)e F,(t,,y) by using left derivative we have
)
x (t.)—x (t. x ()= V.
a(z) a(z+1)’ hence a(z) Vi1 e Fa(ti+1’yi(i)1)7 or
i "l i =iy
)

x (t.)—v. —
Xall) = Vit ¢ [ V) Ft,, )]

l 1
L=ty

xa (ti+1 ) =

Since Ar>0 we conclude that
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v —x, () e [AtE(t,,,,y"),AtF (t,,,, )l

t+l i+1° t+l i+1° t+l

In other hand we know x,(z,) € [x,,,x,,] hence

yl(i; € [xx 1 + AtF(tHl’ yl(ii) xl 2 +AtF (t (l))]’

i+1° y1+l

(k+1) (k)

in general we iterate the sequence y;.,”’ =y, +¢ until there exists a me N such that

y belong to [x,,+AtF (t,,,y)),x,,+ AtF (t,,,, y))], but y&i* does not belong to

(X, + ALE (0, v ™), x, , +AF (2, vy 1

i+1° l+l i+1° l+l
In this case upper bound of « -reachable set at 7 =¢

, yor x,, =y, similarly for finding lower bound of Xz

i+l

ie., x,,, be approximated by

i+l
) first we select z, in
X, (t,) which is a good selection, i.e., z, =x,,

0) 3
i+l 1S

By using Euler scheme we have z\) € [z, +AtF (t,,%;), 2+ AtF (t,,z,)] therefore z

i+1
in the [x,,,x,,,] it is means that there exists a trajectory as x,(t)€ y, such that

x,(t.,)=z" and x,(t,)€ X (). In general we iterate the sequence

%V =z%—¢ until there exists a .meN such that z7 belong to

[x,+ AtF(t,,.z0), X, , +AIF (1,,200)]  but. gn™”  does not belong to

i+1

[x,,+ AtE(t,,, 2™, x,, + AtF (1, z+™") . In this case lower bound of a-reachable set

at t=t,,i.e., x,,, can be approximated by z, in other word x,,,, =z"".

i+1° i+1,1 i+l

Let the exact solution [X (t)], =[X (), X (¢,)] in Euler method is approximated by
[Y (1)1, =[Y(£,).Y (1,)],, oné can See |xi,1 ~Y(t)| <€ and |x,,-Y (1) < & hence

7%0,

(‘ X —Z(ti)‘2 +|x

as i — oo , therefore

d, (XY (1,)—0
Numerical example
Consider the fuzzy differential inclusion on R*,

X(t) e —x(t)+ € cost
{x(())e X,
where & and X, are symmetric triangular fuzzy numbers with level sets
[¢],=[0.05(=1),0.05(1-a)] and [X,],=[0.5(c—1),0.5(1—)]. The «-solution set is
given for >0 by
x,(t) e %(sint+cost)[€]a+([fo]a—%[2]a)e’.

Now, we obtain the approximation of 0 -reachable set in Figure 1 and X (5) by Euler
method in Figure 2 with Ar=0.01.
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Figure 2. Estimation of X &)

Conclusion

In this paper, we have outlined..a Euler numerical method for solving one
dimensional fuzzy differential equation based on fuzzy differential inclusion.

By Euler method we can approximate fuzzy « -reachable set, since x,(r) is an

interval. Numerical example shows the efficiency of implemented numerical method.
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